1
|
Steyn Y, Lawlor T, Masuda Y, Tsuruta S, Legarra A, Lourenco D, Misztal I. Nonparallel genome changes within subpopulations over time contributed to genetic diversity within the US Holstein population. J Dairy Sci 2023; 106:2551-2572. [PMID: 36797192 DOI: 10.3168/jds.2022-21914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/03/2022] [Indexed: 02/16/2023]
Abstract
Maintaining genetic variation in a population is important for long-term genetic gain. The existence of subpopulations within a breed helps maintain genetic variation and diversity. The 20,990 genotyped animals, representing the breeding animals in the year 2014, were identified as the sires of animals born after 2010 with at least 25 progenies, and females measured for type traits within the last 2 yr of data. K-means clustering with 5 clusters (C1, C2, C3, C4, and C5) was applied to the genomic relationship matrix based on 58,990 SNP markers to stratify the selected candidates into subpopulations. The general higher inbreeding resulting from within-cluster mating than across-cluster mating suggests the successful stratification into genetically different groups. The largest cluster (C4) contained animals that were less related to each animal within and across clusters. The average fixation index was 0.03, indicating that the populations were differentiated, and allele differences across the subpopulations were not due to drift alone. Starting with the selected candidates within each cluster, a family unit was identified by tracing back through the pedigree, identifying the genotyped ancestors, and assigning them to a pseudogeneration. Each of the 5 families (F1, F2, F3, F4, and F5) was traced back for 10 generations, allowing for changes in frequency of individual SNPs over time to be observed, which we call allele frequencies change. Alternative procedures were used to identify SNPs changing in a parallel or nonparallel way across families. For example, markers that have changed the most in the whole population, markers that have changed differently across families, and genes previously identified as those that have changed in allele frequency. The genomic trajectory taken by each family involves selective sweeps, polygenic changes, hitchhiking, and epistasis. The replicate frequency spectrum was used to measure the similarity of change across families and showed that populations have changed differently. The proportion of markers that reversed direction in allele frequency change varied from 0.00 to 0.02 if the rate of change was greater than 0.02 per generation, or from 0.14 to 0.24 if the rate of change was greater than 0.005 per generation within each family. Cluster-specific SNP effects for stature were estimated using only females and applied to obtain indirect genomic predictions for males. Reranking occurs depending on SNP effects used. Additive genetic correlations between clusters show possible differences in populations. Further research is required to determine how this knowledge can be applied to maintain diversity and optimize selection decisions in the future.
Collapse
Affiliation(s)
- Y Steyn
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens 30602.
| | - T Lawlor
- Holstein Association USA Inc., Brattleboro, VT 05302
| | - Y Masuda
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens 30602
| | - S Tsuruta
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens 30602
| | - A Legarra
- GenPhySE, INRA, INPT, ENVT, Université de Toulouse, Castanet-Tolosan 31520, France
| | - D Lourenco
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens 30602
| | - I Misztal
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens 30602
| |
Collapse
|
2
|
Mohammadi A, Alijani S, Rafat S, Abdollahi-Arpanahi R. Single-step genome-wide association study and candidate genes networks affecting reproductive traits in Iranian Holstein cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Ma L, Sonstegard TS, Cole JB, VanTassell CP, Wiggans GR, Crooker BA, Tan C, Prakapenka D, Liu GE, Da Y. Genome changes due to artificial selection in U.S. Holstein cattle. BMC Genomics 2019; 20:128. [PMID: 30744549 PMCID: PMC6371544 DOI: 10.1186/s12864-019-5459-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/17/2019] [Indexed: 01/13/2023] Open
Abstract
Background The availability of a unique unselected Holstein line since 1964 provided a direct comparison between selected and unselected Holstein genomes whereas large Holstein samples provided unprecedented statistical power for identifying high-confidence SNP effects. Utilizing these unique resources, we aimed to identify genome changes affected by selection since 1964. Results Direct comparison of genome-wide SNP markers between a Holstein line unselected since 1964 and contemporary Holsteins showed that the 40 years of artificial selection since 1964 resulted in genome landscape changes. Among the regions affected by selection, the regions containing 198 genes with fertility functions had a larger negative correlation than that of all SNPs between the SNP effects on milk yield and daughter pregnancy rate. These results supported the hypothesis that hitchhiking of genetic selection for milk production by negative effects of fertility genes contributed to the unintended declines in fertility since 1964. The genome regions subjected to selection also contained 67 immunity genes, the bovine MHC region of Chr23 with significantly decreased heterozygosity in contemporary Holsteins, and large gene clusters including T-cell receptor and immunoglobulin genes. Conclusions This study for the first time provided direct evidence that genetic selection for milk production affected fertility and immunity genes and that the hitchhiking of genetic selection for milk production by negative fertility effects contributed to the fertility declines since 1964, and identified a large number of candidate fertility and immunity genes affected by selection. The results provided novel understanding about genome changes due to artificial selection and their impact on fertility and immunity genes and could facilitate developing genetic methods to reverse the declines in fertility and immunity in Holstein cattle. Electronic supplementary material The online version of this article (10.1186/s12864-019-5459-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - John B Cole
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | | | - George R Wiggans
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Brian A Crooker
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - Cheng Tan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People's Republic of China
| | - Dzianis Prakapenka
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Yang Da
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
4
|
Silva AF, Escada-Rebelo S, Amaral S, Tavares RS, Schlatt S, Ramalho-Santos J, Mota PC. Can we induce spermatogenesis in the domestic cat using an in vitro tissue culture approach? PLoS One 2018; 13:e0191912. [PMID: 29414992 PMCID: PMC5802888 DOI: 10.1371/journal.pone.0191912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/12/2018] [Indexed: 11/18/2022] Open
Abstract
The reduced number of animals in most wild felid populations implies a loss of genetic diversity. The death of juveniles, prior to the production of mature sperm, represents a loss of potential genetic contribution to future populations. Since 2011 mouse testicular organ culture has introduced an alternative mechanism to produce sperm in vitro from immature tissue. However, extension of this technology to other species has remained limited. We have used the domestic cat (Felis catus) as a model for wild felids to investigate spermatogenesis initiation and regulation, with the mouse serving as a control species. Testicular tissue fragments were cultured in control medium or medium supplemented with knockout serum replacement (KSR), AlbuMax, beta-estradiol or AlbuMax plus beta-estradiol. Contrary to expectations, and unlike results obtained in mouse controls, no germ cell differentiation could be detected. The only germ cells observed after six weeks of culture were spermatogonia regardless of the initial stage of tubule development in the donor tissue. Moreover, the number of spermatogonia decreased with time in culture in all media tested, especially in the medium supplemented with KSR, while AlbuMax had a slight protective effect. The combination of AlbuMax and beta-estradiol led to an increase in the area occupied by seminiferous tubules, and thus to an increase in total number of spermatogonial cells. Considering all the media combinations tested the stimulus for felid germ cell differentiation in this type of system seems to be different from the mouse. Studies using other triggers of differentiation and tissue survival factors should be performed to pursue this technology for the genetic diversity preservation in wild felids.
Collapse
Affiliation(s)
- Andreia F. Silva
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sara Escada-Rebelo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Renata S. Tavares
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula C. Mota
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
5
|
Mahran AM, Elgamal DA, Ghafeer HH, Abdel-Maksoud SA, Farrag AA. Histological alterations in Leydig cells and macrophages in azoospermic men. Andrologia 2016; 49. [DOI: 10.1111/and.12714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- A. M. Mahran
- Dermatology and Andrology Department; Faculty of Medicine; Assiut University; Assiut Egypt
| | - D. A. Elgamal
- Histology Department; Faculty of Medicine; Assiut University; Assiut Egypt
| | - H. H. Ghafeer
- Histology Department; Faculty of Medicine; Assiut University; Assiut Egypt
| | | | - A. A. Farrag
- Histology Department; Faculty of Medicine; Assiut University; Assiut Egypt
| |
Collapse
|
6
|
Harikrishna P, Shende AM, Reena KK, Thomas J, Bhure SK. Purification of Regucalcin from the Seminal Vesicular Fluid: A Calcium Binding Multi-Functional Protein. Protein J 2016; 35:310-7. [DOI: 10.1007/s10930-016-9674-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Dumasia K, Kumar A, Deshpande S, Sonawane S, Balasinor NH. Differential roles of estrogen receptors, ESR1 and ESR2, in adult rat spermatogenesis. Mol Cell Endocrinol 2016; 428:89-100. [PMID: 27004961 DOI: 10.1016/j.mce.2016.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 02/01/2023]
Abstract
Estrogens, through their receptors, play an important role in regulation of spermatogenesis. However, the precise role of the estrogen receptors (ESR1 and ESR2) has been difficult to determine as in vivo estradiol treatment would signal through both the ESRs. Hence we had developed in vivo selective ESR agonist administration models in adult male rats to decipher the individual roles of the ESRs. Treatment with both ESR1 and ESR2 agonists decreased sperm counts after 60 days of treatment. The present study aimed to delineate the precise causes of decreased sperm counts following treatment with the two ESR agonists. Treatment with ESR1 agonist causes an arrest in differentiation of round spermatids into elongated spermatids, mainly due to down-regulation of genes involved in spermiogenesis. ESR2 agonist administration reduces sperm counts due to spermiation failure and spermatocyte apoptosis. Spermiation failure observed is due to defects in tubulobulbar complex formation because of decrease in expression of genes involved in actin remodelling. The increase in spermatocyte apoptosis could be due to increase in oxidative stress and decrease in transcripts of anti-apoptotic genes. Our results suggest that the two ESRs regulate distinct aspects of spermatogenesis. ESR1 is mainly involved with regulation of spermiogenesis, while ESR2 regulates spermatocyte apoptosis and spermiation. Activation of estrogen signaling through either of the receptors can affect their respective processes during spermatogenesis and lead to low sperm output. Since many environmental estrogens can bind to the two ESRs with different affinities, these observations can be useful in understanding their potential effects on spermatogenesis.
Collapse
Affiliation(s)
- Kushaan Dumasia
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Anita Kumar
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Sharvari Deshpande
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Shobha Sonawane
- Confocal Facility, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - N H Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India.
| |
Collapse
|
8
|
Regulators in the apoptotic pathway during spermatogenesis: Killers or guards? Gene 2016; 582:97-111. [DOI: 10.1016/j.gene.2016.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 01/24/2023]
|
9
|
Abstract
In the mammalian testis, spermatogenesis is a highly coordinated process of germ cell development, which ends with the release of ‘mature’ spermatozoa. The fine regulation of spermatogenesis is strictly dependent on sex steroid hormones, which orchestrate the cellular and molecular events underlying normal development of germ cells. Sex steroids actions also rely on the control of germ cell survival, and the programmed cell death by apoptosis has been indicated as a critical process in regulating the size and quality of the germ line. Recently, oestrogens have emerged as important regulators of germ cell fate. However, the beneficial or detrimental effects of oestrogens in spermatogenesis are controversial, with independent reports arguing for their role as cell survival factors or as apoptosis-inducers. The dual behaviour of oestrogens, shifting from ‘angels to devils’ is supported by the clinical findings of increased oestrogens levels in serum and intratesticular milieu of idiopathic infertile men. This review aims to discuss the available information concerning the role of oestrogens in the control of germ cell death and summarises the signalling mechanisms driven oestrogen-induced apoptosis. The present data represent a valuable basis for the clinical management of hyperoestrogenism-related infertility and provide a rationale for the use of oestrogen-target therapies in male infertility.
Collapse
|
10
|
Correia S, Alves MR, Cavaco JE, Oliveira PF, Socorro S. Estrogenic regulation of testicular expression of stem cell factor and c-kit: implications in germ cell survival and male fertility. Fertil Steril 2014; 102:299-306. [DOI: 10.1016/j.fertnstert.2014.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/29/2014] [Accepted: 04/06/2014] [Indexed: 01/22/2023]
|
11
|
Oliveira PF, Alves MG, Martins AD, Correia S, Bernardino RL, Silva J, Barros A, Sousa M, Cavaco JE, Socorro S. Expression pattern of G protein-coupled receptor 30 in human seminiferous tubular cells. Gen Comp Endocrinol 2014; 201:16-20. [PMID: 24681226 DOI: 10.1016/j.ygcen.2014.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 12/30/2022]
Abstract
The role of estrogens in male reproductive physiology has been intensively studied over the last few years. Yet, the involvement of their specific receptors has long been a matter of debate. The selective testicular expression of the classic nuclear estrogen receptors (ERα and ERβ) argues in favor of ER-specific functions in the spermatogenic event. Recently, the existence of a G protein-coupled estrogen receptor (GPR30) mediating non-genomic effects of estrogens has also been described. However, little is known about the specific testicular expression pattern of GPR30, as well as on its participation in the control of male reproductive function. Herein, by means of immunohistochemical and molecular biology techniques (RT-PCR and Western blot), we aimed to present the first exhaustive evaluation of GPR30 expression in non-neoplastic human testicular cells. Indeed, we were able to demonstrate that GPR30 was expressed in human testicular tissue and that the staining pattern was consistent with its cytoplasmic localization. Additionally, by using cultured human Sertoli cells (SCs) and isolated haploid and diploid germ cells fractions, we confirmed that GPR30 is expressed in SCs and diploid germ cells but not in haploid germ cells. This specific expression pattern suggests a role for GPR30 in spermatogenesis.
Collapse
Affiliation(s)
- Pedro F Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Marco G Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana D Martins
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sara Correia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Raquel L Bernardino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Mário Sousa
- Centre for Reproductive Genetics Alberto Barros, 4100-009 Porto, Portugal; Department of Microscopy, Laboratory of Cell Biology and Biomedical Research Multidisciplinary Unit (UMIB-FCT), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4099-003 Porto, Portugal
| | - José E Cavaco
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
12
|
Correia S, Alves MG, Oliveira PF, Alves MR, van Pelt AMM, Cavaco JE, Socorro S. Transgenic overexpression of regucalcin leads to suppression of thapsigargin- and actinomycin D-induced apoptosis in the testis by modulation of apoptotic pathways. Andrology 2014; 2:290-8. [DOI: 10.1111/j.2047-2927.2014.00186.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/06/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Affiliation(s)
- S. Correia
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - M. G. Alves
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - P. F. Oliveira
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - M. R. Alves
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - A. M. M. van Pelt
- Center for Reproductive Medicine; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - J. E. Cavaco
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - S. Socorro
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
13
|
O'Shea LC, Hensey C, Fair T. Progesterone Regulation of AVEN Protects Bovine Oocytes from Apoptosis During Meiotic Maturation1. Biol Reprod 2013; 89:146. [DOI: 10.1095/biolreprod.113.111880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
14
|
O'Shea L, Fair T, Hensey C. Aven is dynamically regulated during Xenopus oocyte maturation and is required for oocyte survival. Cell Death Dis 2013; 4:e908. [PMID: 24201807 PMCID: PMC3847313 DOI: 10.1038/cddis.2013.435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 09/11/2013] [Indexed: 11/09/2022]
Abstract
We have analyzed the expression and function of the cell death and cell cycle regulator Aven in Xenopus. Analysis of Xenopus Aven expression in oocytes and embryos revealed a band close to the predicted molecular weight of the protein (36 kDa) in addition to two bands of higher molecular weight (46 and 49 kDa), one of which was determined to be due to phosphorylation of the protein. The protein is primarily detected in the cytoplasm of oocytes and is tightly regulated during meiotic and mitotic cell cycles. Progesterone stimulation of oocytes resulted in a rapid loss of Aven expression with the protein levels recovering before germinal vesicle breakdown (GVBD). This loss of Aven is required for the G2–M1 cell cycle transition. Aven morpholino knockdown experiments revealed that early depletion of the protein increases progesterone sensitivity and facilitates GVBD, but prolonged depletion of Aven results in caspase-3 activation and oocyte death by apoptosis. Phosphorylated Aven (46 kDa) was found to bind Bcl-xL in oocytes, but this interaction was lost in apoptotic oocytes. Thus, Aven alters progesterone sensitivity in oocytes and is critical for oocyte survival.
Collapse
Affiliation(s)
- L O'Shea
- UCD School of Bimolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
15
|
Simões VL, Alves MG, Martins AD, Dias TR, Rato L, Socorro S, Oliveira PF. Regulation of apoptotic signaling pathways by 5α-dihydrotestosterone and 17β-estradiol in immature rat Sertoli cells. J Steroid Biochem Mol Biol 2013; 135:15-23. [PMID: 23220551 DOI: 10.1016/j.jsbmb.2012.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/14/2012] [Accepted: 11/28/2012] [Indexed: 01/27/2023]
Abstract
Apoptosis is an important regulatory event in testicular homeostasis and optimization of sperm production. Sertoli cells (SCs) form the blood-testis barrier creating a special microenvironment where germ cells develop and are under strict hormonal control. Estrogens and androgens are known to play critical roles in SCs functioning, improving their in vitro survival by preventing apoptotic progression. Herein, we studied the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the apoptotic signaling pathways of immature rat cultured SCs. For that we chose key points of the apoptotic pathway that interact with the mitochondria and evaluated the mRNA expression and/or protein levels of several apoptotic markers such as p53, the anti-apoptotic protein Bcl2, the pro-apoptotic Bcl2 family member Bax, the apoptosis-inducing factor (AIF) and caspase-3 and 9. Caspase-3 activity and DNA fragmentation were also evaluated as endpoint markers of apoptosis. E2 and DHT down-regulated the mRNA transcript levels of p53, Bax, caspase-9 and caspase-3. The protein levels of AIF were reduced after DHT treatment while E2-treated cells presented decreased levels of cleaved caspase-9 protein. Moreover, Bax/Bcl2 ratio was significantly decreased in E2-treated cells. The apoptotic endpoints caspase-3 activity and DNA fragmentation presented significant decreased levels after hormonal treatment. Taken together, these results show that E2 and DHT act as apoptotic signaling modulators in in vitro immature rat SCs suggesting that androgens and estrogens may be capable of modulating independent pathways of the apoptotic event by regulating different pro-apoptotic factors.
Collapse
Affiliation(s)
- V L Simões
- CICS - UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|
16
|
Yang B, Sun H, Li W, Zhu C, Jian B, Hou W, Wang H, Yuan J, Yao B. Expression of Rap1 During Germ Cell Development in the Rat and Its Functional Implications in 2-Methoxyacetic Acid-induced Spermatocyte Apoptosis. Urology 2013; 81:696.e1-8. [DOI: 10.1016/j.urology.2012.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/09/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
|
17
|
Expression of estrogen receptors-α in testicular biopsies from nonobstructive azoospermic patients. ACTA ACUST UNITED AC 2012. [DOI: 10.1097/01.ehx.0000418063.67260.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Alves MG, Socorro S, Silva J, Barros A, Sousa M, Cavaco JE, Oliveira PF. In vitro cultured human Sertoli cells secrete high amounts of acetate that is stimulated by 17β-estradiol and suppressed by insulin deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1389-94. [DOI: 10.1016/j.bbamcr.2012.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/22/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
19
|
Laurentino SS, Correia S, Cavaco JE, Oliveira PF, Sousa MD, Barros A, Socorro S. Regucalcin, a calcium-binding protein with a role in male reproduction? Mol Hum Reprod 2011; 18:161-70. [DOI: 10.1093/molehr/gar075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|