1
|
Marquardt RM, Tran DN, Lessey BA, Rahman MS, Jeong JW. Epigenetic Dysregulation in Endometriosis: Implications for Pathophysiology and Therapeutics. Endocr Rev 2023; 44:1074-1095. [PMID: 37409951 PMCID: PMC10638603 DOI: 10.1210/endrev/bnad020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/15/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Endometriosis is a prevalent gynecological condition associated with pelvic pain and infertility. Despite more than a century of research, the etiology of endometriosis still eludes scientific consensus. This lack of clarity has resulted in suboptimal prevention, diagnosis, and treatment options. Evidence of genetic contributors to endometriosis is interesting but limited; however, significant progress has been made in recent years in identifying an epigenetic role in the pathogenesis of endometriosis through clinical studies, in vitro cell culture experiments, and in vivo animal models. The predominant findings include endometriosis-related differential expression of DNA methyltransferases and demethylases, histone deacetylases, methyltransferases, and demethylases, and regulators of chromatin architecture. There is also an emerging role for miRNAs in controlling epigenetic regulators in the endometrium and endometriosis. Changes in these epigenetic regulators result in differential chromatin organization and DNA methylation, with consequences for gene expression independent of a genetic sequence. Epigenetically altered expression of genes related to steroid hormone production and signaling, immune regulation, and endometrial cell identity and function have all been identified and appear to play into the pathophysiological mechanisms of endometriosis and resulting infertility. This review summarizes and critically discusses early seminal findings, the ever-growing recent evidence of epigenetic contributions to the pathophysiology of endometriosis, and implications for proposed epigenetically targeted therapeutics.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Dinh Nam Tran
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Md Saidur Rahman
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Setiawan A, Anwar R, Syamsunarno MRAA, Mose JC, Santoso B, Maskoen AM, Permadi W, Setiabudiawan B, Dhamayanti M, Hidayat YM. Epigenetic Regulation Interplays with Endometriosis Pathogenesis in Low-Birth-Weight Patients via the Progesterone Receptor B-VEGF-DNMT1 Axis. Diagnostics (Basel) 2023; 13:2085. [PMID: 37370979 DOI: 10.3390/diagnostics13122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Low birth weight (LBW) is a risk factor associated with endometriosis. Our study aimed to analyze the risk of endometriosis in women with a LBW history and the relationships of progesterone receptor B (PR-B) gene promoter methylation, DNA methyltransferase-1 (DNMT1) expression, PR-B expression, and vascular endothelial growth factors (VEGF) with endometriosis. METHODS This study was conducted in two stages, a retrospective case-control design and a cross-sectional design, with 52 cases of endometriosis and 30 controls, which were further subdivided into LBW and non-LBW groups, at Hasan Sadikin General Hospital and its hospital networks from October 2017 to August 2021. Menstrual blood was taken from subjects and analyzed using pyrosequencing techniques to assess DNA methylation, while q-RT PCR was used to assess gene expression. RESULTS There were significant differences in PR-B methylation, DNMT1 expression, PR-B expression, and VEGF expression (p < 0.001) between the case and control groups. There was a significant negative correlation between PR-B methylation and PR-B expression (r = -0.558; p = 0.047). Based on a multiple logistic analysis, the most dominant factor affecting endometriosis incidence is PR-B (OR 10.40, 95% CI 3.24-33.4, R2 = 45.8). We found that patients with a low birth weight history had a 1.41-times-higher risk of developing endometriosis (95% CI 0.57-3.49, p = 0.113), although the relationship was not statistically significant. CONCLUSION Endometriosis is associated with PR-B gene promoter hypermethylation, decreased PR-B expression, and increased DNMT1 and VEGF expression. The methylation of PR-B is the most dominant factor affecting endometriosis incidence.
Collapse
Affiliation(s)
- Arief Setiawan
- Endocrinology Reproduction and Fertilisation Division, Department of Obstetrics and Gynaecology, Hasan Sadikin Hospital, Bandung 40161, Indonesia
| | - Ruswana Anwar
- Endocrinology Reproduction and Fertilisation Division, Department of Obstetrics and Gynaecology, Hasan Sadikin Hospital, Bandung 40161, Indonesia
| | | | | | - Budi Santoso
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | | | - Wiryawan Permadi
- Endocrinology Reproduction and Fertilisation Division, Department of Obstetrics and Gynaecology, Hasan Sadikin Hospital, Bandung 40161, Indonesia
| | | | - Meita Dhamayanti
- Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | | |
Collapse
|
3
|
Lei L, Xu X, Gong C, Lin B, Li F. Integrated analysis of genome-wide gene expression and DNA methylation profiles reveals candidate genes in ovary endometriosis. Front Endocrinol (Lausanne) 2023; 14:1093683. [PMID: 37033258 PMCID: PMC10076879 DOI: 10.3389/fendo.2023.1093683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The incidence of endometriosis (EMs), a common disease in gynecology, has increased over the years. Women suffer from the symptoms caused by EMs, such as chronic pelvic pain, dysmenorrhea, and infertility. However, the etiology and pathophysiology of EMs remain unclear. This study aimed to identify candidate genes of endometriosis through integrated analysis of genome-wide gene expression and DNA methylation profiles. RESULTS Eutopic and ectopic endometrial tissues were collected from patients who were diagnosed as ovarian EMs. Genome-wide methylation profiling identified 17551 differentially methylated loci, with 9777 hypermethylated and 7774 hypomethylated loci. Differentially methylated loci were mainly concentrated in the gene body and intergenic regions. Genome-wide gene expression profiling identified 1837 differentially expressed genes (DEGs), with 1079 genes upregulated and 758 downregulated in ectopic groups. Integrated analysis revealed that DNA methylation was negatively correlated to gene expression in most genomic regions, such as exon, 3'UTR, 5'UTR, and promoter. We also identified promoter-related (53 downregulated and 113 upregulated) and enhancer-related DMGs (212 downregulated and 232 upregulated), which were significantly correlated to the gene expression. Further validation of the top-ranked genes belonging to differentially methylated genes (DMGs) and DEGs revealed that TMEM184A, GREM2, SFN, KIR3DX1, HPGD, ESR1, BST2, PIK3CG and RNASE1 were significant candidate genes in ovarian endometriosis. CONCLUSION Our study revealed the significance of DNA methylation in the gene expression in ovary endometriosis, which provides new insights and a molecular foundation for understanding the underlying mechanisms of endometriosis.
Collapse
Affiliation(s)
- Lei Lei
- Department of Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinxin Xu
- Department of Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengchen Gong
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Fang Li, ; Bowen Lin,
| | - Fang Li
- Department of Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Fang Li, ; Bowen Lin,
| |
Collapse
|
4
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
5
|
Milesi MM, Lorenz V, Varayoud J. Aberrant Hoxa10 gene methylation as a mechanism for endosulfan-induced implantation failures in rats. Mol Cell Endocrinol 2022; 547:111576. [PMID: 35114330 DOI: 10.1016/j.mce.2022.111576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
DNA methylation is a well-established epigenetic mechanism controlling gene expression. Environmental chemicals, such as pesticides have been shown to alter DNA methylation. We have previously shown that the insecticide endosulfan impairs female fertility in rats by increasing the rate of preimplantation embryo losses. In this study, we evaluated whether early postnatal exposure to endosulfan affects long-term transcriptional regulation of Homeobox A10 (Hoxa10) gene, which is a key marker of endometrial receptivity. Female rats were neonatally exposed to 6 or 600 μg/kg/day (ENDO6 and ENDO600, respectively) of endosulfan and uterine samples collected on gestational day (GD) 5. Hoxa10 protein and mRNA levels were assessed by immunohistochemistry and quantitative real-time PCR (qRT-PCR), respectively. In silico analysis of enzyme-specific restriction sites and predicted transcription factors were performed to investigate the methylation status of the regulatory regions of Hoxa10 gene by methylation-sensitive restriction enzymes-PCR technique. The expression of the DNA methyltransferases (Dnmts) was also evaluated. ENDO600 showed a decreased uterine Hoxa10 expression at protein and transcript level, while ENDO6 decreased only the level of transcripts, during the receptive stage. In addition, endosulfan increased levels of Dnmt3a and Dnmt3b. Dysregulation of DNA methylation patterns of Hoxa10 regulatory regions was detected in ENDO6- and ENDO600-treated rats. All these results suggest that aberrant DNA methylation in Hoxa10 gene could be an underlining mechanism contributing to explain endosulfan-induced preimplantation losses.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
6
|
Szaflik T, Smolarz B, Mroczkowska B, Kulig B, Soja M, Romanowicz H, BryŚ M, Forma E, SzyŁŁo K. An Analysis of ESR2 and CYP19A1 Gene Expression Levels in Women With Endometriosis. In Vivo 2021; 34:1765-1771. [PMID: 32606145 DOI: 10.21873/invivo.11970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
AIM The analysis of oestrogen receptor (ESR2) and cytochrome P450 family 19 subfamily A member (CYP19A1) gene expression in the context of the risk for endometriosis development. MATERIALS AND METHODS Tissue specimens, collected from patients with endometriosis (n=100) and from control patients (n=100) embedded into paraffin blocks, provided the material for genetic studies, oriented towards the expression of ESR2 and CYP19A1 genes. The gene expression was assessed by the reverse transcription-polymerase chain reaction technique. RESULTS Higher expression levels of ESR2 gene were demonstrated in the patients with endometriosis in comparison with the healthy controls. The expression intensity of CYP19A1 gene was associated with endometriosis, manifested as abdominal wall nodules. A relationship was observed between CYP19A1 gene expression and the Revised American Society for Reproductive Medicine classification in the group with ovarian endometrioid cysts, as well as in the group with peritoneal endometriosis. CONCLUSION This study suggests the significant role of ESR2 and CYP19A1 gene expression in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Tomasz Szaflik
- Department of Operative Gynaecology and Oncological Gynaecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Beata Mroczkowska
- Department of Operative Gynaecology and Oncological Gynaecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Bartosz Kulig
- Department of Operative Gynaecology and Oncological Gynaecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Malwina Soja
- Department of Operative Gynaecology and Oncological Gynaecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Magdalena BryŚ
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Krzysztof SzyŁŁo
- Department of Operative Gynaecology and Oncological Gynaecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
7
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Polymorphisms in the 3
′
UTR Region of ESR2 and CYP19A1 Genes and Its Influence on Allele-Specific Gene Expression in Endometriosis. DISEASE MARKERS 2020. [DOI: 10.1155/2020/8845704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives. Endometriosis is supported by hormonal, immunological, and environmental factors. No specific marker for endometriosis has yet been identified. ESR2 and CYP19A1 genes play a major role in the hormonal control of endometriosis women, the development of which largely depends on steroid hormones. Aim. An analysis of ESR2 and CYP19A1 allele-specific gene expressions in the context of the risk for endometriosis occurrence. Methods. The study material included paraffin-embedded tissue specimens, collected from patients (
) with endometriosis. Blood samples from age-matched, endometriosis-free women (
) served as a control. the RT-PCR technique was performed to observe the expression of ESR2 and CYP19A1 genes. Moreover, Sanger’s sequencing method was applied for polymorphism analysis. Results. A set of 4 single-nucleotide polymorphisms (SNPs) was determined; all of them most significantly associated with endometriosis: rs4986938 (G>A)(chromosome 14), rs928554 (A>G) (chromosome 14), rs10046 (C>T) (chromosome 15), and rs4646 (C>A) (chromosome 15). There were no differences in the distribution of genotypes and alleles in the studied groups, taking into account ESR2 and CYP19A1 gene expressions. Conclusion. The ESR2 and CYP19A1 polymorphisms may not be correlated with endometriosis susceptibility. Further analysis is needed to specify the role of these polymorphisms in the pathogenesis of endometriosis.
Collapse
|
9
|
The Genetic Background of Endometriosis: Can ESR2 and CYP19A1 Genes Be a Potential Risk Factor for Its Development? Int J Mol Sci 2020; 21:ijms21218235. [PMID: 33153202 PMCID: PMC7663510 DOI: 10.3390/ijms21218235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial foci, localized beyond their primary site, i.e., the uterine cavity. The etiology of this disease is rather complex. Its development is supported by hormonal, immunological, and environmental factors. During recent years, particular attention has been focused on the genetic mechanisms that may be of particular significance for the increased incidence rates of endometriosis. According to most recent studies, ESR2 and CYP19A1 genes may account for the potential risk factors of infertility associated with endometriosis. The paper presents a thorough review of the latest reports and data concerning the genetic background of the risk for endometriosis development.
Collapse
|
10
|
Yilmaz BD, Bulun SE. Endometriosis and nuclear receptors. Hum Reprod Update 2020; 25:473-485. [PMID: 30809650 DOI: 10.1093/humupd/dmz005] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/03/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is recognized as a steroid-dependent disorder; however, the precise roles of nuclear receptors (NRs) in steroid responsiveness and other signaling pathways are not well understood. OBJECTIVE AND RATIONALE Over the past several years, a number of paradigm-shifting breakthroughs have occurred in the area of NRs in endometriosis. We review and clarify new information regarding the mechanisms responsible for: (i) excessive estrogen biosynthesis, (ii) estrogen-dependent inflammation, (iii) defective differentiation due to progesterone resistance and (iv) enhanced survival due to deficient retinoid production and action in endometriosis. We emphasize the roles of the relevant NRs critical for these pathological processes in endometriosis. SEARCH METHODS We conducted a comprehensive search using PubMed for human, animal and cellular studies published until 2018 in the following areas: endometriosis; the steroid and orphan NRs, estrogen receptors alpha (ESR1) and beta (ESR2), progesterone receptor (PGR), steroidogenic factor-1 (NR5A1) and chicken ovalbumin upstream promoter-transcription factor II (NR2F2); and retinoids. OUTCOMES Four distinct abnormalities in the intracavitary endometrium and extra-uterine endometriotic tissue underlie endometriosis progression: dysregulated differentiation of endometrial mesenchymal cells, abnormal epigenetic marks, inflammation activated by excess estrogen and the development of progesterone resistance. Endometriotic stromal cells compose the bulk of the lesions and demonstrate widespread epigenetic abnormalities. Endometriotic stromal cells also display a wide range of abnormal NR expression. The orphan NRs NR5A1 and NR2F2 compete to regulate steroid-synthesizing genes in endometriotic stromal cells; NR5A1 dominance gives rise to excessive estrogen formation. Endometriotic stromal cells show an abnormally low ESR1:ESR2 ratio due to excessive levels of ESR2, which mediates an estrogen-driven inflammatory process and prostaglandin formation. These cells are also deficient in PGR, leading to progesterone resistance and defective retinoid synthesis. The pattern of NR expression, involving low ESR1 and PGR and high ESR2, is reminiscent of uterine leiomyoma stem cells. This led us to speculate that endometriotic stromal cells may display stem cell characteristics found in other uterine tissues. The biologic consequences of these abnormalities in endometriotic tissue include intense inflammation, defective differentiation and enhanced survival. WIDER IMPLICATIONS Steroid- and other NR-related abnormalities exert genome-wide biologic effects via interaction with defective epigenetic programming and enhance inflammation in endometriotic stromal cells. New synthetic ligands, targeting PGR, retinoic acid receptors and ESR2, may offer novel treatment options.
Collapse
Affiliation(s)
- Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| |
Collapse
|
11
|
Zubrzycka A, Zubrzycki M, Perdas E, Zubrzycka M. Genetic, Epigenetic, and Steroidogenic Modulation Mechanisms in Endometriosis. J Clin Med 2020; 9:E1309. [PMID: 32370117 PMCID: PMC7291215 DOI: 10.3390/jcm9051309] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is a chronic gynecological disease, affecting up to 10% of reproductive-age women. The exact cause of the disease is unknown; however, it is a heritable condition affected by multiple genetic, epigenetic, and environmental factors. Previous studies reported variations in the epigenetic patterns of numerous genes known to be involved in the aberrant modulation of cell cycle steroidogenesis, abnormal hormonal, immune and inflammatory status in endometriosis, apoptosis, adhesion, angiogenesis, proliferation, immune and inflammatory processes, response to hypoxia, steroidogenic pathway and hormone signaling are involved in the pathogenesis of endometriosis. Accumulating evidence suggest that various epigenetic aberrations may contribute to the pathogenesis of endometriosis. Among them, DNA methyltransferases, histone deacetylators, and non-coding microRNAs demonstrate differential expression within endometriotic lesions and in the endometrium of patients with endometriosis. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may contribute to the discovery of a useful prognostic biomarker, which could aid in the future earlier detection, timely diagnosis, and initiation of a new approach to the treatment of endometriosis, as well as inform us about the effectiveness of treatment and the stage of the disease. As the etiology of endometriosis is highly complex and still far from being fully elucidated, the presented review focuses on different approaches to identify the genetic and epigenetic links of endometriosis and its pathogenesis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; Poland;
- Department of Operative and Conservative Gynecology, K. Jonscher Memorial Hospital, Milionowa 14, 93-113 Lodz, Poland
| | - Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Ewelina Perdas
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
12
|
Zal F, Yarahmadi A, Totonchi H, Barazesh M, Moradi Sarabi M. Nicotine attenuates global genomic DNA methylation by influencing DNMTs gene expression in human endometrial stromal cells. Genes Environ 2020; 42:6. [PMID: 32042366 PMCID: PMC7003317 DOI: 10.1186/s41021-020-0144-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is increasing evidence indicating an incidence of infertility and also the risk of endometrial cancers among smokers. However, the mechanism underlying nicotine adverse effect on female reproduction remains unclear. Growing evidence has suggested that environmental exposures such as nicotine could modulate the epigenome. No study has yet been published to evaluate the direct effect of nicotine on the epigenome profiling of human endometrial stromal cells (HESC). Herein, we decided to examine the direct effects of nicotine on global genomic DNA methylation status and DNA methyl- transferases (DNMTs) gene expression in HESC. HESC were treated with different doses of nicotine (0 or control, 10- 11, 10- 8 and 10- 6) M for 24 h and their genomic global DNA methylation and gene expression of DNMTs (DNMT1, DNMT3A, and DNMT3B) were investigated using ELISA and real-time PCR, respectively. RESULTS Nicotine treatments reduced the average level of DNMTs gene expression by 90, 79, and 73.4% in 10- 11, 10- 8 and 10- 6 M of nicotine treated cells as compared to control cells, respectively (p < 0.05). Also, 10- 8 and 10- 6 M of nicotine concentrations effectively reduced the amounts of 5-methylated cytosine (5-mC) by 1.09 and 1.87% compared to control cells, respectively (p < 0.05). The 5-mC percentages were positively correlated with the relative cellular DNMTs expression in HESC as verified by the Pearson correlation test. CONCLUSION An interesting possibility raised by the current study is that the reduced genomic global DNA methylation level in HESC may be partly due to the suppression of DNMTs gene expression caused by nicotine in these cells. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Fatemeh Zal
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Yarahmadi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Totonchi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Barazesh
- Biotechnology Department, School of advanced medical sciences and technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, 381251698 Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Coyle CS, Caso F, Tolla E, Barrett P, Onishi KG, Tello JA, Stevenson TJ. Ovarian hormones induce de novo DNA methyltransferase expression in the Siberian hamster suprachiasmatic nucleus. J Neuroendocrinol 2020; 32:e12819. [PMID: 31800973 DOI: 10.1111/jne.12819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023]
Abstract
The present study investigated neuroanatomically localised changes in de novo DNA methyltransferase expression in the female Siberian hamster (Phodopus sungorus). The objectives were to identify the neuroendocrine substrates that exhibit rhythmic Dnmt3a and Dnmt3b expression across the oestrous cycle and also examine the role of ovarian steroids. Hypothalamic Dnmt3a expression was observed to significantly increase during the transition from pro-oestrous to oestrous. A single bolus injection of diethylstilbestrol and progesterone was sufficient to increase Dnmt3a cell numbers and Dnmt3b immunoreactive intensity in the suprachiasmatic nucleus. In vitro analyses using an embryonic rodent cell line revealed that diethylstilbestrol was sufficient to induce Dnmt3b expression. Up-regulating DNA methylation in vitro reduced the expression of vasoactive intestinal polypeptide, Vip, and the circadian clock gene, Bmal1. Together, these data indicate that ovarian steroids drive de novo DNA methyltransferase expression in the mammalian suprachiasmatic nucleus and increased methylation may regulate genes involved in the circadian timing of oestrous: Vip and Bmal1. Overall, epigenetically mediated neuroendocrine reproductive events may reflect an evolutionarily ancient process involved in the timing of female fertility.
Collapse
Affiliation(s)
- Chris S Coyle
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Federico Caso
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Elisabetta Tolla
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Perry Barrett
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Kenneth G Onishi
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Javier A Tello
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Tyler John Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
15
|
Mahajan V, Farquhar C, Ponnampalam AP. Could DNA hydroxymethylation be crucial in influencing steroid hormone signaling in endometrial biology and endometriosis? Mol Reprod Dev 2019; 87:7-16. [PMID: 31749216 DOI: 10.1002/mrd.23299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Endometriosis affects 10% of reproductive-aged women. It is characterized by the growth of the endometrium, outside the uterus and is associated with infertility and chronic abdominal pain. Lack of noninvasive diagnostic tools and early screening tests results in delayed treatment and subsequently increased disease severity. Endometriosis is a disease associated with a deregulated hormonal response, therefore, understanding the molecular mechanisms that govern this hormonal interplay is of paramount importance. DNA methylation is an epigenetic mark that regulates gene expression and is often associated with genes that code for steroid receptors and enzymes associated with estrogen synthesis and metabolism in endometriosis. DNA hydroxymethylation, which is structurally similar to methylation but functionally different, is a biologically critical mechanism that is also known to regulate gene expression. Ten Eleven Translocation (TET) proteins mediate hydroxymethylation. However, the role of DNA hydroxymethylation or TETs in the endometrium remains relatively unexplored. Currently, the "gold standard" technique used to study methylation patterns is bisulfite genomic sequencing. This technique also detects hydroxymethylation but fails to distinguish between the two, thereby limiting our understanding of these two processes. The presence of TETs in the male and female reproductive tract and its contribution to endometrial cancer makes it an important factor to study in endometriosis. This review summarizes the role of DNA methylation in aberrant steroid hormone signaling and hypothesizes that hydroxymethylation could be a factor influencing hormonal instability seen in endometriosis.
Collapse
Affiliation(s)
- Vishakha Mahajan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Cynthia Farquhar
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Wang L, Zhao J, Li Y, Wang Z, Kang S. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol Reprod Dev 2019; 86:491-501. [PMID: 30740831 DOI: 10.1002/mrd.23127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
Endometriosis is a common chronic gynecologic disorder characterized by the presence and growth of endometrial-like tissue outside of the uterine cavity. Although the exact etiology remains unclear, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of endometriosis. Here, we used the Illumina Human Methylation 450 K BeadChip Array to analyze the genome-wide DNA methylation profiles of six endometriotic lesions and six eutopic endometria from patients with ovarian endometriosis and six endometria of women without endometriosis. Compared with the eutopic endometria of women with endometriosis, 12,159 differentially methylated CpG sites and 375 differentially methylated promoter regions were identified in endometriotic lesions. GO analyses showed that these putative differentially methylated genes were primarily associated with immune response, inflammatory response, response to steroid hormone stimulus, cell adhesion, negative regulation of apoptosis, and activation of the MAPK activity. In addition, the expression levels of DNMT1, DNMT3A, DNMT3B, and MBD2 in endometriotic lesions and eutopic endometria were significantly decreased compared with control endometria. Our findings suggest that aberrant DNA methylation status in endometriotic lesions may play a significant role in the pathogenesis and progression of endometriosis.
Collapse
Affiliation(s)
- Lixian Wang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian Zhao
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zihe Wang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shan Kang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Wu MH, Hsiao KY, Tsai SJ. Hypoxia: The force of endometriosis. J Obstet Gynaecol Res 2019; 45:532-541. [PMID: 30618168 DOI: 10.1111/jog.13900] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
AIM Summarize recent findings of how hypoxia regulates numerous important processes to facilitate the implantation, proliferation and progression of ectopic endometriotic lesions. METHODS Most up-to-date evidences about how hypoxia contributes to the disease pathogenesis of endometriosis and potential therapeutic approaches were collected by conducting a comprehensive search of medical literature electronic databases. Quality of data was analyzed by experienced experts including gynecologist and basic scientists. RESULTS Uterus is a highly vascularized organ, which makes endometrial cells constantly expose to high concentration of oxygen. When endometrial tissues shed off from the eutopic uterus and retrograde to the peritoneal cavity, they face severe hypoxic stress. Even with successful implantation to ovaries or peritoneum, the hypoxic stress remains as a critical issue because endometrial cells are used to live in the well-oxygenated environment. Under the hypoxia condition, cells undergo epigenetic modulation and evolve several survival processes including steroidogenesis, angiogenesis, inflammation and metabolic switch. The complex gene regulatory network driven by hypoxia ensures endometriotic cells can survive under the hostile peritoneal microenvironment. CONCLUSION Hypoxia plays critical roles in promoting pathological processes to facilitate the development of endometriosis. Targeting hypoxia-mediated gene network represents an alternative approach for the treatment of endometriosis.
Collapse
Affiliation(s)
- Meng-Hsing Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Yang Hsiao
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Kim HY, Lee DH, Shin MH, Shin HS, Kim MK, Chung JH. UV-induced DNA methyltransferase 1 promotes hypermethylation of tissue inhibitor of metalloproteinase 2 in the human skin. J Dermatol Sci 2018; 91:19-27. [PMID: 29685765 DOI: 10.1016/j.jdermsci.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ultraviolet (UV) radiation has been reported to influence epigenetic regulation by affecting the expression of genome regulators such as DNA methyltransferase 1 (DNMT1). DNMT1 is a "gene silencer," that is responsible for the maintenance of DNA methylation and contribution to de novo methylation. Implications of DNMT1's involvement in the expression of UV-induced proteins have been previously reported. OBJECTIVE To investigate for changes in DNA methylation-associated gene expressions by UV and to analyze the role of DNA methylation in the suppression of TIMP2 in UV-irradiated human skin. METHODS The expression of DNA methylation-associated proteins and TIMP2 were analyzed in UV-irradiated human skin in vivo and in human dermal fibroblasts in vitro. To investigate the relationship between DNMT1 and TIMP2, we assessed the effect of DNMT1 knockdown, inhibition and overexpression on TIMP2 levels in human dermal fibroblasts. Lastly, methylation-specific PCR was used to confirm increased DNA methylation in TIMP2 promoter in response to UV. RESULTS DNMT1 expression significantly increased whereas TIMP2 expression decreased in UV-irradiated human skin in vivo and in vitro. Downregulation of DNMT1 by knockdown or inhibition resulted in increased TIMP2 expression, whereas the overexpression of DNMT1 resulted in decreased TIMP2 expression. Lastly, methylation-specific PCR confirmed increased methylation on the CpG island residing in TIMP2 promoter in UV-irradiated human dermal fibroblasts. CONCLUSION These findings suggest that UV-induced expression of DNMT1 may be responsible for mediating DNA hypermethylation in TIMP2, and thus, silencing its expression, in UV-exposed human skin.
Collapse
Affiliation(s)
- Ha-Young Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Republic of Korea.
| | - Mi Hee Shin
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Republic of Korea
| | - Hye Sun Shin
- Department of Biomedical Sciences, Seoul National University Graduate School, Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Republic of Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Republic of Korea.
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Republic of Korea; Department of Dermatology, Seoul National University College of Medicine, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Republic of Korea; Institute of Aging, Seoul National University, Republic of Korea.
| |
Collapse
|
19
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 1: DNA methylation. Epigenomics 2017; 9:737-755. [PMID: 28470096 DOI: 10.2217/epi-2016-0166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. The present review is the first part of this work, in which we examined the contribution of DNA methylation alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Ito F, Yamada Y, Shigemitsu A, Akinishi M, Kaniwa H, Miyake R, Yamanaka S, Kobayashi H. Role of Oxidative Stress in Epigenetic Modification in Endometriosis. Reprod Sci 2017; 24:1493-1502. [PMID: 28443478 DOI: 10.1177/1933719117704909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.
Collapse
Affiliation(s)
- Fuminori Ito
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Aiko Shigemitsu
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Mika Akinishi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroko Kaniwa
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Ryuta Miyake
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Shoichiro Yamanaka
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Hiroshi Kobayashi
- 1 Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
21
|
Taghizadeh M, Noruzinia M. Lovastatin Reduces Stemness via Epigenetic Reprograming of BMP2 and GATA2 in Human Endometrium and Endometriosis. CELL JOURNAL 2017; 19:50-64. [PMID: 28367417 PMCID: PMC5241518 DOI: 10.22074/cellj.2016.3894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/22/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The stem cell theory in the endometriosis provides an advanced avenue of targeting these cells as a novel therapy to eliminate endometriosis. In this regard, studies showed that lovastatin alters the cells from a stem-like state to more differentiated condition and reduces stemness. The aim of this study was to investigate whether lovastatin treatment could influence expression and methylation patterns of genes regulating differentiation of endometrial mesenchymal stem cells (eMSCs) such as BMP2, GATA2 and RUNX2 as well as eMSCs markers. MATERIALS AND METHODS In this experimental investigation, MSCs were isolated from endometrial and endometriotic tissues and treated with lovastatin and decitabin. To investigate the osteogenic and adipogenic differentiation of eMSCs treated with the different concentration of lovastatin and decitabin, BMP2, RUNX2 and GATA2 expressions were measured by real-time polymerase chain reaction (PCR). To determine involvement of DNA methylation in BMP2 and GATA2 gene regulations of eMSCs, we used quantitative Methylation Specific PCR (qMSP) for evaluation of the BMP2 promoter status and differentially methylated region of GATA2 exon 4. RESULTS In the present study, treatment with lovastatin increased expression of BMP2 and RUNX2 and induced BMP2 promoter demethylation. We also demonstrated that lovastatin treatment down-regulated GATA2 expression via inducing methylation. In addition, the results indicated that CD146 cell marker was decreased to 53% in response to lovastatin treatment compared to untreated group. CONCLUSION These findings indicated that lovastatin treatment could increase the differentiation of eMSCs toward osteogenic and adiogenic lineages, while it decreased expression of eMSCs markers and subsequently reduced the stemness.
Collapse
Affiliation(s)
| | - Mehrdad Noruzinia
- P.O.Box: 11115-331Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
22
|
Stearns V, Fackler MJ, Hafeez S, Bujanda ZL, Chatterton RT, Jacobs LK, Khouri NF, Ivancic D, Kenney K, Shehata C, Jeter SC, Wolfman JA, Zalles CM, Huang P, Khan SA, Sukumar S. Gene Methylation and Cytological Atypia in Random Fine-Needle Aspirates for Assessment of Breast Cancer Risk. Cancer Prev Res (Phila) 2016; 9:673-682. [PMID: 27261491 DOI: 10.1158/1940-6207.capr-15-0377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Methods to determine individualized breast cancer risk lack sufficient sensitivity to select women most likely to benefit from preventive strategies. Alterations in DNA methylation occur early in breast cancer. We hypothesized that cancer-specific methylation markers could enhance breast cancer risk assessment. We evaluated 380 women without a history of breast cancer. We determined their menopausal status or menstrual cycle phase, risk of developing breast cancer (Gail model), and breast density and obtained random fine-needle aspiration (rFNA) samples for assessment of cytopathology and cumulative methylation index (CMI). Eight methylated gene markers were identified through whole-genome methylation analysis and included novel and previously established breast cancer detection genes. We performed correlative and multivariate linear regression analyses to evaluate DNA methylation of a gene panel as a function of clinical factors associated with breast cancer risk. CMI and individual gene methylation were independent of age, menopausal status or menstrual phase, lifetime Gail risk score, and breast density. CMI and individual gene methylation for the eight genes increased significantly (P < 0.001) with increasing cytological atypia. The findings were verified with multivariate analyses correcting for age, log (Gail), log (percent density), rFNA cell number, and body mass index. Our results demonstrate a significant association between cytological atypia and high CMI, which does not vary with menstrual phase or menopause and is independent of Gail risk and mammographic density. Thus, CMI is an excellent candidate breast cancer risk biomarker, warranting larger prospective studies to establish its utility for cancer risk assessment. Cancer Prev Res; 9(8); 673-82. ©2016 AACR.
Collapse
Affiliation(s)
- Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Mary Jo Fackler
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sidra Hafeez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Zoila Lopez Bujanda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert T Chatterton
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Lisa K Jacobs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nagi F Khouri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - David Ivancic
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Kara Kenney
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Christina Shehata
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stacie C Jeter
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Judith A Wolfman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | | | - Peng Huang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Seema A Khan
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Saraswati Sukumar
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
23
|
Lynch EWJ, Coyle CS, Lorgen M, Campbell EM, Bowman AS, Stevenson TJ. Cyclical DNA Methyltransferase 3a Expression Is a Seasonal and Estrus Timer in Reproductive Tissues. Endocrinology 2016; 157:2469-78. [PMID: 27105384 DOI: 10.1210/en.2015-1988] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is becoming clear that epigenetic modifications such as DNA methylation can be dynamic and, in many cases, reversible. Here we investigated the photoperiod and hormone regulation of DNA methylation in testes, ovaries, and uterine tissue across multiple time scales. We hypothesized that DNA methyltransferase 3a (dnmt3a) is driven by photoperiodic treatment and exhibits natural variation across the female reproductive cycle and that melatonin increases whereas estrogen reduces DNA methylation. We used Siberian hamsters (Phodopus sungorus) due to their robust changes in reproductive physiology across seasonal and estrus time scales. Our findings indicate that short-day (SD) winter-like conditions significantly increased global DNA methylation and dnmt3a expression in the testes. Using immunohistochemistry, we confirm that increased dnmt3a expression was primarily localized to spermatogonium. Conversely, the ovaries did not exhibit variation in DNA methylation or dnmt3a/3b expression. However, exposure to SD significantly increased uterine dnmt3a expression. We then determined that dnmt3a was significantly decreased during the estrus stage. Next, we ovariectomized females and subsequently identified that a single estrogen+progesterone injection was sufficient to rapidly inhibit dnmt3a and dnmt3b expression. Finally, we demonstrate that treatment of human embryonic kidney-293 cells with melatonin significantly increased both dnmt3a and dnmt3b expression, suggesting that long-duration nocturnal signaling in SD may be involved in the regulation of DNA methylation in both sexes. Overall, our data indicate that dnmt3a shows marked photoperiod and estrus plasticity that likely has broad downstream effects on the timing of the genomic control of reproductive function.
Collapse
Affiliation(s)
- Eloise W J Lynch
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Chris S Coyle
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Marlene Lorgen
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Ewan M Campbell
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Alan S Bowman
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Tyler J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| |
Collapse
|
24
|
KOUKOURA OURANIA, SIFAKIS STAVROS, SPANDIDOS DEMETRIOSA. DNA methylation in endometriosis (Review). Mol Med Rep 2016; 13:2939-48. [PMID: 26934855 PMCID: PMC4805102 DOI: 10.3892/mmr.2016.4925] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 12/01/2022] Open
Abstract
Endometriosis is defined by the presence and growth of functional endometrial tissue, outside the uterine cavity, primarily in the ovaries, pelvic peritoneum and rectovaginal septum. Although it is a benign disease, it presents with malignant characteristics, such as invasion to surrounding tissues, metastasis to distant locations and recurrence following treatment. Accumulating evidence suggests that various epigenetic aberrations may play an essential role in the pathogenesis of endometriosis. Aberrant DNA methylation represents a possible mechanism repsonsible for this disease, linking gene expression alterations observed in endometriosis with hormonal and environmental factors. Several lines of evidence indicate that endometriosis may partially be due to selective epigenetic deregulations influenced by extrinsic factors. Previous studies have shed light into the epigenetic component of endometriosis, reporting variations in the epigenetic patterns of genes known to be involved in the aberrant hormonal, immunologic and inflammatory status of endometriosis. Although recent studies, utilizing advanced molecular techniques, have allowed us to further elucidate the possible association of DNA methylation with altered gene expression, whether these molecular changes represent the cause or merely the consequence of the disease is a question which remains to be answered. This review provides an overview of the current literature on the role of DNA methylation in the pathophysiology and malignant evolution of endometriosis. We also provide insight into the mechanisms through which DNA methylation-modifying agents may be the next step in the research of the pharmaceutical treatment of endometriosis.
Collapse
Affiliation(s)
- OURANIA KOUKOURA
- Department of Obstetrics and Gynecology, University Hospital of Larissa, Larissa 41500, Greece
| | - STAVROS SIFAKIS
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, Heraklion 71003, Greece
| | - DEMETRIOS A. SPANDIDOS
- Laboratory of Clinical Virology, University of Crete Medical School, Heraklion 71409, Greece
| |
Collapse
|
25
|
Gao F, Das SK. Epigenetic regulations through DNA methylation and hydroxymethylation: clues for early pregnancy in decidualization. Biomol Concepts 2015; 5:95-107. [PMID: 25372745 DOI: 10.1515/bmc-2013-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022] Open
Abstract
DNA methylation at cytosines is an important epigenetic modification that participates in gene expression regulation without changing the original DNA sequence. With the rapid progress of high-throughput sequencing techniques, whole-genome distribution of methylated cytosines and their regulatory mechanism have been revealed gradually. This has allowed the uncovering of the critical roles played by DNA methylation in the maintenance of cell pluripotency, determination of cell fate during development, and in diverse diseases. Recently, rediscovery of 5-hydroxymethylcytosine, and other types of modification on DNA, have uncovered more dynamic aspects of cell methylome regulation. The interaction of DNA methylation and other epigenetic changes remodel the chromatin structure and determine the state of gene transcription, not only permanently, but also transiently under certain stimuli. The uterus is a reproductive organ that experiences dramatic hormone stimulated changes during the estrous cycle and pregnancy, and thus provides us with a unique model for studying the dynamic regulation of epigenetic modifications. In this article, we review the current findings on the roles of genomic DNA methylation and hydroxymethylation in the regulation of gene expression, and discuss the progress of studies for these epigenetic changes in the uterus during implantation and decidualization.
Collapse
|
26
|
Kokcu A. A current view of the role of epigenetic changes in the aetiopathogenesis of endometriosis. J OBSTET GYNAECOL 2015; 36:153-9. [PMID: 26467001 DOI: 10.3109/01443615.2015.1036403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of the study was to examine the role of epigenetic changes in the aetiopathogenesis of endometriosis. The analysis and review of the relevant current literature in English language related to the role of epigenetic changes in the aetiopathogenesis of endometriosis. Epigenetic changes are common denominators for hormonal, immunological and inflammatory aberrations which play a key role in the aetiopathogenesis of endometriosis. Many internal and external factors may cause the different running of the epigenetic mechanism. As yet fully unknown genetic factors may increase the sensitivity of the epigenetic mechanism to various internal and external factors. The breakdown of epigenetic regulation is the main factor initiating the pathogenetic mechanisms for endometriosis formation.
Collapse
Affiliation(s)
- A Kokcu
- a Department of Obstetrics and Gynecology , Faculty of Medicine, University of Ondokuz Mayis , Samsun , Turkey
| |
Collapse
|
27
|
Dyson MT, Kakinuma T, Pavone ME, Monsivais D, Navarro A, Malpani SS, Ono M, Bulun SE. Aberrant expression and localization of deoxyribonucleic acid methyltransferase 3B in endometriotic stromal cells. Fertil Steril 2015; 104:953-963.e2. [PMID: 26239024 PMCID: PMC4603532 DOI: 10.1016/j.fertnstert.2015.06.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To define the expression and function of DNA methyltransferases (DNMTs) in response to decidualizing stimuli in endometriotic cells compared with healthy endometrial stroma. DESIGN Basic science. SETTING University research center. PATIENT(S) Premenopausal women with or without endometriosis. INTERVENTION(S) Primary cultures of stromal cells from healthy endometrium (E-IUM) or endometriomas (E-OSIS) were subjected to in vitro decidualization (IVD) using 1 μM medroxyprogesterone acetate, 35 nM 17β-estradiol, and 0.05 mM 8-Br-cAMP. MAIN OUTCOME MEASURE(S) Expression of DNMT1, DNMT3A, and DNMT3B in E-IUM and E-OSIS were assessed by quantitative real-time polymerase chain reaction and immunoblotting. Recruitment of DNMT3B to the promoters of steroidogenic factor 1 (SF-1) and estrogen receptor α (ESR1) was examined by chromatin immunoprecipitation. RESULT(S) IVD treatment reduced DNMT3B messenger RNA (74%) and protein levels (81%) only in E-IUM; DNMT1 and DNMT3A were unchanged in both cell types. Significantly more DNMT3B bound to the SF-1 promoter in E-IUM compared with E-OSIS, and IVD treatment reduced binding in E-IUM to levels similar to those in E-OSIS. Enrichment of DNMT3B across 3 ESR1 promoters was reduced in E-IUM after IVD, although the more-distal promoter showed increased DNMT3B enrichment in E-OSIS after IVD. CONCLUSION(S) The inability to downregulate DNMT3B expression in E-OSIS may contribute to an aberrant epigenetic fingerprint that misdirects gene expression in endometriosis and contributes to its altered response to steroid hormones.
Collapse
Affiliation(s)
- Matthew T Dyson
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Toshiyuki Kakinuma
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mary Ellen Pavone
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Diana Monsivais
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Antonia Navarro
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Saurabh S Malpani
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Masanori Ono
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Serdar E Bulun
- Division of Reproductive Biology Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
28
|
Keil KP, Vezina CM. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate. Epigenomics 2015; 7:413-25. [PMID: 26077429 DOI: 10.2217/epi.15.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal-epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia.
Collapse
Affiliation(s)
- Kimberly P Keil
- Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53705, USA
| | - Chad M Vezina
- Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53705, USA
| |
Collapse
|
29
|
Geng Y, Gao R, Chen X, Liu X, Liao X, Li Y, Liu S, Ding Y, Wang Y, He J. Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice. Mol Hum Reprod 2015; 21:844-56. [PMID: 26246607 DOI: 10.1093/molehr/gav045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Existing evidence suggests that adverse pregnancy outcomes are closely related with dietary factors. Previous studies in mice have focused on the harm of folate deficiency (FD) on development of embryo, while the effect of low maternal folate levels on maternal intrauterine environment during early pregnancy remains unclear. Since our previous study found that FD treatment of mice causes no apparent defects in embryo implantation but is accompanied by female subfertility, we next chose to investigate a potential role of FD on molecular events after implantation. We observed that the decidual bulges began to be stunted on pregnancy day 6. The results of functional experiments in vivo and in vitro showed that FD inhibited the process of endometrial decidualization. It has been confirmed that DNA methylation participates in decidualization, and folate as a methyl donor could change the methylation patterns of genes. Thus, we hypothesized that FD impairs maternal endometrial decidualization by altering the methylation profiles of related genes. Reduced representation bisulphite sequencing was carried out to detect the methylation profiles of endometrium on pregnancy day 6-8, which is equivalent to the decidualization period in mice. The results confirmed that FD changes the methylation patterns of genome, and GO analysis of the differentially methylated regions revealed that the associated genes mainly participate in biological adhesion, biological regulation, cell proliferation, development, metabolism and signalling. In addition, we found some candidates for regulators of decidual transformation, such as Nr1h3 and Nr5a1. The data indicate that FD inhibits decidualization, possibly by altering methylation patterns of the genome in mice.
Collapse
Affiliation(s)
- Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xinggui Liao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yanli Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Shangjing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| |
Collapse
|
30
|
Mikelsaar R, Paves H, Org K, Mikelsaar AV. Chromosome variant 1qh- and its influence on the 3D organization of chromosome 1 heterochromatin in interphase nucleus of patients with endometriosis. J Genet 2015; 93:219-23. [PMID: 24840844 DOI: 10.1007/s12041-014-0340-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ruth Mikelsaar
- Department of Human Biology and Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Street 19, Tartu 50411, Estonia.
| | | | | | | |
Collapse
|
31
|
Çelik S. Understanding the complexity of antigen retrieval of DNA methylation for immunofluorescence-based measurement and an approach to challenge. J Immunol Methods 2014; 416:1-16. [PMID: 25435341 DOI: 10.1016/j.jim.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 12/28/2022]
Abstract
Cytosine methylation (5-methylcytosine, 5meC) in the CpG-rich regions of the mammalian genome is an important epigenetic mechanism playing roles in transcription regulation and genomic stability. The abnormalities in DNA methylation can occur in various types of cancer and some genetic diseases. The measurement of DNA methylation is therefore important and there is a range of methodologies used to detect DNA methylation. Many methods based on bisulfite treatment appeared with a lack of specificity after recent discoveries of various modifications of methylated cytosine, however there are new treatments developed to overcome this limitation. Immunofluorescence is currently known to be able to specifically detect DNA methylation as it uses different antibodies against 5meC and its derivatives, but it is a semi-quantitative method. Immunofluorescence protocols commonly include fixation of cells followed by permeabilisation, antigen retrieval, and treatments with antibodies. Establishing the strategy for antigen retrieval of immunofluorescence is important to unmask epitopes (i.e. 5meC) from other proteins, and therefore to access the antigen of interest. There are many approaches used for antigen retrieval induced by acid, enzyme and/or heat. The selection of antigen retrieval method can depend on a variety of such antigen-based or cell-based conditions, since the dynamic structure of DNA and chromatin accounts for the complexity of involved proteins to mask the epitope. This review aims to specifically focus on the complexity of in situ detection of DNA methylation by immunofluorescence-based methods using antigen retrieval with the current understanding of DNA methylation mechanism, and suggests conditions for antigenic retrieval of 5meC epitope.
Collapse
Affiliation(s)
- Selcen Çelik
- Human Reproduction and Development Unit, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney 2065, Australia.
| |
Collapse
|
32
|
Houshdaran S, Zelenko Z, Irwin JC, Giudice LC. Human endometrial DNA methylome is cycle-dependent and is associated with gene expression regulation. Mol Endocrinol 2014; 28:1118-35. [PMID: 24877562 DOI: 10.1210/me.2013-1340] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human endometrium undergoes major gene expression changes, resulting in altered cellular functions in response to cyclic variations in circulating estradiol and progesterone, largely mediated by transcription factors and nuclear receptors. In addition to classic modulators, epigenetic mechanisms regulate gene expression during development in response to environmental factors and in some diseases and have roles in steroid hormone action. Herein, we tested the hypothesis that DNA methylation plays a role in gene expression regulation in human endometrium in different hormonal milieux. High throughput, genome-wide DNA methylation profiling of endometrial samples in proliferative, early secretory, and midsecretory phases revealed dynamic DNA methylation patterns with segregation of proliferative from secretory phase samples by unsupervised cluster analysis of differentially methylated genes. Changes involved different frequencies of gain and loss of methylation within or outside CpG islands. Comparison of changes in transcriptomes and corresponding DNA methylomes from the same samples revealed association of DNA methylation and gene expression in a number of loci, some important in endometrial biology. Human endometrial stromal fibroblasts treated in vitro with estradiol and progesterone exhibited DNA methylation changes in several genes observed in proliferative and secretory phase tissues, respectively. Taken together, the data support the observation that epigenetic mechanisms are involved in gene expression regulation in human endometrium in different hormonal milieux, adding endometrium to a small number of normal adult tissues exhibiting dynamic DNA methylation. The data also raise the possibility that the interplay between steroid hormone and methylome dynamics regulates normal endometrial functions and, if abnormal, may result in endometrial dysfunction and associated disorders.
Collapse
Affiliation(s)
- Sahar Houshdaran
- Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143
| | | | | | | |
Collapse
|
33
|
Han SJ, O'Malley BW. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis. Hum Reprod Update 2014; 20:467-84. [PMID: 24634322 DOI: 10.1093/humupd/dmu002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Endometriosis is defined as the colonization and growth of endometrial tissue at anatomic sites outside the uterine cavity. Up to 15% of reproductive-aged women in the USA suffer from painful symptoms of endometriosis, such as infertility, pelvic pain, menstrual cycle abnormalities and increased risk of certain cancers. However, many of the current clinical treatments for endometriosis are not sufficiently effective and yield unacceptable side effects. There is clearly an urgent need to identify new molecular mechanisms that critically underpin the initiation and progression of endometriosis in order to develop more specific and effective therapeutics which lack the side effects of current therapies. The aim of this review is to discuss how nuclear receptors (NRs) and their coregulators promote the progression of endometriosis. Understanding the pathogenic molecular mechanisms for the genesis and maintenance of endometriosis as modulated by NRs and coregulators can reveal new therapeutic targets for alternative endometriosis treatments. METHODS This review was prepared using published gene expression microarray data sets obtained from patients with endometriosis and published literature on NRs and their coregulators that deal with endometriosis progression. Using the above observations, our current understanding of how NRs and NR coregulators are involved in the progression of endometriosis is summarized. RESULTS Aberrant levels of NRs and NR coregulators in ectopic endometriosis lesions are associated with the progression of endometriosis. As an example, endometriotic cell-specific alterations in gene expression are correlated with a differential methylation status of the genome compared with the normal endometrium. These differential epigenetic regulations can generate favorable cell-specific NR and coregulator milieus for endometriosis progression. Genetic alterations, such as single nucleotide polymorphisms and insertion/deletion polymorphisms of NR and coregulator genes, are frequently detected in ectopic lesions compared with the normal endometrium. These genetic variations impart new molecular properties to NRs and coregulators to increase their capacity to stimulate progression of endometriosis. Finally, post-translational modifications of NR coregulators, such as proteolytic processing, generate endometriosis-specific isoforms. Compared with the unmodified coregulators, these coregulator isoforms have unique functions that enhance the pathogenesis of endometriosis. CONCLUSIONS Epigenetic/genetic variations and posttranslational modifications of NRs and coregulators alter their original function so that they become potent 'drivers' of endometriosis progression.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
34
|
Dyson MT, Roqueiro D, Monsivais D, Ercan CM, Pavone ME, Brooks DC, Kakinuma T, Ono M, Jafari N, Dai Y, Bulun SE. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis. PLoS Genet 2014; 10:e1004158. [PMID: 24603652 PMCID: PMC3945170 DOI: 10.1371/journal.pgen.1004158] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
Endometriosis is a gynecological disease defined by the extrauterine growth of endometrial-like cells that cause chronic pain and infertility. The disease is limited to primates that exhibit spontaneous decidualization, and diseased cells are characterized by significant defects in the steroid-dependent genetic pathways that typify this process. Altered DNA methylation may underlie these defects, but few regions with differential methylation have been implicated in the disease. We mapped genome-wide differences in DNA methylation between healthy human endometrial and endometriotic stromal cells and correlated this with gene expression using an interaction analysis strategy. We identified 42,248 differentially methylated CpGs in endometriosis compared to healthy cells. These extensive differences were not unidirectional, but were focused intragenically and at sites distal to classic CpG islands where methylation status was typically negatively correlated with gene expression. Significant differences in methylation were mapped to 403 genes, which included a disproportionally large number of transcription factors. Furthermore, many of these genes are implicated in the pathology of endometriosis and decidualization. Our results tremendously improve the scope and resolution of differential methylation affecting the HOX gene clusters, nuclear receptor genes, and intriguingly the GATA family of transcription factors. Functional analysis of the GATA family revealed that GATA2 regulates key genes necessary for the hormone-driven differentiation of healthy stromal cells, but is hypermethylated and repressed in endometriotic cells. GATA6, which is hypomethylated and abundant in endometriotic cells, potently blocked hormone sensitivity, repressed GATA2, and induced markers of endometriosis when expressed in healthy endometrial cells. The unique epigenetic fingerprint in endometriosis suggests DNA methylation is an integral component of the disease, and identifies a novel role for the GATA family as key regulators of uterine physiology-aberrant DNA methylation in endometriotic cells correlates with a shift in GATA isoform expression that facilitates progesterone resistance and disease progression.
Collapse
Affiliation(s)
- Matthew T. Dyson
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Damian Roqueiro
- Laboratory of Computational Functional Genomics, Dept. Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Diana Monsivais
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - C. Mutlu Ercan
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Mary Ellen Pavone
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - David C. Brooks
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Toshiyuki Kakinuma
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Masanori Ono
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nadereh Jafari
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yang Dai
- Laboratory of Computational Functional Genomics, Dept. Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Serdar E. Bulun
- Division of Reproductive Biology Research, Dept. Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Li X, Liu X, Guo SW. Histone deacetylase inhibitors as therapeutics for endometriosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.12.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Overexpression of lysine-specific demethylase 1 in ovarian endometriomas and its inhibition reduces cellular proliferation, cell cycle progression, and invasiveness. Fertil Steril 2014; 101:740-9. [PMID: 24388204 DOI: 10.1016/j.fertnstert.2013.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate whether lysine-specific demethylase 1 (LSD1) is aberrantly expressed in endometriomas and whether treatment with tranylcypromine, an LSD1 inhibitor, has any effect on cell viability, cell cycle, and invasiveness. DESIGN Laboratory study using human tissues. SETTING Academic hospital. PATIENT(S) Forty-two ectopic endometrial tissue samples, their homologue eutopic endometrial tissue samples, and 70 control endometrial tissue samples. INTERVENTION(S) Immunohistochemistry analysis of LSD1 of all human tissue samples, and Western blot analysis, quantitative real-time reverse-transcription polymerase chain reaction analysis, cell viability assay, cell cycle analysis, and invasion assay of eutopic and ectopic endometriotic stromal cells and normal endometrial stromal cells. MAIN OUTCOME MEASURE(S) Immunostaining levels of LSD1, gene and protein expression levels, cell viability, cell cycles, and invasiveness. RESULT(S) The expression of the LSD1 gene and protein in endometriosis was elevated. Treatment of endometriotic stromal cells with tranylcypromine statistically significantly reduced the cellular proliferation, cell cycle progression, and invasiveness. CONCLUSION(S) Because DNA and histones are intimately intertwined and work in concert in transcription regulation, conceivably histone demethylation activity of LSD1 could be wide ranging. The inhibition of LSD1 activity by tranylcypromine and the resultant inhibition of proliferation, cell cycle progression, and invasiveness suggest that LSD1 may be a candidate therapeutic target for endometriosis.
Collapse
|
37
|
Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clin Sci (Lond) 2013; 126:123-38. [PMID: 24059589 DOI: 10.1042/cs20130099] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human endometrium is a highly dynamic tissue, undergoing periodic growth and regression at each menstrual cycle. Endometriosis is a frequent chronic pathological status characterized by endometrial tissue with an ectopic localization, causing pelvic pain and infertility and a variable clinical presentation. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation in approximately 1.0% of affected women, with the involvement of multiple pathways of development. Increasing evidence supports a key contribution of different stem/progenitor cell populations not only in the cyclic regeneration of eutopic endometrium, but also in the pathogenesis of at least some types of endometriosis. Evidence has arisen from experiments in animal models of disease through different kinds of assays (including clonogenicity, the label-retaining cell approach, the analysis of undifferentiation markers), as well as from descriptive studies on ectopic and eutopic tissue samples harvested from affected women. Changes in stem cell populations in endometriotic lesions are associated with genetic and epigenetic alterations, including imbalance of miRNA expression, histone and DNA modifications and chromosomal aberrations. The present short review mainly summarizes the latest observations contributing to the current knowledge regarding the presence and the potential contribution of stem/progenitor cells in eutopic endometrium and the aetiology of endometriosis, together with a report of the most recently identified genetic and epigenetic alterations in endometriosis. We also describe the potential advantages of single cell molecular profiling in endometrium and in endometriotic lesions. All these data can have clinical implications and provide a basis for new potential therapeutic applications.
Collapse
|
38
|
Keil KP, Altmann HM, Mehta V, Abler LL, Elton EA, Vezina CM. Catalog of mRNA expression patterns for DNA methylating and demethylating genes in developing mouse lower urinary tract. Gene Expr Patterns 2013; 13:413-24. [PMID: 23920106 DOI: 10.1016/j.gep.2013.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/07/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltransferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
39
|
Logan PC, Ponnampalam AP, Steiner M, Mitchell MD. Effect of cyclic AMP and estrogen/progesterone on the transcription of DNA methyltransferases during the decidualization of human endometrial stromal cells. Mol Hum Reprod 2013; 19:302-12. [PMID: 23233487 DOI: 10.1093/molehr/gas062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Progesterone, estrogen and cyclic adenosine monophosphate (cAMP) together regulate the decidualization of human endometrial stromal cells in a time-dependent manner. The role of DNA methylation and the three active DNA methyltransferases (DNMTs) in the regulation of decidualization is gaining interest but the exact role of this epigenetic mechanism during decidualization is largely unknown. We aimed to understand the effect of the main regulators of decidualization on the expression of the DNMTs and in turn on the expression of steroid hormone receptors during the decidualization. We conducted a time-course analysis from 6 h to 10 days to examine the change in gene expression of the DNMTs and the steroid hormone receptors over time in response to estradiol, medroxy-progesterone acetate (MPA) and dibutyryl-cAMP (db-cAMP) in a human endometrial stromal cells (HESC) cell line. Only the combination treatment with MPA-mix (estradiol + MPA + db-cAMP) up-regulated ERα, PGR, progesterone receptor B (PRB) and androgen receptor at 24 h. Both decidualization pathways of db-cAMP and estradiol/MPA, independently and combined, consistently down-regulated DNMT3B mRNA expression from 6 h till 10 days, whereas DNMT1 and DNMT3A mRNA expression were down-regulated transiently. Forced expression of DNMT3B in HESC for 10 days attenuated IGFBP1 mRNA and protein expression; and forced expression of DNMT3B combined with MPA-mix treatment synergistically increased the expression of PRB at 24 h. The HESC morphology and proliferation remained unchanged in response to forced expression of DNMT3B. In conclusion, mRNA expression of the DNMTs during decidualization is dynamic, so that expression varies according to the cAMP or estradiol/MPA pathway treatments that regulate them in a time-dependent manner. Although forced expression of DNMT3B by itself is insufficient to inhibit decidualization, forced expression of DNMT3B in combination with MPA-mix synergistically up-regulated PRB, as well as attenuated the expression of IGFBP1, the decidualization marker.
Collapse
Affiliation(s)
- Philip C Logan
- The Liggins Institute, University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1023, New Zealand.
| | | | | | | |
Collapse
|
40
|
Abstract
Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.
Collapse
Affiliation(s)
- Abby F Fleisch
- Department of Endocrinology, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
41
|
Polymorphic variants of DNMT3A and the risk of endometriosis. Eur J Obstet Gynecol Reprod Biol 2012; 166:81-5. [PMID: 23018098 DOI: 10.1016/j.ejogrb.2012.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 09/02/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Overexpression of DNA methyltransferase 3A (DNMT3A) and aberrant methylation of various genes in eutopic endometrium have been demonstrated in women with endometriosis. We aimed to study whether DNMT3A polymorphisms could be a genetic risk factor for endometriosis and endometriosis-related infertility. STUDY DESIGN We studied 5 SNPs (rs2289195, rs7590760, rs13401241, rs749131 and rs1550117) located in the DNMT3A gene in 357 women with endometriosis and 640 controls. RESULTS We did not observe significant differences between genotype and allele frequencies of rs2289195, rs7590760, rs13401241, rs749131 and rs1550117 SNPs in women with endometriosis, endometriosis-related infertility, and controls. The lowest p values of the trend test were observed for DNMT3A rs1550117 in endometriosis and endometriosis-related infertility (p(trend)=0.049 and p(trend)=0.055, respectively). CONCLUSIONS Our results did not supply evidence for the contribution of SNPs located in DNMT3A to either endometriosis or endometriosis-related infertility.
Collapse
|
42
|
Ponsuksili S, Murani E, Schwerin M, Schellander K, Tesfaye D, Wimmers K. Gene expression and DNA-methylation of bovine pretransfer endometrium depending on its receptivity after in vitro-produced embryo transfer. PLoS One 2012; 7:e42402. [PMID: 22952593 PMCID: PMC3428322 DOI: 10.1371/journal.pone.0042402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/05/2012] [Indexed: 11/20/2022] Open
Abstract
Embryonic implantation to establish a pregnancy is a complex process that requires appropriate communication between the embryo and the maternal endometrium. Inadequate uterine receptivity may contribute to the majority of implantation failures. To provide a comprehensive inventory of genes and functional networks that represent the maternal input of the embryo-maternal cross-talk, a longitudinal, holistic study of the endometrial transcriptome in relation to the days of estrous and to the receptivity of the endometrium was performed in bovine. At day 3 of estrous, genes related to cell communication and mitochondrial energy metabolism were differentially expressed among high- and low-receptive endometria (HR, LR); at day 7, transcripts functioning in immune and inflammatory pathways, oxidative stress, and angiogenesis had different abundances. Additionally, temporal transcriptional changes between days 3 and 7 differed considerably among HR and LR. Further, several transcription factors were predicted as relevant for receptivity because they were either differentially expressed among HR and LR animals or are known to be associated with genes we detected to have differential expression. Finally, global DNA methylation varied according to the interaction of receptivity group and day of estrous, and a divergent trend, which correlated with abundance of DNMT1 transcript, was observed in LR and HR along the estrous cycle days. The study revealed that, even in early estrous, transcripts related to cell communication and response to exogenous stimuli, vascularization, and energy supply show divergent expression and longitudinal temporal regulation in HR and LR. Key components of these molecular pathways are known to be dependent on ovarian hormones that promote uterine receptivity.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Group ‘Functional Genome Analysis’, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Eduard Murani
- Research Unit ‘Molecular Biology’, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Manfred Schwerin
- Research Group ‘Functional Genome Analysis’, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Klaus Wimmers
- Research Unit ‘Molecular Biology’, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
- * E-mail:
| |
Collapse
|
43
|
Guo SW. The endometrial epigenome and its response to steroid hormones. Mol Cell Endocrinol 2012; 358:185-96. [PMID: 22067514 DOI: 10.1016/j.mce.2011.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 01/21/2023]
Abstract
The human endometrium undergoes cyclic morphological and functional changes during the menstrual cycle. These changes are driven mainly by steroid hormones and orchestrated by a myriad of genes - many of which have been identified recently as being epigenetically regulated. Epigenetic modifications, including DNA methylation and histone acetylations, are shown recently to be involved in functional changes in endometrium and endometrial diseases. Since epigenetics itself is a rapidly evolving field, this review starts with an overview of epigenetics and its intrinsic connections with endometrial response to steroid hormones, highlighting its various levels of complexities. This is followed by a review of published and unpublished work on "writers", "erasers", and other players of endometrial epigenome. In the end, areas in need for future research in this area will be exposed.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetric and Gynecologic Hospital, and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University Shanghai College of Medicine, 419 Fangxie Road, Shanghai 200011, China.
| |
Collapse
|
44
|
de Graaff AA, Delvoux B, Van de Vijver KK, Kyama CM, D'Hooghe TM, Dunselman GAJ, Romano A. Paired-box gene 2 is down-regulated in endometriosis and correlates with low epidermal growth factor receptor expression. Hum Reprod 2012; 27:1676-84. [PMID: 22473392 DOI: 10.1093/humrep/des124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Paired-box 2 (Pax2) is involved in the development of the female genital tract and has been associated with endometrial pathologies. The expression of Pax2 is induced by epidermal growth factor (EGF) and estrogens. In the present study, Pax2 expression and regulation were investigated in endometriosis. METHODS AND RESULTS Pax2 protein expression was assessed by immunohistochemistry in the eutopic (i.e. inside the uterus) and ectopic tissue (endometriosis) from 11 patients. Immunoreactivity was high in the endometrium, with strong epithelial and weaker stromal staining. Similar expression patterns of Pax2 were observed in the endometrium of women without endometriosis (n = 12). The mRNA level of Pax2 was assessed by real-time PCR in the eutopic and ectopic endometria of 14 patients and in the endometrium from women without endometriosis (n = 20). Pax2 expression was lower in endometriotic lesions than that in the eutopic endometrium of patients (P< 0.001) and controls (P= 0.007). Three possible mechanisms determining low Pax2 expression were investigated: EGF signalling, CpG DNA methylation of the Pax2 promoter and steroid response. The mRNA level of the EGF receptor (EGFR1) was assessed in the samples used for Pax2 mRNA assessment. A significant correlation between EGFR1 and Pax2 in both eutopic and ectopic tissues was observed (R = 0.58; slope regression line, 0.81; 95% CI: 0.09-1.52 and R = 0.54; slope regression line, 2.51; 95% CI: 0.02-4.99, respectively). CpG DNA methylation was analyzed by methyl-specific PCR in two regions of the Pax2 promoter but they were unmethylated in all samples. Steroid responsiveness was assessed using endometrial explant cultures and Pax2 was not regulated by either 17β-estradiol or progesterone. CONCLUSIONS In endometriosis patients, Pax2 is down-regulated in the lesions compared with the eutopic tissue, possibly due to low EGF signalling.
Collapse
Affiliation(s)
- A A de Graaff
- School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
García-Carpizo V, Ruiz-Llorente L, Fraga M, Aranda A. The growing role of gene methylation on endocrine function. J Mol Endocrinol 2011; 47:R75-89. [PMID: 21803863 DOI: 10.1530/jme-11-0059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA methylation is the best studied epigenetic factor, playing a key role in producing stable changes in gene expression, thus defining cell identity and function and adapting cells to environmental changes. DNA methylation has also been recently shown to mediate cell responses to physiological endocrine signals. Moreover, alterations of the normal DNA methylation pattern can also contribute to the development of endocrine and metabolic diseases and can explain the relationship between an individual's genetic background, the environment, and disease. It should be remarked that although DNA methylation and demethylation are active processes, epigenetic changes produced during development can impact adult processes, establishing the idea that endocrine function can be persistently affected by events occurring in early life. Given the complexity of the endocrine system, both genetic and epigenetic processes, including DNA methylation, must be involved in its proper development and functioning. In this study, we summarize the recent knowledge in the field of DNA methylation and endocrinology. Given that DNA methylation can be involved in a number of endocrine and metabolic disorders, understanding and manipulating this modification opens a new door for preventing and treating endocrine diseases.
Collapse
Affiliation(s)
- Verónica García-Carpizo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Grimaldi G, Christian M, Steel JH, Henriet P, Poutanen M, Brosens JJ. Down-regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells. Mol Endocrinol 2011; 25:1892-903. [PMID: 21903722 DOI: 10.1210/me.2011-1139] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Differentiation of human endometrial stromal cells (HESC) into decidual cells represents a highly coordinated process essential for embryo implantation. We show that decidualizing HESC down-regulate the histone methyltransferase enhancer of Zeste homolog 2 (EZH2), resulting in declining levels of trimethylation of histone 3 on lysine 27 (H3K27me3) at the proximal promoters of key decidual marker genes PRL and IGFBP1. Loss of H3K27me3 was associated with a reciprocal enrichment in acetylation of the same lysine residue, indicating active remodeling from repressive to transcriptionally permissive chromatin. Chromatin immunoprecipitation coupled with DNA microarray analysis demonstrated that decidualization triggers genome-wide changes in H3K27me3 distribution that only partly overlap those observed upon EZH2 knockdown in undifferentiated HESC. Gene ontology revealed that gain of the repressive H3K27me3 mark in response to decidualization and upon EZH2 knockdown in undifferentiated cells was enriched at the promoter regions of genes involved in transcriptional regulation and growth/cell proliferation, respectively. However, loss of the H3K27me3 mark (indicating increased chromatin accessibility) in decidualizing cells and upon EZH2 knockdown occurred at selective loci enriched for genes functionally implicated in responses to stimulus. In agreement, EZH2 knockdown in undifferentiated HESC was sufficient to augment the induction of decidual marker genes in response to cyclic AMP and progesterone signaling. Thus, loss of EZH2-dependent methyltransferase activity in the endometrium is integral to the process of chromatin remodeling that enables the transition from a proliferative to a decidual phenotype in response to differentiation cues.
Collapse
Affiliation(s)
- Giulia Grimaldi
- Institute of Reproductive and Developmental Biology, Hammersmith Campus, London, United Kingdom
| | | | | | | | | | | |
Collapse
|