1
|
Pan M, Luo X, Zhang Z, Li J, Shahzad K, Danba Z, Caiwang G, Chilie W, Chen X, Zhao W. The expression spectrum of yak epididymal epithelial cells reveals the functional diversity of caput, corpus and cauda regions. Genomics 2024; 116:110912. [PMID: 39117249 DOI: 10.1016/j.ygeno.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Sperm undergo a series of changes in the epididymis region before acquiring the ability to move and fertilize, and the identification of genes expressed in a region-specific manner in the epididymis provides a valuable insight into functional differences between regions. We collected epididymal tissue from three yaks and cultured epithelial cells from the caput, corpus and cauda regions of the yak epididymis using the tissue block method. RNA sequencing analysis (RNA-seq) technology was used to detect gene expression in yak epididymal caput, corpus and cauda epithelial cells. The results showed that the DEGs were highest in the caput vs. corpus comparison, and lowest in the corpus vs. cauda comparison. Six DEGs were verified by real-time fluorescence quantitative PCR (qRT-PCR), consistent with transcriptome sequencing results. The significantly enriched DNA replication pathway in the caput vs. corpus was coordinated with cell proliferation, while upregulated DEGs such as POLD1 and MCM4 were found in the DNA replication pathway. The AMPK signaling pathway was found significantly enriched in the caput vs cauda, suggesting its involvement in sperm maturation and capacitation. The TGF beta signaling pathway was screened in the corpus vs cauda and is crucial for mammalian reproductive regulation. Upregulated DEGs (TGFB3, INHBA, INHBB) are involved in the TGF beta signaling pathway. This study provides a reference for culturing yak epididymal epithelial cells in vitro, and elucidates the transcriptional profiles of epithelial cells in different segments of the epididymis, revealing the regulatory and functional differences between different segments, providing basic data for exploring the molecular mechanism of yak sperm maturation and improving the reproductive capacity of high-altitude mammals.
Collapse
Affiliation(s)
- Meilan Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Xiaofeng Luo
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Zhenzhen Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Jingjing Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Zhaxi Danba
- Science and Technology Research and Promotion Center, Agricultural and Animal Husbandry (Grass Industry), Naqu, Tibet 852200, China
| | - Gongbu Caiwang
- Tibet Naqu Municipal Agriculture and Rural Affairs Bureau, Naqu, Tibet 852000, China
| | - Wangmu Chilie
- Science and Technology Research and Promotion Center, Agricultural and Animal Husbandry (Grass Industry), Naqu, Tibet 852200, China
| | - Xiaoying Chen
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China.
| | - Wangsheng Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China.
| |
Collapse
|
2
|
Chen W, Zhou W, Li Q, Mao X. Sex differences in gene expression and alternative splicing in the Chinese horseshoe bat. PeerJ 2023; 11:e15231. [PMID: 37123006 PMCID: PMC10135408 DOI: 10.7717/peerj.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Sexually dimorphic traits are common in sexually reproducing organisms and can be encoded by differential gene regulation between males and females. Although alternative splicing is common mechanism in generating transcriptional diversity, its role in generating sex differences relative to differential gene expression is less clear. Here, we investigate the relative roles of differential gene expression and alternative splicing between male and female the horseshoe bat species, Rhinolophus sinicus. Horseshoe bats are an excellent model to study acoustic differences between sexes. Using RNA-seq analyses of two somatic tissues (brain and liver) from males and females of the same population, we identified 3,471 and 2,208 differentially expressed genes between the sexes (DEGs) in the brain and liver, respectively. DEGs were enriched with functional categories associated with physiological difference of the sexes (e.g.,gamete generation and energy production for reproduction in females). In addition, we also detected many differentially spliced genes between the sexes (DSGs, 2,231 and 1,027 in the brain and liver, respectively) which were mainly involved in regulation of RNA splicing and mRNA metabolic process. Interestingly, we found a significant enrichment of DEGs on the X chromosome, but not for DSGs. As for the extent of overlap between the two sets of genes, more than expected overlap of DEGs and DSGs was observed in the brain but not in the liver. This suggests that more complex tissues, such as the brain, may require the intricate and simultaneous interplay of both differential gene expression and splicing of genes to govern sex-specific functions. Overall, our results support that variation in gene expression and alternative splicing are important and complementary mechanisms governing sex differences.
Collapse
Affiliation(s)
- Wenli Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Weiwei Zhou
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Qianqian Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Ipsaro JJ, Joshua‐Tor L. Developmental roles and molecular mechanisms of Asterix/GTSF1. WIRES RNA 2022; 13:e1716. [PMID: 35108755 PMCID: PMC9539491 DOI: 10.1002/wrna.1716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Maintenance of germline genomic integrity is critical for the survival of animal species. Consequently, many cellular and molecular processes have evolved to ensure genetic stability during the production of gametes. Here, we describe the discovery, characterization, and emerging molecular mechanisms of the protein Asterix/Gametocyte‐specific factor 1 (GTSF1), an essential gametogenesis factor that is conserved from insects to humans. Beyond its broad importance for healthy germline development, Asterix/GTSF1 has more specific functions in the Piwi‐interacting RNA (piRNA)–RNA interference pathway. There, it contributes to the repression of otherwise deleterious transposons, helping to ensure faithful transmission of genetic information to the next generation. This article is categorized under:Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA‐Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein‐RNA Interactions: Functional Implications
Collapse
Affiliation(s)
- Jonathan J. Ipsaro
- Howard Hughes Medical Institute W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory Cold Spring Harbor New York USA
| | - Leemor Joshua‐Tor
- Howard Hughes Medical Institute W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory Cold Spring Harbor New York USA
| |
Collapse
|
4
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
5
|
Yu D, Peng Z, Wu H, Zhang X, Ji C, Peng X. Stress responses in expressions of microRNAs in mussel Mytilus galloprovincialis exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111927. [PMID: 33508712 DOI: 10.1016/j.ecoenv.2021.111927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are known to have complicated functions in aquatic species, but little is known about the role of miRNAs in mollusk species under environmental stress. In this study, we performed small RNA sequencing to characterize the differentially expressed miRNAs in different tissues (whole tissues, digestive glands, gills, and gonads) of blue mussels (Mytilus galloprovincialis) exposed to cadmium (Cd). In summary, 107 known miRNAs and 32 novel miRNAs were significantly (p < 0.01) differentially expressed after Cd exposure. The peak size of miRNAs was 22 nucleotides. Target genes of these differentially expressions of miRNAs related to immune defense, apoptosis, lipid and xenobiotic metabolism showed significant changes under Cd stress. These findings provide the first characterization of miRNAs in mussel M. galloprovincialis and expressions of many target genes in response to Cd stress.
Collapse
Affiliation(s)
- Deliang Yu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Zheng Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China
| | - Huifeng Wu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiaoying Zhang
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Chenglong Ji
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
6
|
Ipsaro JJ, O'Brien PA, Bhattacharya S, Palmer AG, Joshua-Tor L. Asterix/Gtsf1 links tRNAs and piRNA silencing of retrotransposons. Cell Rep 2021; 34:108914. [PMID: 33789107 DOI: 10.1016/j.celrep.2021.108914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway safeguards genomic integrity by silencing transposable elements (transposons) in the germline. While Piwi is the central piRNA factor, others including Asterix/Gtsf1 have also been demonstrated to be critical for effective silencing. Here, using enhanced crosslinking and immunoprecipitation (eCLIP) with a custom informatic pipeline, we show that Asterix/Gtsf1 specifically binds tRNAs in cellular contexts. We determined the structure of mouse Gtsf1 by NMR spectroscopy and identified the RNA-binding interface on the protein's first zinc finger, which was corroborated by biochemical analysis as well as cryo-EM structures of Gtsf1 in complex with co-purifying tRNA. Consistent with the known dependence of long terminal repeat (LTR) retrotransposons on tRNA primers, we demonstrate that LTR retrotransposons are, in fact, preferentially de-repressed in Asterix mutants. Together, these findings link Asterix/Gtsf1, tRNAs, and LTR retrotransposon silencing and suggest that Asterix exploits tRNA dependence to identify transposon transcripts and promote piRNA silencing.
Collapse
Affiliation(s)
- Jonathan J Ipsaro
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Paul A O'Brien
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 650 West 168th Street, New York, NY 10032, USA
| | | | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 650 West 168th Street, New York, NY 10032, USA
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
7
|
Gao DY, Ling Y, Lou XL, Wang YY, Liu LM. GTSF1 gene may serve as a novel potential diagnostic biomarker for liver cancer. Oncol Lett 2017; 15:3133-3140. [PMID: 29435047 DOI: 10.3892/ol.2017.7695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
The gametocyte-specific factor 1 (GTSF1) gene participates in DNA methylation and retrotransposon activation in germ cells, particularly during cell proliferation. The present study aimed to assess the level of GTSF1 gene expression in liver cancer tumor tissues, and its role in human hepatoma cell lines in vitro and in a nude mouse model in vivo. GTSF1 gene expression was detected in liver cancer tumor tissues, compared with in healthy controls, via reverse transcription quantitative polymerase chain reaction. An adeno-associated virus vector was used to study tumor stem cell proliferation in vivo. A plasmid expressing GTSF1 was constructed and transfected into various human hepatoma cell lines, in order to analyze the cellular proliferation and apoptosis of liver cancer cells using small interfering (si)RNAs in vitro. In the present study, GTSF1 gene expression was detected in 18/24 (75.0%) liver cancer tumor tissues from patients with hepatocellular carcinoma (HCC), and elevated GTSF1 expression was identified in the tissue of one of 32 healthy control samples (3.13%; P<0.05). Notably, the GTSF1 gene was expressed at a higher frequency in AFP-positive HCC samples (14/16, 87.50%) compared with in AFP-negative HCC samples (4/8, 50.0%; P=0.129). In addition, there was no statistical significance between GTSF1 expression in non-HBV-infected (71.42%) and HBV-infected HCC specimens (76.47%), as determined by a χ2 test (P=0.921). It was demonstrated that GTSF1 significantly increased the tumorigenicity of Ad-shNC-transfected (GTSF1-positive) HepG2 cells in the nude mouse xenograft model, whereas the sizes and weights of the tumors in the GTSF1-negative group were dercreased in comparison with the GTSF1-positive group (P<0.05). Reduced levels of GTSF1 mRNA, along with fewer and smaller colonies, were identified in two groups of human liver cancer cells treated with with GTSF1-targeting siRNA, when compared with cells without GTSF1 mRNA interference (P<0.05). In summary, the present study elucidated the GTSF1 mRNA expression pattern in liver cancer, and investigated the potential role of GTSF1 in tumorigenesis. The data suggest an important role for the GTSF1 gene in the molecular etiology of hepatocarcinogenesis, and indicate a potential application of GTSF1 mRNA expression in liver cancer diagnosis and therapy.
Collapse
Affiliation(s)
- De-Yong Gao
- Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 201600, P.R. China
| | - Yun Ling
- Department of Infectious Diseases, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 200083, P.R. China
| | - Xiao-Li Lou
- Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 201600, P.R. China
| | - Ying-Ying Wang
- Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 201600, P.R. China
| | - Liang-Ming Liu
- Department of Infectious Diseases, Songjiang Hospital Affiliated to Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 201600, P.R. China
| |
Collapse
|
8
|
Regatieri IC, Boligon AA, Costa RB, de Souza FRP, Baldi F, Takada L, Venturini GC, de Camargo GMF, Fernandes GA, Tonhati H, de Oliveira HN, de Albuquerque LG. Association between single nucleotide polymorphisms and sexual precocity in Nellore heifers. Anim Reprod Sci 2016; 177:88-96. [PMID: 28011117 DOI: 10.1016/j.anireprosci.2016.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine the extent (r2) of linkage disequilibrium (LD) in the genome of Nellore cattle, and to examine associations between single nucleotide polymorphisms (SNP) and age at first calving (AFC) and early pregnancy (EP) using a panel of high-density SNPs and data from 1182 Nellore females. A total of 13 contemporary groups (CG) were used consisting of farm, season, and year of birth. For genome-wide association analysis, SNPs with a minor allele frequency (MAF)<0.05 and animals with a call rate<0.90 were excluded, totaling 431,885 SNPs. For statistical analysis, a linear model was used for AFC and a threshold model for EP. To estimate the significance of the associations for the two traits, the model included the categorical fixed effects of CG, SNPs, and sire. In addition, the polygenic effect was included in the analysis. The additive effects and dominance deviations of Bonferroni-adjusted significant SNPs for AFC and EP were estimated using orthogonal contrasts. The average estimate of r2 for all autosomes was 0.18 at a distance of 4.8kb and the mean MAF was 0.25±0.13. The LD decreased as the distance between markers increased: 0.35 (1kb) to 0.12 (100kb). Eleven significant associations were detected in seven different chromosomes. Seven SNPs were associated with AFC and four were associated with EP. Three SNPs were significant for both traits. The identification of SNPs associated with AFC and EP may contribute for selecting sexually precocious animals.
Collapse
Affiliation(s)
- Inaê Cristina Regatieri
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Arione Augusti Boligon
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Raphael Bermal Costa
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil; Veterinary Medicine and Animal Science School, Federal University of Bahia UFBA, Salvador, BA, Brazil.
| | - Fábio Ricardo Pablos de Souza
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil; Department of Ecology, Zoology and Genetics, Capão do Leão Campus, Institute of Biology - IB, Federal University of Pelotas, 96010-900, Pelotas, RS, Brazil.
| | - Fernando Baldi
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Luciana Takada
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Guilherme Costa Venturini
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Gregório Miguel Ferreira de Camargo
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil; Veterinary Medicine and Animal Science School, Federal University of Bahia UFBA, Salvador, BA, Brazil.
| | - Gerardo Alves Fernandes
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Humberto Tonhati
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Henrique Nunes de Oliveira
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Lucia Galvão de Albuquerque
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
9
|
Huntriss J, Lu J, Hemmings K, Bayne R, Anderson R, Rutherford A, Balen A, Elder K, Picton HM. Isolation and expression of the human gametocyte-specific factor 1 gene (GTSF1) in fetal ovary, oocytes, and preimplantation embryos. J Assist Reprod Genet 2016; 34:23-31. [PMID: 27646122 PMCID: PMC5330970 DOI: 10.1007/s10815-016-0795-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/16/2016] [Indexed: 01/23/2023] Open
Abstract
Purpose Gametocyte-specific factor 1 has been shown in other species to be required for the silencing of retrotransposons via the Piwi-interacting RNA (piRNA) pathway. In this study, we aimed to isolate and assess expression of transcripts of the gametocyte-specific factor 1 (GTSF1) gene in the human female germline and in preimplantation embryos. Methods Complementary DNA (cDNA) libraries from human fetal ovaries and testes, human oocytes and preimplantation embryos and ovarian follicles isolated from an adult ovarian cortex biopsy were used to as templates for PCR, cloning and sequencing, and real time PCR experiments of GTSF1 expression. Results GTSF1 cDNA clones that covered the entire coding region were isolated from human oocytes and preimplantation embryos. GTSF1 mRNA expression was detected in archived cDNAs from staged human ovarian follicles, germinal vesicle (GV) stage oocytes, metaphase II oocytes, and morula and blastocyst stage preimplantation embryos. Within the adult female germline, expression was highest in GV oocytes. GTSF1 mRNA expression was also assessed in human fetal ovary and was observed to increase during gestation, from 8 to 21 weeks, during which time oogonia enter meiosis and primordial follicle formation first occurs. In human fetal testis, GTSF1 expression also increased from 8 to 19 weeks. Conclusions To our knowledge, this report is the first to describe the expression of the human GTSF1 gene in human gametes and preimplantation embryos. Electronic supplementary material The online version of this article (doi:10.1007/s10815-016-0795-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John Huntriss
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK.
| | - Jianping Lu
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK
| | - Karen Hemmings
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK
| | - Rosemary Bayne
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Richard Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Anthony Rutherford
- Leeds Centre for Reproductive Medicine, Leeds Teaching Hospital NHS Trust, Seacroft Hospital, York Road, Leeds, LS14 6UH, UK
| | - Adam Balen
- Leeds Centre for Reproductive Medicine, Leeds Teaching Hospital NHS Trust, Seacroft Hospital, York Road, Leeds, LS14 6UH, UK
| | - Kay Elder
- Bourn Hall Clinic, Cambridge, CB23 2TN, UK
| | - Helen M Picton
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, Clarendon Way, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
10
|
Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T, Arnold GJ, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 2016; 31:133-49. [PMID: 26577303 PMCID: PMC5853592 DOI: 10.1093/humrep/dev279] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)? SUMMARY ANSWER Postovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance. WHAT IS KNOWN ALREADY Oocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote. STUDY DESIGN, SIZE, DURATION Germinal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM). MATERIAL AND METHODS GV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE). MAIN RESULTS AND ROLE OF CHANCE The significant reduction in abundance of proteins (P < 0.001) translated from maternal mRNAs was independent of polyadenylation status, while their protein localization was not significantly changed by aging. Most of other proteins quantified by SRM analysis did not significantly change in abundance upon aging except MSY2 and GTSF1. MSY2 was enriched in the subcortical RNP domain (SCRD) and in the spindle chromosome complex (SCC) in a distinct pattern, right and left to the chromosomes. There was a significant loss of MSY2 from the SCRD (P < 0.001) and the spindle after postovulatory aging. Microtubule de- and repolymerization caused reversible loss of MSY2 spindle-association whereas H2O2 stress did not significantly decrease MSY2 abundance. Aging in presence of GEE decreased significantly (P < 0.05) the aging-related overall and cytoplasmic loss of MSY2. Postovulatory aging increased significantly spindle abnormalities, unaligned chromosomes, and abundance of acetylated histone H4K12, and decreased pericentromeric trimethylated histone H3K9 (all P < 0.001). Spreading revealed a highly significant increase in pericentromeric ATRX (P < 0.001) upon ageing. Thus, the significantly reduced abundance of MSY2 protein, especially at the SCRD and the spindle may disturb the spatial control and timely recruitment, deadenylation and degradation of developmentally important RNAs. An autonomous program of degradation appears to exist which transiently and specifically induces the loss and displacement of transcripts and specific maternal proteins independent of fertilization in aging oocytes and thereby can critically affect chromosome segregation and gene expression in the embryo after fertilization. LIMITATION, REASONS FOR CAUTION We used the mouse oocyte to study processes associated with postovulatory aging, which may not entirely reflect processes in aging human oocytes. However, increases in spindle abnormalities, unaligned chromosomes and H4K12 acetylated histones, as well as in mRNA abundance and polyadenylation have been observed also in aged human oocytes suggesting conserved processes in aging. WIDER IMPLICATIONS OF THE FINDINGS Postovulatory aging precociously induces alterations in expression and epigenetic modifications of chromatin by ATRX and in histone pattern in MII oocytes that normally occur after fertilization, possibly contributing to disturbances in the oocyte-to-embryo transition (OET) and the zygotic gene activation (ZGA). These observations in mouse oocytes are also relevant to explain disturbances and reduced developmental potential of aged human oocytes and caution to prevent oocyte aging in vivo and in vitro. STUDY FUNDING/COMPETING INTERESTS The study has been supported by the German Research Foundation (DFG) (EI 199/7-1 | GR 1138/12-1 | HO 949/21-1 and FOR 1041). There is no competing interest.
Collapse
Affiliation(s)
- T Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - M Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - D Dankert
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - H Demond
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - D Deutsch
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - G J Arnold
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - R Grümmer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - B Horsthemke
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
11
|
Baillet A, Le Bouffant R, Volff JN, Luangpraseuth A, Poumerol E, Thépot D, Pailhoux E, Livera G, Cotinot C, Mandon-Pépin B. TOPAZ1, a novel germ cell-specific expressed gene conserved during evolution across vertebrates. PLoS One 2011; 6:e26950. [PMID: 22069478 PMCID: PMC3206057 DOI: 10.1371/journal.pone.0026950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We had previously reported that the Suppression Subtractive Hybridization (SSH) approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene. PRINCIPAL FINDINGS Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons), respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ line.
Collapse
Affiliation(s)
- Adrienne Baillet
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Ronan Le Bouffant
- CEA, DSV/DRR/SEGG/LDRG, Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Fontenay aux Roses, France
| | - Jean Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Alix Luangpraseuth
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Elodie Poumerol
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Dominique Thépot
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Eric Pailhoux
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Gabriel Livera
- CEA, DSV/DRR/SEGG/LDRG, Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Fontenay aux Roses, France
| | - Corinne Cotinot
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Béatrice Mandon-Pépin
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| |
Collapse
|