1
|
Liang Y, Xie Y, Kong S, Pan Q, Qiu W, Wang D, Li M, Lin S, Liu Z, Sun X. Complex Chromosomal Rearrangement Causes Male Azoospermia: A Case Report and Literature Review. Front Genet 2022; 13:792539. [PMID: 35281846 PMCID: PMC8907855 DOI: 10.3389/fgene.2022.792539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Male carriers of complex chromosomal rearrangements (CCRs) may have decreased fertility and usually present with azoospermia, oligospermia or teratospermia.Methods: High-resolution karyotype analysis using G-banding on peripheral blood lymphocytes was performed in an azoospermic male. Copy number variations (CNVs) were detected by chromosomal microarray analysis, and genetic variations were determined by long-read nanopore sequencing with Sanger sequencing for breakpoint confirmation.Results: The karyotype of the patient was 46,XY,t(4;21)(p11;p11),t(5;6;14)(p13q22;p22q22;q22), which did not involve CNVs with clinical significance. Twelve breakpoints in chromosomes 5, 6, and 14 were found by long-read nanopore sequencing. Reports on 17 males carrying CCRs with azoospermia were also reviewed.Conclusion: The extent of asynaptic regions in synaptonemal complexes during pachytene and the disruption of genes involved in male gametogenesis may cause azoospermia in CCR carriers.
Collapse
Affiliation(s)
- Yi Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shu Kong
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianying Pan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Qiu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengting Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sisi Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Zihang Liu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xiaofang Sun,
| |
Collapse
|
2
|
The influence of balanced complex chromosomal rearrangements on preimplantation embryonic development potential and molecular karyotype. BMC Genomics 2020; 21:326. [PMID: 32349655 PMCID: PMC7191696 DOI: 10.1186/s12864-020-6731-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Balanced complex chromosome rearrangements (BCCR) are balanced chromosomal structural aberrations that involve two or more chromosomes and at least three breakpoints. It is very rare in the population. The objective is to explore the difference of influence of three types of BCCR on early embryonic development and molecular karyotype. RESULTS Twelve couples were recruited including four couples of three-way rearrangements carriers (group A), three couples of double two-way translocations carriers (group B) and five couples of exceptional CCR carriers (group C). A total of 243 oocytes were retrievedin the seventeen preimplantation genetic testing (PGT) cycles, and 207 of these were available for fertilization. After intracytoplasmic sperm injection, 181oocytes normally fertilized. The rates of embryos forming on day3 in three groups were 87.88, 97.78 and77.14%, which was significantly different (P = 0.01). Compared with group B, the rate of embryo formation was statistically significantly lower in group C (P = 0.01). Furthermore, the rates of high-quality blastocysts in three group were 14.71, 48.15 and 62.96%, respectively, which was significantly different (P = 0.00). Compared with group B andC, the rate of high-quality blastocysts in group A was statistically significantly lower (P = 0.00;P = 0.00). Comprehensive chromosome analysis was performed on 83 embryos, including 75 trophectodermcellsand 8 blastomeres. Except 7 embryos failed to amplify, 9.01%embryos were diagnosed as euploidy, and 90.91% were diagnosed as abnormal. As for group A, the euploid embryo rate was 10.71%and the abnormal embryo rate was 89.29%. In group B,the euploid embryo rate was 3.85%, the abnormal embryo rate was 96.15%. The euploid embryo rate was 13.04%, the abnormal embryo rate was 86.96% in group C. There were no significant differences among the three groups (P = 0.55). CONCLUSIONS The lowest rate of high quality blastocysts has been for three-way rearrangements and the lowest rate of euploidy has been for double two-way translocations, although no significant difference. Different types of BCCR maybe have little effect on the embryonic molecular karyotype. The difference of influence of BCCR on early embryonic developmentandmolecular karyotypeshould be further studied.
Collapse
|
3
|
Hu L, Wei Y, Luo K, Xie P, Gong F, Xiong B, Tan Y, Lu G, Lin G. Clinical outcomes in carriers of complex chromosomal rearrangements: a retrospective analysis of comprehensive chromosome screening results in seven cases. Fertil Steril 2018; 109:486-492. [DOI: 10.1016/j.fertnstert.2017.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/05/2017] [Accepted: 11/16/2017] [Indexed: 11/26/2022]
|
5
|
Nguyen MH, Morel F, Pennamen P, Parent P, Douet-Guilbert N, Le Bris MJ, Basinko A, Roche S, De Braekeleer M, Perrin A. Balanced complex chromosome rearrangement in male infertility: case report and literature review. Andrologia 2014; 47:178-85. [DOI: 10.1111/and.12245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2013] [Indexed: 01/18/2023] Open
Affiliation(s)
- M. H. Nguyen
- Laboratoire d'Histologie, Embryologie et Cytogénétique; Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Brest France
| | - F. Morel
- Laboratoire d'Histologie, Embryologie et Cytogénétique; Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Brest France
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - P. Pennamen
- Laboratoire d'Histologie, Embryologie et Cytogénétique; Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale; Brest France
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - P. Parent
- Département de Pédiatrie et de Génétique Médicale; Hôpital Morvan; CHRU Brest; Brest France
| | - N. Douet-Guilbert
- Laboratoire d'Histologie, Embryologie et Cytogénétique; Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Brest France
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - M. J. Le Bris
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - A. Basinko
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - S. Roche
- Service de Gynécologie Obstétrique - Médecine de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - M. De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique; Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Brest France
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| | - A. Perrin
- Laboratoire d'Histologie, Embryologie et Cytogénétique; Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale; Brest France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Brest France
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction; Hôpital Morvan; CHRU Brest; Brest France
| |
Collapse
|