1
|
Robinson KA, Dunn M, Hussey SP, Fritz-Laylin LK. Identification of antibiotics for use in selection of the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. PLoS One 2020; 15:e0240480. [PMID: 33079945 PMCID: PMC7575076 DOI: 10.1371/journal.pone.0240480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
Global amphibian populations are being decimated by chytridiomycosis, a deadly skin infection caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Although ongoing efforts are attempting to limit the spread of these infections, targeted treatments are necessary to manage the disease. Currently, no tools for genetic manipulation are available to identify and test specific drug targets in these fungi. To facilitate the development of genetic tools in Bd and Bsal, we have tested five commonly used antibiotics with available resistance genes: Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin. We have identified effective concentrations of each for selection in both liquid culture and on solid media. These concentrations are within the range of concentrations used for selecting genetically modified cells from a variety of other eukaryotic species.
Collapse
Affiliation(s)
- Kristyn A. Robinson
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Mallory Dunn
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Shane P. Hussey
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Lillian K. Fritz-Laylin
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
2
|
Molecular Basis for Endocrine Disruption by Pesticides Targeting Aromatase and Estrogen Receptor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165664. [PMID: 32764486 PMCID: PMC7459580 DOI: 10.3390/ijerph17165664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022]
Abstract
The intensive use of pesticides has led to their increasing presence in water, soil, and agricultural products. Mounting evidence indicates that some pesticides may be endocrine disrupting chemicals (EDCs), being therefore harmful for the human health and the environment. In this study, three pesticides, glyphosate, thiacloprid, and imidacloprid, were tested for their ability to interfere with estrogen biosynthesis and/or signaling, to evaluate their potential action as EDCs. Among the tested compounds, only glyphosate inhibited aromatase activity (up to 30%) via a non-competitive inhibition or a mixed inhibition mechanism depending on the concentration applied. Then, the ability of the three pesticides to induce an estrogenic activity was tested in MELN cells. When compared to 17β-estradiol, thiacloprid and imidacloprid induced an estrogenic activity at the highest concentrations tested with a relative potency of 5.4 × 10−10 and 3.7 × 10−9, respectively. Molecular dynamics and docking simulations predicted the potential binding sites and the binding mode of the three pesticides on the structure of the two key targets, providing a rational for their mechanism as EDCs. The results demonstrate that the three pesticides are potential EDCs as glyphosate acts as an aromatase inhibitor, whereas imidacloprid and thiacloprid can interfere with estrogen induced signaling.
Collapse
|
3
|
Gilbert C, Provost PR, Tremblay Y. Dynamic modulation of Cyp21a1 (21-hydroxylase) expression sites in the mouse developing lung. J Steroid Biochem Mol Biol 2017; 168:102-109. [PMID: 28216153 DOI: 10.1016/j.jsbmb.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
21-hydroxylase is expressed in the developing lung where it is proposed as a local source of glucocorticoids playing important roles in lung development. We have studied the precise sites of Cyp21a1 expression in the developing mouse lung from the pseudoglandular stage (gestation day (GD) 15.5) to the alveolar stage (postnatal day (PND) 15) by in situ hybridization. Cyp21a1-mRNA was found mainly in epithelial cells from GD 15.5 to PND 5, but the precise site of expression shifted from the distal epithelium during the pseudoglandular and the canalicular stages including the distal epithelium without lumina, to the proximal epithelium and the wall of developing saccules during the perinatal period (GD 19.5 and PND 0), and to the wall of developing saccules and septa, most probably in type I pneumonocytes (PTI), on PND 5. Cyp21a1 expression changed from PTI cells to capillary endothelial cells of the same distal structures during alveolarization. The mesenchyme was generally negative. Endothelial cells forming large vessels were negative. However the tunica adventitia surrounding arteries was Cyp21a1-positive, while several veins were surrounded by a Cyp21a1-positive layer. In conclusion, Cyp21a1 remains expressed in the most distal structure of the developing lung even though these structures are changing, but its expression is not restricted to these areas. Taken together, our data show the highly dynamic modulation of Cyp21a1 expression sites, consistent with the evolving structures of the developing lung.
Collapse
Affiliation(s)
- Catherine Gilbert
- Reproduction, Mother and Youth Health, Centre de recherche du CHU de Québec, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de recherche du CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de recherche du CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Bouhaddioui W, Provost PR, Tremblay Y. CYP21A2 expression is localized in the developing distal epithelium of the human perinatal lung and is compatible with in situ production and intracrine actions of active glucocorticoids. J Steroid Biochem Mol Biol 2016; 163:12-9. [PMID: 27004467 DOI: 10.1016/j.jsbmb.2016.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
Abstract
Glucocorticoids play essential roles in lung development. We investigated for expression of CYP21A2 (21-hydroxylase) as well as for the presence of the corresponding protein and identification of CYP21A2-expressing cells in several human developing lungs. Expression of some related genes was also assessed. CYP21A2 and CYP17A1 (P450c17) mRNAs were found in all the 34 lung samples from 17 to 40 weeks' gestation at variable levels. No correlation was found according to sex but a correlation with age was detected for CYP17A1 only. In contrast, CYP11B1 (11β-hydroxylase)- and CYP11B2 (aldosterone synthase)-mRNAs were not detected. Significant levels of the CYP21A2 protein were detected in all the analyzed samples, while only very low signals were detected for CYP17A1 protein. In situ hybridization revealed that CYP21A2 was almost exclusively expressed in the distal epithelium. It was reported that the lung distal epithelium of human fetuses also express 11β-hydroxysteroid dehydrogenase type 2, which catalyzes cortisol inactivation into cortisone. Based on this information, intracrine glucocorticoid actions should take place from CYP21A2 products through the glucocorticoid receptor in the absence of cortisol. In contrast, mineralocorticoid receptor activation did not seem to depend on deoxycorticosterone produced from local activity of CYP21A2 because of the reported circulating amounts of aldosterone.
Collapse
Affiliation(s)
- Wafae Bouhaddioui
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de recherche CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
5
|
Amin M, Simerman A, Cho M, Singh P, Briton-Jones C, Hill D, Grogan T, Elashoff D, Clarke NJ, Chazenbalk GD, Dumesic DA. 21-Hydroxylase-derived steroids in follicles of nonobese women undergoing ovarian stimulation for in vitro fertilization (IVF) positively correlate with lipid content of luteinized granulosa cells (LGCs) as a source of cholesterol for steroid synthesis. J Clin Endocrinol Metab 2014; 99:1299-306. [PMID: 24423334 PMCID: PMC3973780 DOI: 10.1210/jc.2013-3204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Mineralocorticoid synthesis by the nonhuman primate periovulatory follicle enhances luteinization. Whether a similar event occurs in women undergoing in vitro fertilization (IVF) is unknown. OBJECTIVE The objective of the study was to determine whether human luteinized granulosa cells (LGCs) produce mineralocorticoids derived from 21-hydroxylase activity and also express mRNA for 21-hydroxylase and the mineralocorticoid receptor. DESIGN This was a prospective cohort study. SETTING The study was conducted at an academic center. PATIENTS LGC lipid content and follicle fluid (FF) hormone analysis was performed on 27 nonobese IVF women. LGCs from six additional nonobese IVF women were used for gene expression studies. INTERVENTION At oocyte retrieval, FF was aspirated from the first follicle (≥16 mm in size) of each ovary and pooled LGCs were collected. MAIN OUTCOME MEASURES FF steroid analysis was performed by liquid chromatography-tandem mass spectrometry. LGCs were stained with lipid fluorescent dye BODIPY FL C16 to estimate lipid content by confocal microscopy as a cholesterol source for steroidogenesis in vivo. Quantitative real-time PCR was performed using LGCs to detect 21-hydroxylase and mineralocorticoid receptor mRNA expression. Pearson correlation coefficients determined associations between FF steroid levels and LGC lipid content. RESULTS FF levels of the 21-hydroxylase-derived steroids, 11-deoxycorticosterone [DOC, 39.97, median (13.94-63.02) ng/mL] and 11-deoxycortisol [11DOC, 2.07 (0.69-5.01) ng/mL], along with the 21-hydroxylase precursor 17-hydroxyprogesterone [1268.21 (493.26-3558.39) ng/mL], positively correlated with LGC lipid content (84 ± 43 fluorescent units/sample) (P ≤ .05, all steroids). 21-Hydroxylase and mineralocorticoid receptor mRNA expression was detected in LGCs. CONCLUSIONS Human LGCs likely synthesize 21-hydroxylase-derived mineralocorticoids from cholesterol-containing lipid in vivo to promote postovulatory luteinization via mineralocorticoid receptor-mediated events.
Collapse
Affiliation(s)
- Marli Amin
- Department of Obstetrics and Gynecology (M.A., A.S., M.C., P.S., G.D.C., D.A.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90024; Department of Medicine Statistics Core (T.G., D.E.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, Los Angeles, California 90095; Quest Diagnostics Nichols Institute (N.J.C.), San Juan Capistrano, California 92675; and ART Reproductive Center (C.B.-J., D.H.), Beverly Hills, California 90210
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lisanova OV, Shchelkunova TA, Morozov IA, Rubtsov PM, Levina IS, Kulikova LE, Smirnov AN. Approaches to the design of selective ligands for membrane progesterone receptor alpha. BIOCHEMISTRY (MOSCOW) 2013; 78:236-43. [DOI: 10.1134/s0006297913030048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Vaz de Lima LAC, Nascimento AS. MolShaCS: A free and open source tool for ligand similarity identification based on Gaussian descriptors. Eur J Med Chem 2013; 59:296-303. [DOI: 10.1016/j.ejmech.2012.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
8
|
Brookes JC, Galigniana MD, Harker AH, Stoneham AM, Vinson GP. System among the corticosteroids: specificity and molecular dynamics. J R Soc Interface 2012; 9:43-53. [PMID: 21613285 PMCID: PMC3223625 DOI: 10.1098/rsif.2011.0183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/04/2011] [Indexed: 11/12/2022] Open
Abstract
Understanding how structural features determine specific biological activities has often proved elusive. With over 161,000 steroid structures described, an algorithm able to predict activity from structural attributes would provide manifest benefits. Molecular simulations of a range of 35 corticosteroids show striking correlations between conformational mobility and biological specificity. Thus steroid ring A is important for glucocorticoid action, and is rigid in the most specific (and potent) examples, such as dexamethasone. By contrast, ring C conformation is important for the mineralocorticoids, and is rigid in aldosterone. Other steroids that are less specific, or have mixed functions, or none at all, are more flexible. One unexpected example is 11-deoxycorticosterone, which the methods predict (and our activity studies confirm) is not only a specific mineralocorticoid, but also has significant glucocorticoid activity. These methods may guide the design of new corticosteroid agonists and antagonists. They will also have application in other examples of ligand-receptor interactions.
Collapse
Affiliation(s)
- Jennifer C. Brookes
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Mario D. Galigniana
- IBYME/CONICET Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Anthony H. Harker
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- London Centre for Nanotechnology, University College London, Gordon Street, London WC1E 6BT, UK
| | - A. Marshall Stoneham
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- London Centre for Nanotechnology, University College London, Gordon Street, London WC1E 6BT, UK
| | - Gavin P. Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
9
|
Clyne CD, Chang CY, Safi R, Fuller PJ, McDonnell DP, Young MJ. Purification and characterization of recombinant human mineralocorticoid receptor. Mol Cell Endocrinol 2009; 302:81-5. [PMID: 19114086 PMCID: PMC2702660 DOI: 10.1016/j.mce.2008.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 01/24/2023]
Abstract
The mineralocorticoid receptor (MR) plays a critical role in the maintenance of electrolyte homeostasis and blood pressure via direct effects on the distal nephron and the cardiovascular system. The MR also has an important role in the pathology of cardiovascular disease, particularly heart failure, and is therefore an attractive therapeutic target. However, renal side effects limit its use in the clinic. Previous studies of MR molecular pharmacology have been performed on its isolated ligand-binding domain (LBD); however, current evidence suggests that nuclear receptor LBDs behave differently in isolation, than in the context of the full-length receptor. To date, technical issues have precluded production of full-length MR, thereby preventing molecular and structural studies of the MR LBD in its natural context. Here, we describe expression and purification of full-length human MR (hMR). hMR was expressed in Sf9 insect cells with an N-terminal biotinylated (bt)-tag, and stabilised by addition of ligand. bt-hMR exhibited ligand-binding and transactivation properties similar to that of the native protein. Affinity purification using an avidin matrix yielded approximately 120mug MR protein from 0.5lt Sf9 culture, and the receptor was purified bound to either aldosterone or cortisol. Recombinant hMR had a molecular weight of 110-130kDa, bound an MR DNA response element in vitro and interacted with a known co-regulator, PGC-1alpha, in GST pull-down assays, indicating its functional activity. Availability of this reagent will now enable analysis of MR structure and ligand interactions in the context of the full-length receptor, a prerequisite for future development of ligand-selective MR antagonists for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Colin D. Clyne
- Prince Henry's Institute of Medical Research, Clayton, Melbourne, Victoria, Australia, 3168
| | - Ching-Yi Chang
- Dept Pharmacology and Cancer Biology, Duke University, Durham, NC, United States, 27710
| | - Rachid Safi
- Dept Pharmacology and Cancer Biology, Duke University, Durham, NC, United States, 27710
| | - Peter J. Fuller
- Prince Henry's Institute of Medical Research, Clayton, Melbourne, Victoria, Australia, 3168
| | - Donald P. McDonnell
- Dept Pharmacology and Cancer Biology, Duke University, Durham, NC, United States, 27710
| | - Morag J. Young
- Prince Henry's Institute of Medical Research, Clayton, Melbourne, Victoria, Australia, 3168
- Corresponding author: Morag Young, Prince Henry's Institute, PO Box 5152, Clayton, Victoria, AUSTRALIA, Tel: +61 3 9594 4286, Fax: +61 3 9594 6125,
| |
Collapse
|
10
|
Böhmer S, Carapito C, Wilzewski B, Leize E, Van Dorsselaer A, Bernhardt R. Analysis of aldosterone-induced differential receptor-independent protein patterns using 2D-electrophoresis and mass spectrometry. Biol Chem 2006; 387:917-29. [PMID: 16913842 DOI: 10.1515/bc.2006.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the human body the mineralocorticoid aldosterone is responsible for maintaining water and electrolyte homeostasis and therefore controlling blood pressure. In addition, aldosterone has recently been associated with severe heart failure. Besides receptor-dependent action, the damaging effects of aldosterone may also be partly mediated through non-genomic mechanisms. The present study focuses on the mineralocorticoid receptor-independent action of aldosterone at the protein level. We chose the fission yeast Schizosaccharomyces pombe as a model organism, since this yeast does not contain nuclear steroid receptors, but many genes and regulatory mechanisms that are close to those of mammals. Using 2D-electrophoresis we identified for the first time protein spots affected by aldosterone in a nuclear receptor-free system. Mass spectrometry analysis using MALDI-TOF MS and nanoLC-MS/MS approaches allowed the unambiguous identification of 11 proteins that showed increased or decreased levels, which may represent newly identified players and pathways of aldosterone-induced action. Two proteins with a connection to osmotic regulation (NAD-dependent malic enzyme and glycerol-3-phosphate-dehydrogenase), as well as two proteins involved in the overall organization of the cytoskeleton, vip1 and glyceraldehyde-3-phosphate dehydrogenase, which was also found to be specifically affected by aldosterone in human HCT116 cells, are discussed.
Collapse
Affiliation(s)
- Susanne Böhmer
- Universität des Saarlandes, FR 8.3 Biochemie, Postfach 151150, D-66041 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Fru KN, VandeVoort CA, Chaffin CL. Mineralocorticoid Synthesis During the Periovulatory Interval in Macaques1. Biol Reprod 2006; 75:568-74. [PMID: 16837642 DOI: 10.1095/biolreprod.106.053470] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Ovulation and luteal formation in primates are associated with the sustained synthesis of progesterone. The observed high intrafollicular concentrations of progesterone during the periovulatory interval raise the possibility that this steroid serves as a precursor for mineralocorticoids. The aim of this study was to determine if mineralocorticoids are synthesized by the luteinizing macaque follicle during controlled ovarian stimulation cycles in which follicular fluid and granulosa cell aspirates were obtained before or after an ovulatory hCG bolus. Follicular fluid concentrations of progesterone and 17alpha-hydroxyprogesterone increased within 3 h of an ovulatory hCG bolus. Their respective metabolites, 11-deoxycorticosterone (DOC) and 11-deoxycortisol, were not detectable before an ovulatory stimulus and increased starting at 6 h after hCG, while corticosterone and aldosterone were undetectable. Cortisol was present before and after hCG administration and had increased 2-fold at 24 h after an ovulatory stimulus. The expression of 21-hydroxylase (CYP21A2) mRNA increased within 3 h of hCG administration, while 11beta-hydroxylase-1 (CYP11B1) and 11beta-hydroxylase-2 (CYP11B2) mRNAs were not detectable. 11beta-Hydroxysteroid dehydrogenase-1 (HSD11B1) mRNA had increased at 12 h after hCG administration, and 11beta-hydroxysteroid dehydrogenase-2 (HSD11B2) had decreased by 3 h after hCG administration. Mineralocorticoid receptor mRNA levels did not change following hCG administration, while glucocorticoid receptor mRNA levels increased in response to an ovulatory stimulus. Treatment of granulosa cells with the mineralocorticoid receptor antagonist spironolactone blocked hCG-induced progesterone synthesis in vitro. These data indicate that macaque granulosa cells can synthesize mineralocorticoids in response to an ovulatory stimulus and that the mineralocorticoid receptor plays a key role in steroid synthesis associated with luteinization of macaque granulosa cells.
Collapse
Affiliation(s)
- Karenne N Fru
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
12
|
Current awareness on yeast. Yeast 2005. [DOI: 10.1002/yea.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
FRANCOIS J, SCHEFFERS L. Editorial. FEMS Yeast Res 2005. [DOI: 10.1016/j.femsyr.2005.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|