1
|
Mortlock S, Houshdaran S, Kosti I, Rahmioglu N, Nezhat C, Vitonis AF, Andrews SV, Grosjean P, Paranjpe M, Horne AW, Jacoby A, Lager J, Opoku-Anane J, Vo KC, Manvelyan E, Sen S, Ghukasyan Z, Collins F, Santamaria X, Saunders P, Kober K, McRae AF, Terry KL, Vallvé-Juanico J, Becker C, Rogers PAW, Irwin JC, Zondervan K, Montgomery GW, Missmer S, Sirota M, Giudice L. Global endometrial DNA methylation analysis reveals insights into mQTL regulation and associated endometriosis disease risk and endometrial function. Commun Biol 2023; 6:780. [PMID: 37587191 PMCID: PMC10432557 DOI: 10.1038/s42003-023-05070-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023] Open
Abstract
Endometriosis is a leading cause of pain and infertility affecting millions of women globally. Herein, we characterize variation in DNA methylation (DNAm) and its association with menstrual cycle phase, endometriosis, and genetic variants through analysis of genotype data and methylation in endometrial samples from 984 deeply-phenotyped participants. We estimate that 15.4% of the variation in endometriosis is captured by DNAm and identify significant differences in DNAm profiles associated with stage III/IV endometriosis, endometriosis sub-phenotypes and menstrual cycle phase, including opening of the window for embryo implantation. Menstrual cycle phase was a major source of DNAm variation suggesting cellular and hormonally-driven changes across the cycle can regulate genes and pathways responsible for endometrial physiology and function. DNAm quantitative trait locus (mQTL) analysis identified 118,185 independent cis-mQTLs including 51 associated with risk of endometriosis, highlighting candidate genes contributing to disease risk. Our work provides functional evidence for epigenetic targets contributing to endometriosis risk and pathogenesis. Data generated serve as a valuable resource for understanding tissue-specific effects of methylation on endometrial biology in health and disease.
Collapse
Affiliation(s)
- Sally Mortlock
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Idit Kosti
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Camran Nezhat
- Stanford University Medical Center, Palo Alto, CA, USA
- University of California San Francisco, San Francisco, CA, USA
- Camran Nezhat Institute, Center for Special Minimally Invasive and Robotic Surgery, Woodside, CA, USA
| | - Allison F Vitonis
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shan V Andrews
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Parker Grosjean
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Manish Paranjpe
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrew W Horne
- MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, UK
| | - Alison Jacoby
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeannette Lager
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Opoku-Anane
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kim Chi Vo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Evelina Manvelyan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sushmita Sen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Zhanna Ghukasyan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Frances Collins
- MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, UK
| | - Xavier Santamaria
- Carlos Simon Foundation, Health Research Institute, Valencia, Spain
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Philippa Saunders
- Centre for Inflammation Research, Institute for Regeneration and Repair University of Edinburgh, Edinburgh, UK
| | - Kord Kober
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA, USA
| | - Allan F McRae
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Júlia Vallvé-Juanico
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Christian Becker
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter A W Rogers
- University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne, Australia
| | - Juan C Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Krina Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stacey Missmer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children's Hospital and Brigham and Women's Hospital, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Division of Neonatology, University of California San Francisco, San Francisco, CA, USA
| | - Linda Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Santin A, Spedicati B, Morgan A, Lenarduzzi S, Tesolin P, Nardone GG, Mazzà D, Di Lorenzo G, Romano F, Buonomo F, Mangogna A, Concas MP, Zito G, Ricci G, Girotto G. Puzzling Out the Genetic Architecture of Endometriosis: Whole-Exome Sequencing and Novel Candidate Gene Identification in a Deeply Clinically Characterised Cohort. Biomedicines 2023; 11:2122. [PMID: 37626618 PMCID: PMC10452899 DOI: 10.3390/biomedicines11082122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Endometriosis (EM) is a common multifactorial gynaecological disorder. Although Genome-Wide Association Studies have largely been employed, the current knowledge of the genetic mechanisms underlying EM is far from complete, and other approaches are needed. To this purpose, whole-exome sequencing (WES) was performed on a deeply characterised cohort of 80 EM patients aimed at the identification of rare and damaging variants within 46 EM-associated genes and novel candidates. WES analysis detected 63 rare, predicted, and damaging heterozygous variants within 24 genes in 63% of the EM patients. In particular, (1) a total of 43% of patients carried variants within 13 recurrent genes (FCRL3, LAMA5, SYNE1, SYNE2, GREB1, MAP3K4, C3, MMP3, MMP9, TYK2, VEGFA, VEZT, RHOJ); (2) a total of 8.8% carried private variants within eight genes (KAZN, IL18, WT1, CYP19A1, IL1A, IL2RB, LILRB2, ZNF366); (3) a total of 24% carried variants within three novel candidates (ABCA13, NEB, CSMD1). Finally, to deepen the polygenic architecture of EM, a comprehensive evaluation of the analysed genes was performed, revealing a higher burden (p < 0.05) of genes harbouring rare and damaging variants in the EM patients than in the controls. These results highlight new insights into EM genetics, allowing for the definition of novel genotype-phenotype correlations, thereby contributing, in a long-term perspective, to the development of personalised care for EM patients.
Collapse
Affiliation(s)
- Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Anna Morgan
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Stefania Lenarduzzi
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Giuseppe Giovanni Nardone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Daniela Mazzà
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Federico Romano
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Francesca Buonomo
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Maria Pina Concas
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Gabriella Zito
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giuseppe Ricci
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| |
Collapse
|
3
|
Expression of Wilm’s Tumor Gene (WT1) in Endometrium with Potential Link to Gestational Vascular Transformation. REPRODUCTIVE MEDICINE 2020. [DOI: 10.3390/reprodmed1010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Wilm’s tumor 1 gene (WT1) is a transcription factor with versatile cellular functions in embryonic development, the maintenance of adult tissue functions, and regeneration. WT1 is known to be regulated by progesterone and it is abundantly expressed in endometrium, but its function is unclear. Design: in this observational and descriptive study, WT1 expression was detected by immunohistochemical staining in endometrium of various physiological and pathological conditions. Result: WT1 was detected in endometrial stromal cells and vascular smooth muscle cells, in both proliferative and secretory phases of menstrual cycles. WT1 appeared increased in vascular smooth muscle cells in spiral artery in early pregnancy and it was also detected in regenerative endothelial cells and smooth muscle cells in decidual vasculopathy at term. WT1 expression appeared decreased in endometrial stromal cells in adenomyosis (endometriosis). Conclusion: WT1 potentially links the hormonal effects on endometrial decidualization and may play a role in gestational vascular transformation during pregnancy and restoration after pregnancy.
Collapse
|
4
|
Endometriosis Malignant Transformation: Epigenetics as a Probable Mechanism in Ovarian Tumorigenesis. Int J Genomics 2018; 2018:1465348. [PMID: 29780815 PMCID: PMC5892233 DOI: 10.1155/2018/1465348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Endometriosis, defined as the presence of ectopic endometrial glands and stroma outside the uterine cavity, is a chronic, hormone-dependent gynecologic disease affecting millions of women across the world, with symptoms including chronic pelvic pain, dysmenorrhea, dyspareunia, dysuria, and subfertility. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation, with the involvement of various mechanisms of development. More and more evidence reveals an important contribution of epigenetic modification not only in endometriosis but also in mechanisms of endometriosis malignant transformation, including DNA methylation and demethylation, histone modifications, and miRNA aberrant expressions. In this present review, we mainly summarize the research progress about the current knowledge regarding the epigenetic modifications of the relations between endometriosis malignant transformation and ovarian cancer in an effort to identify some risk factors probably associated with ectopic endometrium transformation.
Collapse
|
5
|
Tamura I, Shirafuta Y, Jozaki K, Kajimura T, Shinagawa M, Maekawa R, Taketani T, Asada H, Sato S, Tamura H, Sugino N. Novel Function of a Transcription Factor WT1 in Regulating Decidualization in Human Endometrial Stromal Cells and Its Molecular Mechanism. Endocrinology 2017; 158:3696-3707. [PMID: 28977591 DOI: 10.1210/en.2017-00478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/28/2022]
Abstract
The Wilms tumor suppressor gene (WT1) encodes an essential transcription factor regulating mammalian urogenital development. However, the function of WT1 in human endometrium is still unclear. The current study examined the involvement of WT1 in the regulation of IGF-binding protein-1 (IGFBP-1) and prolactin (PRL), which are specific markers of decidualization, in human endometrial stromal cells (ESCs) undergoing decidualization. ESCs isolated from proliferative-phase endometrium were incubated with cyclic adenosine monophosphate (cAMP) to induce decidualization. cAMP increased WT1 expression with the induction of IGFBP-1 and PRL. Knockdown of WT1 by small interfering RNA inhibited cAMP-induced expression of IGFBP-1 and PRL. cAMP also induced the recruitment of WT1 to the IGFBP-1 and PRL promoters. To investigate the mechanism by which WT1 is upregulated by cAMP, we focused on C/EBPβ, a gene that regulates the expression of many genes during decidualization. Knockdown of C/EBPβ decreased cAMP-increased WT1 expression. cAMP increased the recruitment of C/EBPβ to the WT1 enhancer that is located approximately 14,000 bp downstream from the transcription start site. To test the endogenous function of the WT1 enhancer region on WT1 expression, the endogenous WT1 enhancer region was deleted by CRISPR/Cas9 system in HEK293 cells. The increase of WT1 expression by cAMP was not observed in the enhancer-deleted clones. Chromatin immunoprecipitation assay revealed that this enhancer region has high levels of H3K27ac and H3K4me1, which are active enhancer marks. These results show the role of WT1 in regulating decidualization in human ESCs. C/EBPβ is an upstream gene that regulates WT1 expression by binding to the novel enhancer region.
Collapse
Affiliation(s)
- Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Kousuke Jozaki
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| |
Collapse
|
6
|
Gupta D, Hull ML, Fraser I, Miller L, Bossuyt PMM, Johnson N, Nisenblat V. Endometrial biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev 2016; 4:CD012165. [PMID: 27094925 PMCID: PMC6953323 DOI: 10.1002/14651858.cd012165] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND About 10% of reproductive-aged women suffer from endometriosis, which is a costly, chronic disease that causes pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but it is expensive and carries surgical risks. Currently, there are no non-invasive tests available in clinical practice that accurately diagnose endometriosis. This is the first diagnostic test accuracy review of endometrial biomarkers for endometriosis that utilises Cochrane methodologies, providing an update on the rapidly expanding literature in this field. OBJECTIVES To determine the diagnostic accuracy of the endometrial biomarkers for pelvic endometriosis, using a surgical diagnosis as the reference standard. We evaluated the tests as replacement tests for diagnostic surgery and as triage tests to inform decisions to undertake surgery for endometriosis. SEARCH METHODS We did not restrict the searches to particular study designs, language or publication dates. To identify trials, we searched the following databases: CENTRAL (2015, July), MEDLINE (inception to May 2015), EMBASE (inception to May 2015), CINAHL (inception to April 2015), PsycINFO (inception to April 2015), Web of Science (inception to April 2015), LILACS (inception to April 2015), OAIster (inception to April 2015), TRIP (inception to April 2015) and ClinicalTrials.gov (inception to April 2015). We searched DARE and PubMed databases up to April 2015 to identify reviews and guidelines as sources of references to potentially relevant studies. We also performed searches for papers recently published and not yet indexed in the major databases. The search strategies incorporated words in the title, abstract, text words across the record and the medical subject headings (MeSH). SELECTION CRITERIA We considered published peer-reviewed, randomised controlled or cross-sectional studies of any size that included prospectively collected samples from any population of reproductive-aged women suspected of having one or more of the following target conditions: ovarian, peritoneal or deep infiltrating endometriosis (DIE). DATA COLLECTION AND ANALYSIS Two authors independently extracted data from each study and performed a quality assessment. For each endometrial diagnostic test, we classified the data as positive or negative for the surgical detection of endometriosis and calculated the estimates of sensitivity and specificity. We considered two or more tests evaluated in the same cohort as separate data sets. We used the bivariate model to obtain pooled estimates of sensitivity and specificity whenever sufficient data were available. The predetermined criteria for a clinically useful test to replace diagnostic surgery was one with a sensitivity of 94% and a specificity of 79%. The criteria for triage tests were set at sensitivity at or above 95% and specificity at or above 50%, which in case of negative results rules out the diagnosis (SnOUT test) or sensitivity at or above 50% with specificity at or above 95%, which in case of positive result rules in the diagnosis (SpIN test). MAIN RESULTS We included 54 studies involving 2729 participants, most of which were of poor methodological quality. The studies evaluated endometrial biomarkers either in specific phases of the menstrual cycle or outside of it, and the studies tested the biomarkers either in menstrual fluid, in whole endometrial tissue or in separate endometrial components. Twenty-seven studies evaluated the diagnostic performance of 22 endometrial biomarkers for endometriosis. These were angiogenesis and growth factors (PROK-1), cell-adhesion molecules (integrins α3β1, α4β1, β1 and α6), DNA-repair molecules (hTERT), endometrial and mitochondrial proteome, hormonal markers (CYP19, 17βHSD2, ER-α, ER-β), inflammatory markers (IL-1R2), myogenic markers (caldesmon, CALD-1), neural markers (PGP 9.5, VIP, CGRP, SP, NPY, NF) and tumour markers (CA-125). Most of these biomarkers were assessed in single studies, whilst only data for PGP 9.5 and CYP19 were available for meta-analysis. These two biomarkers demonstrated significant diversity for the diagnostic estimates between the studies; however, the data were too limited to reliably determine the sources of heterogeneity. The mean sensitivities and specificities of PGP 9.5 (7 studies, 361 women) were 0.96 (95% confidence interval (CI) 0.91 to 1.00) and 0.86 (95% CI 0.70 to 1.00), after excluding one outlier study, and for CYP19 (8 studies, 444 women), they were were 0.77 (95% CI 0.70 to 0.85) and 0.74 (95% CI 0.65 to 84), respectively. We could not statistically evaluate other biomarkers in a meaningful way. An additional 31 studies evaluated 77 biomarkers that showed no evidence of differences in expression levels between the groups of women with and without endometriosis. AUTHORS' CONCLUSIONS We could not statistically evaluate most of the biomarkers assessed in this review in a meaningful way. In view of the low quality of most of the included studies, the findings of this review should be interpreted with caution. Although PGP 9.5 met the criteria for a replacement test, it demonstrated considerable inter study heterogeneity in diagnostic estimates, the source of which could not be determined. Several endometrial biomarkers, such as endometrial proteome, 17βHSD2, IL-1R2, caldesmon and other neural markers (VIP, CGRP, SP, NPY and combination of VIP, PGP 9.5 and SP) showed promising evidence of diagnostic accuracy, but there was insufficient or poor quality evidence for any clinical recommendations. Laparoscopy remains the gold standard for the diagnosis of endometriosis, and using any non-invasive tests should only be undertaken in a research setting. We have also identified a number of biomarkers that demonstrated no diagnostic value for endometriosis. We recommend that researchers direct future studies towards biomarkers with high diagnostic potential in good quality diagnostic studies.
Collapse
Affiliation(s)
| | - M Louise Hull
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | - Ian Fraser
- University of New South WalesSchool of Women's and Children's Health, Royal Hospital for WomenBarker StSydneyNSWAustralia2131
| | - Laura Miller
- Fertility PlusDepartment of Obstetrics and GynaecologyAuckland District Health BoardAucklandNew Zealand1142
| | - Patrick MM Bossuyt
- Academic Medical Center, University of AmsterdamDepartment of Clinical Epidemiology, Biostatistics and BioinformaticsRoom J1b‐217, PO Box 22700AmsterdamNetherlands1100 DE
| | - Neil Johnson
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | - Vicki Nisenblat
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | | |
Collapse
|
7
|
Matsuzaki S, Darcha C. Adenosine triphosphate-binding cassette transporter G2 expression in endometriosis and in endometrium from patients with and without endometriosis. Fertil Steril 2012; 98:1512-20.e3. [DOI: 10.1016/j.fertnstert.2012.07.1133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/25/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|
8
|
May K, Villar J, Kirtley S, Kennedy S, Becker C. Endometrial alterations in endometriosis: a systematic review of putative biomarkers. Hum Reprod Update 2011; 17:637-53. [DOI: 10.1093/humupd/dmr013] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
9
|
May K, Conduit-Hulbert S, Villar J, Kirtley S, Kennedy S, Becker C. Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update 2010; 16:651-74. [PMID: 20462942 PMCID: PMC2953938 DOI: 10.1093/humupd/dmq009] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/27/2010] [Accepted: 04/06/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Endometriosis is estimated to affect 1 in 10 women during the reproductive years. There is often delay in making the diagnosis, mainly due to the non-specific nature of the associated symptoms and the need to verify the disease surgically. A biomarker that is simple to measure could help clinicians to diagnose (or at least exclude) endometriosis; it might also allow the effects of treatment to be monitored. If effective, such a marker or panel of markers could prevent unnecessary diagnostic procedures and/or recognize treatment failure at an early stage. METHODS We used QUADAS (Quality Assessment of Diagnostic Accuracy Studies) criteria to perform a systematic review of the literature over the last 25 years to assess critically the clinical value of all proposed biomarkers for endometriosis in serum, plasma and urine. RESULTS We identified over 100 putative biomarkers in publications that met the selection criteria. We were unable to identify a single biomarker or panel of biomarkers that have unequivocally been shown to be clinically useful. CONCLUSIONS Peripheral biomarkers show promise as diagnostic aids, but further research is necessary before they can be recommended in routine clinical care. Panels of markers may allow increased sensitivity and specificity of any diagnostic test.
Collapse
Affiliation(s)
- K.E. May
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - S.A. Conduit-Hulbert
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - J. Villar
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - S. Kirtley
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - S.H. Kennedy
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - C.M. Becker
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
10
|
Carbon dioxide pneumoperitoneum, intraperitoneal pressure, and peritoneal tissue hypoxia: a mouse study with controlled respiratory support. Surg Endosc 2010; 24:2871-80. [DOI: 10.1007/s00464-010-1069-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 04/02/2010] [Indexed: 11/25/2022]
|
11
|
Matsuzaki S, Canis M, Darcha C, Pouly JL, Mage G. HOXA-10 expression in the mid-secretory endometrium of infertile patients with either endometriosis, uterine fibromas or unexplained infertility. Hum Reprod 2009; 24:3180-7. [PMID: 19736237 DOI: 10.1093/humrep/dep306] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate HOXA-10 expression in endometrium from infertile patients with different forms of endometriosis; with uterine fibromas, or with unexplained infertility and from normal fertile women. METHODS Expression levels of HOXA-10 mRNA and protein in endometrium were measured during the mid-secretory phase. This study utilized laser capture microdissection, real-time RT-PCR and immunohistochemistry. RESULTS HOXA-10 mRNA and protein expression levels in endometrial stromal cells were significantly lower in infertile patients with different types of endometriosis (deep infiltrating endometriosis, ovarian endometriosis and superficial peritoneal endometriosis), with uterine myoma, and unexplained infertility patients as compared with healthy fertile controls. HOXA-10 mRNA expression levels of microdissected glandular epithelial cells were significantly lower than those of microdissected stromal cells, without significant differences among the different groups. No protein expression was detected in glandular epithelial cells. The percentage of patients with altered protein expression of HOXA-10 in stromal cells were significantly higher in patients with only superficial peritoneal endometriosis (100%, 20/20, P < 0.05) compared with the other infertile groups (deep infiltrating endometriosis: 72.7%, 16/22; ovarian endometriosis: 70.0%, 14/20; uterine myoma: 68.8%, 11/16; unexplained infertility: 55.6%, 5/9). CONCLUSION The present findings suggested that altered expression of HOXA-10 in endometrial stromal cells during the window of implantation may be one of the potential molecular mechanisms of infertility in infertile patients, particularly in patients with only superficial peritoneal endometriosis. One of the underlying causes of infertility in patients with only superficial endometriosis may be altered expression of HOXA-10 in endometrial stromal cells.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont-Ferrand, Polyclinique-Hôtel-Dieu, Gynécologie Obstétrique et Médecine de la Reproduction, Boulevard Léon Malfreyt, 63058 Clermont-Ferrand, France.
| | | | | | | | | |
Collapse
|