1
|
Changes in IL-16 Expression in the Ovary during Aging and Its Potential Consequences to Ovarian Pathology. J Immunol Res 2022; 2022:2870389. [PMID: 35497879 PMCID: PMC9053759 DOI: 10.1155/2022/2870389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023] Open
Abstract
Aging in females is not only associated with the changes in hormonal status but is also responsible for dysregulation of immune functions in various organs including ovaries. The goal of this study was to determine whether the expression of interleukin 16 (IL-16), a proinflammatory and chemoattractant cytokine, changes during ovarian aging, to determine factors involved in such changes in IL-16 expression, and to examine if changes in IL-16 expression during aging predisposes the ovary to pathologies. Ovarian tissues from premenopausal women (30-50 years old), women at early menopause (55-59 years old), and late menopause (60-85 years old) were used. In addition, tumor tissues from patients with ovarian high-grade serous carcinoma at early stage (n = 5) were also used as reference tissue for comparing the expression of several selected markers in aging ovaries. The expression of IL-16, frequency of macrophages (a source of IL-16) and expression of microRNA (miR) 125a-5p (a regulator of IL-16 gene) were performed by immunohistochemistry, immunoblotting, and gene expression assays. In addition, we examined changes in nuclear expression of IL-16 expression with regards to exposure to follicle-stimulating hormone (FSH) by in vitro cell culture assays with human ovarian cancer cells. The frequencies of IL-16 expressing cells were significantly higher in ovarian stroma in women at early and late menopause as compared with premenopausal women (P < 0.0001). Similar patterns were also observed for macrophages. Expression of miR-125a-5p decreased significantly (P < 0.001) with the increase in IL-16 expression during aging. Furthermore, expression of nuclear IL-16 increased remarkably upon exposure to FSH. Consequently, ovarian aging is associated with increased expression of IL-16 including its nuclear fraction. Therefore, persistent high levels of FSH in postmenopausal women may be a factor for enhanced expression of IL-16. Effects of increased nuclear fraction of IL-16 need to be examined.
Collapse
|
2
|
Abstract
Increasing evidence has demonstrated that obesity impairs female fertility and negatively affects human reproductive outcome following medically assisted reproduction (MAR) treatment. In the United States, 36.5% of women of reproductive age are obese. Obesity results not only in metabolic disorders including type II diabetes and cardiovascular disease, but might also be responsible for chronic inflammation and oxidative stress. Several studies have demonstrated that inflammation and reactive oxygen species (ROS) in the ovary modify steroidogenesis and might induce anovulation, as well as affecting oocyte meiotic maturation, leading to impaired oocyte quality and embryo developmental competence. Although the adverse effect of female obesity on human reproduction has been an object of debate in the past, there is growing evidence showing a link between female obesity and increased risk of infertility. However, further studies need to clarify some gaps in knowledge. We reviewed the recent evidence on the association between female obesity and infertility. In particular, we highlight the association between fat distribution and reproductive outcome, and how the inflammation and oxidative stress mechanisms might reduce ovarian function and oocyte quality. Finally, we evaluate the connection between female obesity and endometrial receptivity.
Collapse
|
3
|
Xie S, Zhang Q, Zhao J, Hao J, Fu J, Li Y. MiR-423-5p may regulate ovarian response to ovulation induction via CSF1. Reprod Biol Endocrinol 2020; 18:26. [PMID: 32264887 PMCID: PMC7137414 DOI: 10.1186/s12958-020-00585-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We have previously shown that hsa-miR-423-5p expression in ovarian granulosa cells is decreased in high ovarian response populations. The objective of the present study was to find the target gene and mechanism for miR-423-5p involved in ovarian response regulation. METHODS (a) TargetScan was used to predict the target gene of hsa-miR-423-5p. (b) A model for hsa-miR-423-5p overexpression or inhibition was constructed by transfecting KGN cells with lentivirus. CSF1 mRNA and protein expression and luciferase activity were measured. (c) The cell cycles of control and lentivirus treated KGN cells were analyzed. Western blot was used to measure the expression of CDKN1A in KGN cells. (d) The concentration of E2 in KGN cell culture medium were measured. RESULTS (a) TargetScan revealed that the 3' un-translated region of CSF1 matched 11 bases at the 5' end of miR-423-5p, making it a likely target gene. (b) Overexpression or inhibition of miR-423-5p were associated with respective decreases or increases in CSF1 expression (both mRNA and protein) (p < 0.05) and luciferase activity (p < 0.05). (c) When miR-423-5p expression increased, the number of G0/G1 phase cells and the expression of CDKN1A protein increased while estradiol concentrations in the cell culture solution decreased (p < 0.05). However, when miR-423-5p expression decreased, the number of S phase cells increased and E2 concentrations increased while the expression of CDKN1A protein decreased (p < 0.05). CONCLUSIONS Colony stimulating factor 1 is a target gene of miR-423-5p and that it may regulate ovarian response to ovulation induction by affecting granulosa cells proliferation and estrogen secretion.
Collapse
Affiliation(s)
- Shi Xie
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Qiong Zhang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Jie Hao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Jing Fu
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China.
| |
Collapse
|
4
|
Hu C, Pang B, Ma Z, Yi H. Immunophenotypic Profiles in Polycystic Ovary Syndrome. Mediators Inflamm 2020; 2020:5894768. [PMID: 32256193 PMCID: PMC7106920 DOI: 10.1155/2020/5894768] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/13/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) a long-known endocrinopathy and one of the most common endocrine-reproductive-metabolic disorders in women, which can lead to infertility. Although the precise etiology remains unclear, PCOS is considered as a complex genetic trait, with a high degree of heterogeneity. Besides, hormones and immune cells, including both innate and adaptive immune cells, are reportedly a cross talk in PCOS. Chronic low-grade inflammation increases autoimmune disease risk. This proinflammatory condition may, in turn, affect vital physiological processes that ultimately cause infertility, such as ovulation failure and embryo implantation. Here, we review the accumulating evidence linking PCOS with inflammatory status providing an overview of the underlying hormone-mediated dysregulation of immune cells. We mainly focus on the correlational evidence of associations between immune status in women and the increased prevalence of PCOS, along with the specific changes in immune responses. Further recognition and exploration of these interactions may help elucidate PCOS pathophysiology and highlight targets for its treatment and prevention.
Collapse
Affiliation(s)
- Cong Hu
- Central Laboratory of the Eastern Division, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Pang
- Central Laboratory of the Eastern Division, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhanchuan Ma
- Central Laboratory of the Eastern Division, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
| | - Huanfa Yi
- Central Laboratory of the Eastern Division, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, China
| |
Collapse
|
5
|
Sun W, Liu C, Feng Y, Zhuo G, Zhou W, Fei X, Zhang Z. Macrophage colony-stimulating factor (M-CSF) is an intermediate in the process of luteinizing hormone-induced decrease in natriuretic peptide receptor 2 (NPR2) and resumption of oocyte meiosis. J Ovarian Res 2017; 10:68. [PMID: 28978329 PMCID: PMC5628418 DOI: 10.1186/s13048-017-0364-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Background Luteinizing hormone (LH) regulation of the ligand, natriuretic peptide precursor type C, and its receptor, natriuretic peptide receptor 2 (NPR2), is critical for oocyte maturation; however, the mechanism is not fully understood. Macrophage colony-stimulating factor (M-CSF) has recently been shown to be involved in oocyte maturation and ovulation. In the present study we determined whether or not M-CSF plays a role in the intermediate signal that mediates LH regulation of NPR2 in resumption of oocyte meiosis. Methods Immature female C57BL/6 mice were injected i.p. with 5 IU of equine chorionic gonadotropin (eCG) to stimulate follicle development. After 44–48 h, the eCG-stimulated mice were injected i.p. with an ovulatory dose of 5 IU of human chorionic gonadotropin (hCG). The ovaries were excised at selected times. Pre-ovulatory follicles (POFs) and cumulus-oocyte complexes were cultured in different media. Immunohistochemical and quantitative real-time PCR analyses were used to assess the expression of M-CSF, M-CSF receptor (M-CSF-R), and NPR2. The presence of germinal vesicle breakdown (GVBD) was examined under a stereomicroscope to morphologically evaluate resumption of oocyte meiosis. Results NPR2 was mainly expressed in cumulus cells of pre-ovulatory follicles, while M-CSF and M-CSF-R were expressed in both mural granulosa and cumulus cells. The levels of M-CSF/M-CSF-R and NPR2 decreased within 4 h after treatment of hCG. M-CSF not only reduced the expression of NPR2 mRNA via its receptor (M-CSF-R), but also increased the proportion of GVBD in oocytes. Conclusion M-CSF serves as an intermediate signal, thus inducing a vital decrease in the NPR2 levels in cumulus cells, and regulates the process of LH-induced resumption of meiosis.
Collapse
Affiliation(s)
- Wenchao Sun
- Center of Reductive Medicine, Hangzhou Obstetrics and Gynecology Hospital, Nanjing Medical University, Hangzhou, China
| | - Chang Liu
- Department of Gynecology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Ying Feng
- Division of Embryo Laboratory, Center of Reductive Medicine, Hangzhou Obstetrics and Gynecology Hospital, Nanjing Medical University, Hangzhou, China
| | - Guangchao Zhuo
- Central Laboratory, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Wenjing Zhou
- Division of Embryo Laboratory, Center of Reductive Medicine, Hangzhou Obstetrics and Gynecology Hospital, Nanjing Medical University, Hangzhou, China
| | - Xiaoyang Fei
- Center of Reductive Medicine, Hangzhou Obstetrics and Gynecology Hospital, Nanjing Medical University, Hangzhou, China
| | - Zhifen Zhang
- Department of Gynecological Endocrinology, Hangzhou Obstetrics and Gynecology Hospital, Nanjing Medical University, 369 Kunpeng Road, Hangzhou, 310008, China.
| |
Collapse
|
6
|
Wei Z, Song X, Zhifen Z. Molecular mechanism and functional role of macrophage colony‑stimulating factor in follicular granulosa cells. Mol Med Rep 2017; 16:2875-2880. [PMID: 28656272 DOI: 10.3892/mmr.2017.6857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Our previous demonstrated that macrophage colony‑stimulating factor (M‑CSF) stimulated the production of estradiol (E2) and progesterone (P) in luteinized granulosa cells (GCs), and that its secretion may be regulated by follicle‑stimulating hormone (FSH). The present study aimed to examine the effect of M‑CSF alone or with Letrozole treatment on the function of non‑luteinizing granulosa cells, using the COV434 cell line, and its interaction with FSH. Human luteinized granulosa cells (LGC) were isolated from the follicular fluid of superovulated infertile patients (average age, 30.8±2.1 years) undergoing an intracytoplasmic sperm injection. The LGC were cultured with various concentrations of recombinant human macrophage colony stimulating factor (rhM‑CSF; 0, 10, 25, 50 or 100 ng/ml), rhM‑CSF+Letrozole (10‑6 mol/l), rhFSH (0, 10, 25, 50 or 100 IU/ml), or rhFSH+Letrozole (10‑6 mol/l). E2 concentrations in the media were measured using ELISA. The expression levels of the FSH receptor and the M‑CSF receptor were detected via reverse transcription‑quantitative polymerase chain reaction. Following COV434 cell treatment with M‑CSF, cell proliferation was quantified using the MTS assay and protein expression was detected by western blotting. It was demonstrated that M‑CSF and FSH stimulated the production of E2. The production of FSH receptors was enhanced by rhM‑CSF or rhM‑CSF+Letrozole in vitro in a dose‑dependent manner. It was observed that rhFSH promoted the expression of the M‑CSF receptor, at a certain concentration. Proliferation of COV434 cells increased in a dose‑dependent manner following treatment with RhM‑CSF. Furthermore, M‑CSF induced the phosphorylation of c‑Jun N‑terminal kinase (JNK) and p38; however, the level of E2 in the medium was not altered when the cells were pretreated with the JNK inhibitor SP600125 or the p38 inhibitor SB203580. The present study suggested that M‑CSF may be important in regulating the response of GCs to gonadotropin and may have a promotive effect in the early phase of follicular development. The biological effects of M‑CSF may partially be attributed to activation of the JNK and p38 signaling pathways. M‑CSF may represent a novel follicular development regulator agent in the future.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, Zhejiang 310006, P.R. China
| | - Xu Song
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, Zhejiang 310006, P.R. China
| | - Zhang Zhifen
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital), Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
7
|
Xu S, Zhang Z, Xia LX, Huang J. Role of macrophage colony-stimulating factor (M-CSF) in human granulosa cells. Gynecol Endocrinol 2016; 32:1005-1008. [PMID: 27791429 DOI: 10.1080/09513590.2016.1216097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Macrophage colony-stimulating factor (M-CSF) has been proved to have a positive role in the follicular development. We investigated its effect on human granulosa cells and found that M-CSF could stimulate the production of E2. The production of FSH receptors was enhanced by M-CSF in vitro in a dose-dependent manner with or without the addition of tamoxifen (p <0.05). Correspondingly, FSH was also able to coordinate the expression of M-CSF and its receptor (p <0.05). That maybe important to maintain the level of Nppc and the meiotic arrest of the oocyte. The protein p-JAK2 and p-STAT3 in JAK/STAT-signaling pathway elevated after the influence of M-CSF (p < 0.05). These results suggest that M-CSF has a role in regulating the response of granulosa cells to gonadotropins. Its function is associated with JAK/STAT-signaling pathway.
Collapse
Affiliation(s)
- Song Xu
- a Department of Gynecology , Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital) , Hangzhou , Zhejiang Province , China , and
| | - Zhifen Zhang
- a Department of Gynecology , Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital) , Hangzhou , Zhejiang Province , China , and
| | - Li-Xia Xia
- b Department of Resiporatory and Critical Care Medicine , Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , Zhejiang Province , China
| | - Jian Huang
- a Department of Gynecology , Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital) , Hangzhou , Zhejiang Province , China , and
| |
Collapse
|
8
|
Zhao J, Tian T, Zhang Q, Wang Y, Li Y. Use of granulocyte colony-stimulating factor for the treatment of thin endometrium in experimental rats. PLoS One 2013; 8:e82375. [PMID: 24376532 PMCID: PMC3871160 DOI: 10.1371/journal.pone.0082375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) induces stem cells to mobilize to the injury site, which have beneficial effect on tissue repair. The aim of this study was to investigate the effect of G-CSF on the thin endometrium in rat models. In the present study, rats with thin endometrium were divided into 4 groups (experimental group I: administrated with G-CSF (40 µg/kg/d) 4-6 hours post-modeling; control group I: administrated with saline 4-6 hours post-modeling; experimental group II: administrated with G-CSF (40 µg/kg/d) 12 days post-modeling; control group II: administrated with saline 12 days post-modeling. The agentia was given once daily and last for 5 days. Endometrial morphology was analyzed by Hematoxylin-Eosin staining, and the regeneration of endometrial cells was evaluated by immunohistochemistry and western-blot with cytokeratin and vimentin. We found that endometrial thickness and morphology presented a significant difference between experimental groups and control groups. No matter when we start with G-CSF, there was a significantly thicker endometrium and stronger expression of cytokeratin/vimintin in the experimental groups compared with the control groups (P<0.01). There were significant thicker endometrial lining and stronger expression of cytokeratin/vimintin in experimental group I than that of experimental group II (P<0.05), but there was no difference in the endometrial lining and the expression of cytokeratin/vimintin between the two control groups (P>0.05). In conclusion, G-CSF can promote the regeneration of endometrial cells in animal research, especially when the G-CSF was administrated earlier.
Collapse
Affiliation(s)
- Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tian Tian
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Zhang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yonggang Wang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
9
|
Shirasuna K, Nitta A, Sineenard J, Shimizu T, Bollwein H, Miyamoto A. Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow. Domest Anim Endocrinol 2012; 43:198-211. [PMID: 22560178 DOI: 10.1016/j.domaniend.2012.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/18/2012] [Accepted: 03/28/2012] [Indexed: 01/05/2023]
Abstract
The bovine corpus luteum (CL) is a unique, transient organ with well-coordinated mechanisms by which its development, maintenance, and regression are effectively controlled. Angiogenic factors, such as vascular endothelial growth factor A and basic fibroblast growth factor, play an essential role in promoting progesterone secretion, cell proliferation, and angiogenesis. These processes are critically regulated, through both angiogenic and immune systems, by the specific immune cells, including macrophages, eosinophils, and neutrophils, that are recruited into the developing CL. The bovine luteolytic cascade appears to be similar to that of general acute inflammation in terms of time-dependent infiltration by immune cells (neutrophils, macrophages, and T lymphocytes) and drastic changes in vascular tonus and blood flow, which are regulated by luteal nitric oxide and the vasoconstrictive factors endothelin-1 and angiotensin II. Over the period of maternal recognition of pregnancy, the maternal immune system should be well controlled to accept the semiallograft fetus. The information on the presence of the developing embryo in the genital tract is suggested to be transmitted to the ovary by both the endocrine system and the circulating immune cells. In the bovine CL, the lymphatic system, but not the blood vascular system, is reconstituted during early pregnancy, and interferon tau from the embryo could trigger this novel phenomenon. Collectively, the angiogenic and vasoactive factors produced by luteal cells and the time-dependently recruited immune cells within the CL and their interactions appear to play critical roles in regulating luteal functions throughout the life span of the CL.
Collapse
Affiliation(s)
- K Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Gleicher N, Vidali A, Barad DH. Successful treatment of unresponsive thin endometrium. Fertil Steril 2011; 95:2123.e13-7. [DOI: 10.1016/j.fertnstert.2011.01.143] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/14/2011] [Accepted: 01/15/2011] [Indexed: 11/24/2022]
|
11
|
Pate JL, Toyokawa K, Walusimbi S, Brzezicka E. The interface of the immune and reproductive systems in the ovary: lessons learned from the corpus luteum of domestic animal models. Am J Reprod Immunol 2010; 64:275-86. [PMID: 20712810 DOI: 10.1111/j.1600-0897.2010.00906.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The dynamic changes that characterize the female reproductive system are regulated by hormones. However, local cell-to-cell interactions may mediate responsiveness of tissues to hormonal signals. The corpus luteum (CL) is an excellent model for understanding how immune cells are recruited into tissues and the role played by those cells in regulating tissue homeostasis or demise. Leukocytes are recruited into the CL throughout its lifespan, and leukocyte-derived cytokines have been found in corpora lutea of all species examined. The proinflammatory cytokines inhibit gonadotropin-stimulated steroidogenesis, profoundly stimulate prostaglandin synthesis by luteal cells, and promote apoptosis. However, there is mounting evidence that leukocytes and luteal cells communicate in different ways to maintain homeostasis within the functional CL. Domestic animals have provided important information regarding the presence and role of immune cells in the CL.
Collapse
Affiliation(s)
- Joy L Pate
- Department of Dairy and Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, State College, PA, USA.
| | | | | | | |
Collapse
|