1
|
Amoushahi M, Lykke-Hartmann K. Distinct Signaling Pathways Distinguish in vivo From in vitro Growth in Murine Ovarian Follicle Activation and Maturation. Front Cell Dev Biol 2021; 9:708076. [PMID: 34368158 PMCID: PMC8346253 DOI: 10.3389/fcell.2021.708076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.
Collapse
Affiliation(s)
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Rahayu FK, Dwiningsih SR, Sa'adi A, Herawati L. Effects of different intensities of exercise on folliculogenesis in mice: Which is better? Clin Exp Reprod Med 2021; 48:43-49. [PMID: 33648044 PMCID: PMC7943351 DOI: 10.5653/cerm.2020.03937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Exercise is a risk factor for infertility in women. However, research on the effects of different intensities of exercise on folliculogenesis has not yielded clear results. This study was conducted to analyze the effects of differences in the intensity of exercise on folliculogenesis in mice. Methods Nineteen female BALB/c mice (age, 3–4 months; weight, 13–25 g) were randomly divided into four groups: control, mild exercise, moderate exercise, and high-intensity exercise. The mice in the exercise groups engaged in swimming, with additional loads of 3%, 6%, or 9% of body weight, respectively. There were five swimming sessions per week for 4 weeks, with a gradually increasing duration every week. At the end of the treatment, ovarian extraction was carried out and hematoxylin and eosin staining was performed to identify folliculogenesis. Results There were significant differences in the number of total follicles between the control and moderate-exercise groups (p=0.036) and between the mild- and moderate-exercise groups (p=0.005). The mean number of primary follicles was higher in the moderate-exercise group than in the mild-exercise group (p=0.006). The mean number of secondary, tertiary, and Graafian follicles did not differ significantly among groups (p≥0.05). However, the number of total follicles and follicles in each phase tended to increase after exercise, especially moderate-intensity exercise. Conclusion Exercise of different intensities affected the total number of follicles and primary follicles. The number of follicles of each phase tended to increase after exercise. Moderate-intensity exercise had better effects than other intensities of exercise.
Collapse
Affiliation(s)
- Fitri Kurnia Rahayu
- Midwifery Education Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Ratna Dwiningsih
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Ashon Sa'adi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Lilik Herawati
- Department of Physiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
In-vitro regulation of primordial follicle activation: challenges for fertility preservation strategies. Reprod Biomed Online 2018; 36:491-499. [PMID: 29503209 DOI: 10.1016/j.rbmo.2018.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
Ovarian tissue is increasingly being collected from cancer patients and cryopreserved for fertility preservation. While the only available option to restore fertility is autologous transplantation, this treatment is not appropriate for all patients due to the risk of reintroducing cancer cells and causing disease recurrence. Harnessing the full reproductive potential of this tissue to restore fertility requires the development of culture systems that support oocyte development from the primordial follicle stage. While this has been achieved in the mouse, the goal of obtaining oocytes of sufficient quality to support embryo development has not been reached in higher mammals despite decades of effort. In vivo, primordial follicles gradually exit the resting pool, whereas when primordial follicles are placed into culture, global activation of these follicles occurs. Therefore, the addition of a factor(s) that can regulate primordial follicle activation in vitro may be beneficial to the development of culture systems for ovarian tissue from cancer patients. Several factors have been observed to inhibit follicle activation, including anti-Müllerian hormone, stromal-derived factor 1 and members of the c-Jun-N-terminal kinase pathway. This review summarizes the findings from studies of these factors and discusses their potential integration into ovarian tissue culture strategies for fertility preservation.
Collapse
|
4
|
The Effect of Steroid Hormones on Ovarian Follicle Development. VITAMINS AND HORMONES 2018; 107:155-175. [DOI: 10.1016/bs.vh.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Lipskind S, Lindsey JS, Gerami-Naini B, Eaton JL, O'Connell D, Kiezun A, Ho JWK, Ng N, Parasar P, Ng M, Nickerson M, Demirci U, Maas R, Anchan RM. An Embryonic and Induced Pluripotent Stem Cell Model for Ovarian Granulosa Cell Development and Steroidogenesis. Reprod Sci 2017; 25:712-726. [PMID: 28854867 DOI: 10.1177/1933719117725814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Embryoid bodies (EBs) can serve as a system for evaluating pluripotency, cellular differentiation, and tissue morphogenesis. In this study, we use EBs derived from mouse embryonic stem cells (mESCs) and human amniocyte-derived induced pluripotent stem cells (hAdiPSCs) as a model for ovarian granulosa cell (GC) development and steroidogenic cell commitment. We demonstrated that spontaneously differentiated murine EBs (mEBs) and human EBs (hEBs) displayed ovarian GC markers, such as aromatase (CYP19A1), FOXL2, AMHR2, FSHR, and GJA1. Comparative microarray analysis identified both shared and unique gene expression between mEBs and the maturing mouse ovary. Gene sets related to gonadogenesis, lipid metabolism, and ovarian development were significantly overrepresented in EBs. Of the 29 genes, 15 that were differentially regulated in steroidogenic mEBs displayed temporal expression changes between embryonic, postnatal, and mature ovarian tissues by polymerase chain reaction. Importantly, both mEBs and hEBs were capable of gonadotropin-responsive estradiol (E2) synthesis in vitro (217-759 pg/mL). Live fluorescence-activated cell sorting-sorted AMHR2+ granulosa-like cells from mEBs continued to produce E2 after purification (15.3 pg/mL) and secreted significantly more E2 than AMHR2- cells (8.6 pg/mL, P < .05). We conclude that spontaneously differentiated EBs of both mESC and hAdiPSC origin can serve as a biologically relevant model for ovarian GC differentiation and steroidogenic cell commitment. These cells should be further investigated for therapeutic uses, such as stem cell-based hormone replacement therapy and in vitro maturation of oocytes.
Collapse
Affiliation(s)
- Shane Lipskind
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer S Lindsey
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Behzad Gerami-Naini
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer L Eaton
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel O'Connell
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Adam Kiezun
- 3 Computational Methods Development, Cancer Genome Analysis, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua W K Ho
- 4 Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas Ng
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Parveen Parasar
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle Ng
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Nickerson
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Utkan Demirci
- 5 Canary Center at Stanford for Early Cancer Detection, Stanford School of Medicine, Palo Alto, CA, USA
| | - Richard Maas
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,6 Affiliated Faculty, Harvard Stem Cell Institute, Cambridge, MA, USA. Gerami-Naini is now with the Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston MA, USA. Eaton is now with the Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA. O'Connell is now with the Intellia Therapeutics, Inc, Cambridge, MA, USA. Kiezun is now with the Amazon.com , Boston, MA, USA
| | - Raymond M Anchan
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,6 Affiliated Faculty, Harvard Stem Cell Institute, Cambridge, MA, USA. Gerami-Naini is now with the Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston MA, USA. Eaton is now with the Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA. O'Connell is now with the Intellia Therapeutics, Inc, Cambridge, MA, USA. Kiezun is now with the Amazon.com , Boston, MA, USA
| |
Collapse
|
6
|
Ernst EH, Grøndahl ML, Grund S, Hardy K, Heuck A, Sunde L, Franks S, Andersen CY, Villesen P, Lykke-Hartmann K. Dormancy and activation of human oocytes from primordial and primary follicles: molecular clues to oocyte regulation. Hum Reprod 2017; 32:1684-1700. [PMID: 28854595 DOI: 10.1093/humrep/dex238] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 06/14/2017] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION Do specific transcriptome dynamics in human oocytes from primordial and primary follicles identify novel pathways in oocyte activation? SUMMARY ANSWER The transcriptomic profiles in oocytes from primordial and primary follicles, respectively, revealed several new canonical pathways as putative mediators of oocyte dormancy and activation. WHAT IS KNOWN ALREADY Cellular signaling pathways including PI3K/AKT and AKT/mTOR as well as TGF-β and IGF signaling are known to regulate the primordial-to-primary transition in mammalian follicle development. STUDY DESIGN, SIZE, DURATION We performed a class comparison study on human oocytes from primordial (n = 436) and primary (n = 182) follicles donated by three women having ovarian tissue cryopreserved before chemotherapy. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA was extracted from oocytes from primordial and primary follicles isolated by Laser Capture Microdissection, and submitted to the HiSeq Illumina platform. Data mapping, quality control, filtering and expression analysis were performed using Tophat (2.0.4), Cufflinks (2.0.2), BWA (0.6.2) and software R. Modeling of complex biological systems was performed using the IPA® software. Finally, qPCR and immunohistochemistry were employed to explore expression and localization of selected genes and products in human ovarian tissue. MAIN RESULTS AND THE ROLE OF CHANCE We found 223 and 268 genes down-regulated and up-regulated, respectively, in the oocytes during the human primordial-to-primary follicle transition (P < 0.05 and/or FPKM fold-change >2). IPA® enrichment analysis revealed known pathways ('mTOR Signaling', 'PI3K/AKT Signaling' and 'PTEN Signaling') as well as enriched canonical pathways not previously associated with human ovarian follicle development such as 'ErB Signaling' and 'NGF Signaling' in the down-regulated category and 'Regulation of eIF4 and P70S6K Signaling' and 'HER-2 Signaling in Breast Cancer' in the up-regulated group. Additionally, immunohistochemistry on human ovarian tissue explored the intraovarian localization of VASA, FOXO1 and eIF4E. LARGE SCALE DATA http://users-birc.au.dk/biopv/published_data/ernst_2017/. LIMITATIONS, REASONS FOR CAUTION This is a descriptive analysis and no functional studies were performed. The study was based on a limited number of patients and the experimental design could not take into account the natural biological variance in human samples. Therefore, qPCR was used to confirm selected genes alongside immunohistochemical stainings. WIDER IMPLICATIONS OF THE FINDINGS This study shows, for the first time, a detailed molecular description of global gene transcription activities in oocytes from primordial and primary follicles, respectively. Knowing the global transcription profiles of human oocyte dormancy and activation are important in developing new clinical applications. STUDY FUNDING/COMPETING INTEREST(S) E.H.E. was supported by Health Faculty, Aarhus University and Kong Christian Den Tiendes Fond. K.H. and S.F. were supported by an MRC (UK) project grant MR/M012638/1. K.L.H. was supported by grants from Fonden til Lægevidenskabens Fremme, Kong Christian Den Tiendes Fond. K.L.H. and L.S. were supported by the IDEAS grant from Aarhus University Research Foundation (AUFF). There are no conflicts of interest.
Collapse
Affiliation(s)
- E H Ernst
- Department of Biomedicine, Aarhus University, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - M L Grøndahl
- Fertility Clinic, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - S Grund
- Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, DK-8000 Aarhus C, Denmark
| | - K Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - A Heuck
- Department of Biomedicine, Aarhus University, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - L Sunde
- Department of Biomedicine, Aarhus University, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, DK-8200 Aarhus N, Denmark
| | - S Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - C Y Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen N, Denmark
| | - P Villesen
- Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, DK-8000 Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - K Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, DK-8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| |
Collapse
|
7
|
GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet 2017; 13:e1006535. [PMID: 28072828 PMCID: PMC5224981 DOI: 10.1371/journal.pgen.1006535] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/13/2016] [Indexed: 12/24/2022] Open
Abstract
Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function. Folliculogenesis is a progressive and highly regulated process that requires the tight coordination of metabolism and bidirectional communication between the oocyte and granulosa cells. How this communication is established remains unclear. Here, we find that GGPP-mediated protein geranylgeranylation, a post-translational modification, is essential for the oocyte-granulosa cell communication. GGPP depletion in oocytes inhibits Rho GTPase geranylgeranylation-regulated cell adhesion and impairs Rab GTPase geranylgeranylation-directed cell secretion, which are responsible for the failure to maintain oocyte-granulosa cell communication. This communication defect is probably not able to support the proliferation of granulosa cells from one layer to multiple layers and ultimately results in the failure of the primary-secondary follicle transition and female subfertility. Our findings provide the evidence of GGPP-mediated protein geranylgeranylation involving in regulating primary-secondary follicle transition and establish a novel link between folliculogenesis and GGPP-regulated membrane dynamics.
Collapse
|
8
|
Bonnet A, Servin B, Mulsant P, Mandon-Pepin B. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth. PLoS One 2015; 10:e0141482. [PMID: 26540452 PMCID: PMC4634757 DOI: 10.1371/journal.pone.0141482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments. Results We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9) and BMP binding endothelial regulator (BMPER) was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11), bone morphogenetic protein 15 (BMP15) and WEE1 homolog 2 (S. pombe)(WEE2) which play critical roles in follicular development but other biomarkers are also likely to play significant roles in this process. Conclusions To our knowledge, this is the first in vivo spatio-temporal exploration of transcriptomes derived from early follicles in sheep.
Collapse
Affiliation(s)
- Agnes Bonnet
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
- * E-mail:
| | - Bertrand Servin
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Philippe Mulsant
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Beatrice Mandon-Pepin
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
9
|
Yang MY, Fortune JE. Changes in the transcriptome of bovine ovarian cortex during follicle activation in vitro. Physiol Genomics 2015; 47:600-11. [PMID: 26443523 DOI: 10.1152/physiolgenomics.00060.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023] Open
Abstract
The signals that regulate activation, a key transition in ovarian follicular development, are still not well understood, especially in nonrodent species. To gain insight into the regulation of this transition in cattle, we combined a microarray approach with an in vitro system in which ovarian cortical pieces cultured in control medium are enriched for primordial follicles, whereas pieces cultured with insulin are enriched for primary follicles. Total RNA was extracted from cultured cortical pieces, and then transcripts were identified and analyzed using the Affymetrix Bovine Genome GeneChip array. Around 65% of the transcripts in the bovine GeneChip were detected in cultured cortical pieces. Comparison between pieces cultured with or without insulin generated 158 differentially expressed transcripts. Compared with controls, 90 transcripts were upregulated and 68 were downregulated by insulin. These transcripts are involved in many biological processes and functions, but most are associated with cellular growth or cell cycle/cell death. The transcript encoding ubiquitin-conjugating enzyme E2C (UBE2C) was significantly upregulated during follicle activation, and Ingenuity Pathways Analysis revealed that UBE2C can interact with the tumor suppressor phosphatase and tensin homolog (PTEN). Both PTEN mRNA and protein were lower in cortical pieces cultured with insulin than in controls. In addition, FOXO3a, a downstream effector of PTEN signaling, underwent nuclear-cytoplasmic shuttling during primordial to primary follicle development in bovine fetal ovaries, further suggesting the involvement of the PTEN pathway in follicle activation in cattle. Genes and pathways identified in this study provide interesting candidates for further investigation of mechanisms underlying follicle activation.
Collapse
Affiliation(s)
- M Y Yang
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| | - J E Fortune
- Department of Biomedical Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
10
|
Pan L, Gong W, Zhou Y, Li X, Yu J, Hu S. A comprehensive transcriptomic analysis of infant and adult mouse ovary. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:239-48. [PMID: 25251848 PMCID: PMC4411413 DOI: 10.1016/j.gpb.2014.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 12/13/2022]
Abstract
Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development.
Collapse
Affiliation(s)
- Linlin Pan
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Gong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Zhou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaonuan Li
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
|
12
|
Li J, Vujovic S, Dalgleish R, Thompson J, Dragojevic-Dikic S, Al-Azzawi F. Lack of association between ESR1 gene polymorphisms and premature ovarian failure in Serbian women. Climacteric 2013; 17:247-51. [PMID: 23805834 DOI: 10.3109/13697137.2013.819330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE It has previously been reported that estrogen receptor-alpha (ERα) gene (ESR1: estrogen receptor 1) polymorphisms are associated with premature ovarian failure (POF). The aim of this study was to investigate whether these genetic polymorphisms of ESR1 are associated with POF in Serbian women. METHODS A series of 197 POF cases matched with 547 fertile controls was recruited by the Institute for Endocrinology, Diabetes and Metabolic Disorders of Serbia between 2007 and 2010. Genomic DNA was extracted from saliva using Oragene® DNA sample collection kits. Two single-nucleotide polymorphisms (SNPs), PvuII and XbaI, in ESR1 were genotyped by dynamic allele-specific hybridization. Haplotype analyses were performed with the restriction fragment length polymorphism method. SNP and haplotype effects were analyzed by logistic regression models. RESULTS No significant difference was found in the distribution of ESR1 PvuII and XbaI polymorphisms or haplotypes between the POF and control groups. CONCLUSION The two ESR1 SNPs, PvuII and XbaI, are not commonly associated with POF in Serbian women and may not contribute to the genetic basis of the condition.
Collapse
Affiliation(s)
- J Li
- * Gynaecology Research Unit, University Hospitals of Leicester , Leicester , UK
| | | | | | | | | | | |
Collapse
|
13
|
Expression of Eleven Egg Performance-associated Genes in the Ovary of Zi Geese <i>Anser anser domestica</i>. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Usongo M, Farookhi R. β-catenin/Tcf-signaling appears to establish the murine ovarian surface epithelium (OSE) and remains active in selected postnatal OSE cells. BMC DEVELOPMENTAL BIOLOGY 2012; 12:17. [PMID: 22682531 PMCID: PMC3465187 DOI: 10.1186/1471-213x-12-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/28/2012] [Indexed: 02/07/2023]
Abstract
Background Wnts are a family of secreted signaling molecules involved in a number of developmental processes including the establishment of cell fate, polarity and proliferation. Recent studies also implicate wnts in epithelial adult stem cell maintenance, renewal and differentiation. Wnts transduce their signal through one of three signaling pathways. The best studied, the wnt/β-catenin pathway, leads to an increase in intracellular β-catenin which acts as a co-transcription factor with members of the Tcf/Lef family. A number of wnts are expressed in the ovary, specifically in the membrana granulosa and ovarian surface epithelium (OSE). We investigated the spatio-temporal pattern of β-catenin/Tcf expression in the OSE using responsive transgenic (TopGal) mice. Results The generated β-galactosidase response (lacZ+) identified the cell population that overlies the medio-lateral surface of the indifferent gonad at embryonic day (E) 11.5. From E12.5 onwards, lacZ expression disappeared in cells covering the testis but remained with ovary development. LacZ+ OSE cells were present throughout embryonic and postnatal ovarian development but demonstrated an age-dependent decrease to a small proportion when animals were weaned and remained at this proportion with aging. Flow cytometric (FACS) and ovarian section analyses showed lacZ+ cells constitute approximately 20% of OSE in postnatal (day 1) mice which fell to 8% in 5 day-old animals while in prepubertal and adult mice this accounted for only 0.2% of OSE. Apoptosis was undetected in OSE of neonates and β-catenin/Tcf-signaling cells were proliferative in neonatal mice indicating that neither cell death nor proliferation failure was responsible for the proportion alteration. It appeared that lacZ+ cells give rise to lacZ- cells and this was confirmed in cell cultures. The DNA-binding dye DyeCycle Violet was used to set up the side population (SP) assay aimed at identifying subpopulations of OSE cells with chemoresistance phenotype associated with ABCG2 transporter activity. FACS analysis revealed lacZ+ cells exhibit cytoprotective mechanisms as indicated by enrichment within the SP. Conclusions The study raises the possibility that wnt/β-catenin-signaling cells constitute a progenitor cell population and could underlie the pronounced histopathology observed for human ovarian cancer.
Collapse
Affiliation(s)
- Macalister Usongo
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
15
|
Monget P, Bobe J, Gougeon A, Fabre S, Monniaux D, Dalbies-Tran R. The ovarian reserve in mammals: a functional and evolutionary perspective. Mol Cell Endocrinol 2012; 356:2-12. [PMID: 21840373 DOI: 10.1016/j.mce.2011.07.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 01/15/2023]
Abstract
The constitution and the control of the ovarian reserve is of importance in mammals and women. In particular, the number of primordial follicles at puberty is positively correlated with the number of growing follicles and their response to gonadotropin treatments. The size of this ovarian reserve depends on genes involved in germ cell proliferation and differentiation, sexual differentiation, meiosis, germ cell degeneration, formation of primordial follicles, and on a potential mechanism of self-renewal of germ stem cells. In this review, we present the state of the art of the knowledge of genes and factors involved in all these processes. We first focus on the almost 70 genes identified mainly by mouse invalidation models, then we discuss the most plausible hypothesis concerning the possibility of the existence of germ cell self-renewal by neo-oogenesis in animal species and human, with a special interest for the role of corresponding genes in evolutionary distinct model species. All of the genes pointed out here are candidates susceptible to explain fertility defects such as the premature ovarian failure in human.
Collapse
Affiliation(s)
- Philippe Monget
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | | | | | | | | | | |
Collapse
|
16
|
Markholt S, Grøndahl M, Ernst E, Andersen CY, Ernst E, Lykke-Hartmann K. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. ACTA ACUST UNITED AC 2012; 18:96-110. [DOI: 10.1093/molehr/gar083] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Expression of extracellular matrix components is disrupted in the immature and adult estrogen receptor β-null mouse ovary. PLoS One 2012; 7:e29937. [PMID: 22253831 PMCID: PMC3254630 DOI: 10.1371/journal.pone.0029937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/08/2011] [Indexed: 01/01/2023] Open
Abstract
Within the ovary, Estrogen Receptor β (ERβ) is localized to the granulosa cells of growing follicles. 17β-estradiol (E2) acting via ERβ augments the actions of follicle stimulating hormone in granulosa cells, leading to granulosa cell differentiation and formation of a preovulatory follicle. Adult ERβ-null females are subfertile and possess ovaries with reduced numbers of growing follicles and corpora lutea. Because the majority of E2 production by granulosa cells occurs once puberty is reached, a role for ERβ in the ovary prior to puberty has not been well examined. We now provide evidence that lack of ERβ disrupts gene expression as early as post-natal day (PND) 13, and in particular, we identify a number of genes of the extracellular matrix (ECM) that are significantly higher in ERβ-null follicles than in wildtype (WT) follicles. Considerable changes occur to the ECM occur during normal folliculogenesis to allow for the dramatic growth, cellular differentiation, and reorganization of the follicle from the primary to preovulatory stage. Using quantitative PCR and immunofluorescence, we now show that several ECM genes are aberrantly overexpressed in ERβ-null follicles. We find that Collagen11a1, a protein highly expressed in cartilage, is significantly higher in ERβ-null follicles than WT follicles as early as PND 13, and this heightened expression continues through PND 23–29 into adulthood. Similarly, Nidogen 2, a highly conserved basement membrane glycoprotein, is elevated in ERβ-null follicles at PND 13 into adulthood, and is elevated specifically in the ERβ-null focimatrix, a basal lamina-like matrix located between granulosa cells. Focimatrix laminin and Collagen IV expression were also higher in ERβ-null ovaries than in WT ovaries at various ages. Our findings suggest two novel observations: a) that ERβ regulates granulosa cell gene expression ovary prior to puberty, and b) that ERβ regulates expression of ECM components in the mouse ovary.
Collapse
|
18
|
Bonnet A, Bevilacqua C, Benne F, Bodin L, Cotinot C, Liaubet L, Sancristobal M, Sarry J, Terenina E, Martin P, Tosser-Klopp G, Mandon-Pepin B. Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by laser capture microdissection. BMC Genomics 2011; 12:417. [PMID: 21851638 PMCID: PMC3166951 DOI: 10.1186/1471-2164-12-417] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/18/2011] [Indexed: 12/31/2022] Open
Abstract
Background Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult. The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA. Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis. Results We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15) and three granulosa cell-specific genes (KL, GATA4, AMH). A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte. Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA. Conclusions The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.
Collapse
Affiliation(s)
- Agnes Bonnet
- INRA, UMR444 Génétique Cellulaire, Auzeville, Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Voorhuis M, Onland-Moret NC, van der Schouw YT, Fauser BCJM, Broekmans FJ. Human studies on genetics of the age at natural menopause: a systematic review. Hum Reprod Update 2010; 16:364-77. [PMID: 20071357 DOI: 10.1093/humupd/dmp055] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Timing of natural menopause has great implications for fertility and women's health. Age at natural menopause (ANM) is largely influenced by genetic factors. In the past decade, several genetic studies have been conducted to identify genes in ANM, which can help us unravel the biological pathways underlying this trait and the associated infertility and health risks. After providing an overview of the results of the genetic studies performed so far, we give recommendations for future studies in identifying genetic factors involved in determining the variation in timing of natural menopause. METHODS The electronic databases of Pubmed and Embase were systematically searched until September 2009 for genetic studies on ANM, using relevant keywords on the subject. Additional papers identified through hand search were also included. RESULTS Twenty-eight papers emerged from our literature search. A number of genetic regions and variants involved in several possible pathways underlying timing of ANM were identified, including two possible interesting regions (9q21.3 and chromosome 8 at 26 cM) in linkage analyses. Recent genome-wide association studies have identified two genomic regions (19q13.42 and 20p12.3), containing two promising candidate genes (BRKS1 and MCM). In the candidate gene association studies on ANM, very few consistent associations were found. CONCLUSION A number of genetic variants have been discovered in association with ANM, although the overall results have been rather disappointing. We have described possible new strategies for future genetic studies to identify more genetic loci involved in the variation in menopausal age.
Collapse
Affiliation(s)
- Marlies Voorhuis
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Monti M, Redi C. Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol Reprod Dev 2010; 76:994-1003. [PMID: 19480014 DOI: 10.1002/mrd.21059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using a semi-quantitative, single-cell sensitive RT-PCR method, we studied the expression of oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) in single oocytes collected from primordial, primary, secondary, preantral and antral follicles during natural and gonadotropin-induced mouse follicular development. We compared the number of transcripts of these genes, showing that they are differentially expressed, both in natural conditions and under gonadotropin-induction throughout the assessed developmental stages. Our data show a clear increase in the number of transcripts between the primordial until the preantral stages, with the exception of the Oogenesin1 transcripts under gonadotropin-induction. The number of transcripts starts decreasing at the antral stage and proceeds until the metaphase II stage, with values very similar to those obtained for the primordial oocytes in both analyzed conditions. Under exogenous gonadotropin-induction, oocyte recruitment to ovulation at the preantral stage is marked by an increase in Nobox and Oogenesin2 gene expression that is concomitant with a decrease in Oogenesin1 gene expression. Oocytes that are able to proceed into whole embryo development show a tight regulation of Nobox and Oct4 expression at the antral stage. A parallel immunocytochemical study at the protein level corroborates these findings.
Collapse
Affiliation(s)
- Manuela Monti
- Fondazione IRCCS Policlinico San Matteo, P. le Camillo Golgi, Pavia, Italy.
| | | |
Collapse
|