1
|
Rudnicka E, Jaroń A, Kruszewska J, Smolarczyk R, Jażdżewski K, Derlatka P, Kucharska AM. A Risk of Gonadoblastoma in Familial Swyer Syndrome-A Case Report and Literature Review. J Clin Med 2024; 13:785. [PMID: 38337479 PMCID: PMC10856735 DOI: 10.3390/jcm13030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
A complete gonadal dysgenesis (CGD) with 46,XY karyotype is known as the Swyer syndrome and belongs to the group of 46,XY differences of sex development (DSD). The main problem in patients with Swyer syndrome is the delayed puberty and primary amenorrhea. Moreover, intrabdominal dysgenetic gonads in the patient with genetic material of a Y chromosome may conduce to the development of gonadal tumors, such as gonadoblastoma or germinoma. The management of such patients is based on preventive excision of dysgenetic gonads and long-term hormonal replacement therapy. Sporadic cases are considered more common than familial cases. This paper presents two siblings with Swyer syndrome in whom gonadoblastoma was found. A thorough review of familial CGD with 46,XY DSD in the literature from the last 15 years suggests that the risk of gonadal tumors could be increased in familial compared to sporadic cases (66.6% vs. 15-45%, respectively).
Collapse
Affiliation(s)
- Ewa Rudnicka
- Department of Gynecological Endocrinology, Medical University of Warsaw, 02-091 Warszawa, Poland
| | - Aleksandra Jaroń
- Students Scientific Group of Department of Pediatrics and Endocrinology, Medical University of Warsaw, 02-091 Warszawa, Poland
| | - Jagoda Kruszewska
- Students Scientific Group of Department of Gynecological Endocrinology, Medical University of Warsaw, 02-091 Warszawa, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 02-091 Warszawa, Poland
| | - Krystian Jażdżewski
- Human Cancer Genetics, Biological and Chemical Research Center University of Warsaw, 02-089 Warszawa, Poland
| | - Paweł Derlatka
- Second Department Obstetrics and Gynaecology, Medical University of Warsaw, 02-091 Warszawa, Poland;
| | | |
Collapse
|
2
|
Rajan P, Misra R, Mushrif S, Kandalkar B, Parikh R, Shah R, Kurkure P. A Perplexing Case of a Germ Cell Tumor: A Case Report. J Pediatr Hematol Oncol 2023; 45:e924-e926. [PMID: 37625143 DOI: 10.1097/mph.0000000000002744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/12/2023] [Indexed: 08/27/2023]
Abstract
Germ cell tumors (GCTs) are associated with pure gonadal dysgenesis or Swyer syndrome. Swyer syndrome usually presents with primary amenorrhea, streak ovaries, and mixed GCT. However, our patient presented with secondary amenorrhea, normal female external genitalia, and a mixed GCT. Constitutional karyotype was suggestive of 46,XY. Management comprised chemotherapy, followed by surgery. Histopathology was suggestive of dysgerminoma complicating a gonadoblastoma. The purpose of reporting this case is its rarity and the importance of diagnosing an XY karyotype, as the incidence of GCTs is higher in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Rasiklal Shah
- Department of Paediatric Surgery, SRCC Children's Hospital, Managed by Narayana Health, Mumbai, MH, India
| | | |
Collapse
|
3
|
Abdullah M, Rehman MSU, Rehman MSNU, AlKahtane AA, Al-Hazani TM, Hassan FU, Rehman SU. Genome-Wide Identification, Evolutionary and Mutational Analysis of the Buffalo Sox Gene Family. Animals (Basel) 2023; 13:2246. [PMID: 37508024 PMCID: PMC10376873 DOI: 10.3390/ani13142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Sox gene family constitutes transcription factors with a conserved high mobility group box (HMG) that regulate a variety of developmental processes, including sex differentiation, neural, cartilage, and early embryonic development. In this study, we systematically analyzed and characterized the 20 Sox genes from the whole buffalo genome, using comparative genomic and evolutionary analyses. All the buffalo Sox genes were divided into nine sub-groups, and each gene had a specific number of exons and introns, which contributed to different gene structures. Molecular phylogeny revealed more sequence similarity of buffalo Sox genes with those of cattle. Furthermore, evolutionary analysis revealed that the HMG domain remained conserved in the all members of the Sox gene family. Similarly, all the genes are under strong purifying selection pressure; seven segmental duplications occurred from 9.65 to 21.41 million years ago (MYA), and four potential recombination breakpoints were also predicted. Mutational analysis revealed twenty non-synonymous mutations with potential effects on physiological functions, including embryonic development and cell differentiation in the buffalo. The present study provides insights into the genetic architecture of the Sox gene family in buffalo, highlights the significance of mutations, and provides their potential utility for marker-assisted selection for targeted genetic improvement in buffalo.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Saif-Ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Abdullah A AlKahtane
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Mohamed Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11940, Saudi Arabia
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
4
|
Wang X, Xue M, Zhao M, He F, Li C, Li X. Identification of a novel mutation (Ala66Thr) of SRY gene causes XY pure gonadal dysgenesis by affecting DNA binding activity and nuclear import. Gene 2018; 651:143-151. [PMID: 29378242 DOI: 10.1016/j.gene.2018.01.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/04/2017] [Accepted: 01/23/2018] [Indexed: 11/19/2022]
Abstract
Sex-determining region of the Y chromosome (SRY) gene plays a crucial role in male sexual differentiation and development. Several mutations in the SRY gene have been reported in the high mobility group (HMG) box domain and can cause gonadal dysgenesis symptoms. In this study, we report that a novel missense mutation in the SRY gene, a G to A transition within the HMG box, causes the Ala66Thr amino acid substitution in a female patient presenting 46,XY karyotype with pure gonadal dysgenesis. The G to A base transition was not found in the SRY sequence after the screening of 100 normal males. Furthermore, Ala66Thr mutation drastically reduced the binding capacity of SRY to DNA sequences, whereas wild-type SRY protein showed the normal binding capacity to DNA sequences in vitro. We also found that the mutant SRY protein was partly localized in cytoplasm, whereas wild-type SRY protein was strictly localized in cell nucleus. In addition, we analyzed the three-dimensional structure of SRY protein by homology modeling methods. In conclusion, we identified a novel SRY mutation in a 46,XY female patient with pure gonadal dysgenesis, demonstrating the importance of the Ala66Thr mutation in DNA binding activity and nuclear transport.
Collapse
Affiliation(s)
- Xiang Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mei Xue
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Minggang Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fang He
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cui Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Dias AT, Zanardo ÉA, Dutra RL, Piazzon FB, Novo-Filho GM, Montenegro MM, Nascimento AM, Rocha M, Madia FAR, Costa TVMM, Milani C, Schultz R, Gonçalves FT, Fridman C, Yamamoto GL, Bertola DR, Kim CA, Kulikowski LD. Post-mortem cytogenomic investigations in patients with congenital malformations. Exp Mol Pathol 2016; 101:116-23. [PMID: 27450648 DOI: 10.1016/j.yexmp.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
Congenital anomalies are the second highest cause of infant deaths, and, in most cases, diagnosis is a challenge. In this study, we characterize patterns of DNA copy number aberrations in different samples of post-mortem tissues from patients with congenital malformations. Twenty-eight patients undergoing autopsy were cytogenomically evaluated using several methods, specifically, Multiplex Ligation-dependent Probe Amplification (MLPA), microsatellite marker analysis with a MiniFiler kit, FISH, a cytogenomic array technique and bidirectional Sanger sequencing, which were performed on samples of different tissues (brain, heart, liver, skin and diaphragm) preserved in RNAlater, in formaldehyde or by paraffin-embedding. The results identified 13 patients with pathogenic copy number variations (CNVs). Of these, eight presented aneuploidies involving chromosomes 13, 18, 21, X and Y (two presented inter- and intra-tissue mosaicism). In addition, other abnormalities were found, including duplication of the TYMS gene (18p11.32); deletion of the CHL1 gene (3p26.3); deletion of the HIC1 gene (17p13.3); and deletion of the TOM1L2 gene (17p11.2). One patient had a pathogenic missense mutation of g.8535C>G (c.746C>G) in exon 7 of the FGFR3 gene consistent with Thanatophoric Dysplasia type I. Cytogenomic techniques were reliable for the analysis of autopsy material and allowed the identification of inter- and intra-tissue mosaicism and a better understanding of the pathogenesis of congenital malformations.
Collapse
Affiliation(s)
- Alexandre Torchio Dias
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil.
| | - Évelin Aline Zanardo
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Roberta Lelis Dutra
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Flavia Balbo Piazzon
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Gil Monteiro Novo-Filho
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Marilia Moreira Montenegro
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Amom Mendes Nascimento
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Mariana Rocha
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil; Human Reproduction and Genetic Center, Department of Coletive Health - Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | | | - Cintia Milani
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | - Regina Schultz
- Division of Pathology - Clinical Hospital - HC -FMUSP, Universidade de São Paulo, SP, Brazil
| | | | - Cintia Fridman
- Department of Legal Medicine - HC-FMUSP, Universidade de São Paulo, SP, Brazil
| | | | - Débora Romeo Bertola
- Genetics Unit, Instituto da Criança HC-FMUSP - Universidade de São Paulo, SP, Brazil
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança HC-FMUSP - Universidade de São Paulo, SP, Brazil
| | - Leslie Domenici Kulikowski
- Department of Pathology, Cytogenomic Laboratory - LIM 03 - HC-FMUSP, Universidade de São Paulo, SP, Brazil; Human Reproduction and Genetic Center, Department of Coletive Health - Faculdade de Medicina do ABC, Santo André, SP, Brazil
| |
Collapse
|
6
|
Çatlı G, Alparslan C, Can PŞ, Akbay S, Kelekçi S, Atik T, Özyılmaz B, Dündar BN. An Unusual Presentation of 46,XY Pure Gonadal Dysgenesis: Spontaneous Breast Development and Menstruation. J Clin Res Pediatr Endocrinol 2015; 7:159-62. [PMID: 26316442 PMCID: PMC4563191 DOI: 10.4274/jcrpe.1919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
46,XY pure gonadal dysgenesis (Swyer syndrome) is characterized by normal female genitalia at birth. It usually first becomes apparent in adolescence with delayed puberty and amenorrhea. Rarely, patients can present with spontaneous breast development and/or menstruation. A fifteen-year-old girl presented to our clinic with the complaint of primary amenorrhea. On physical examination, her external genitals were completely female. Breast development and pubic hair were compatible with Tanner stage V. Hormonal evaluation revealed a hypergonadotropic state despite a normal estrogen level. Chromosome analysis revealed a 46,XY karyotype. Pelvic ultrasonography showed small gonads and a normal sized uterus for age. SRY gene expression was confirmed by multiplex polymerase chain reaction. Direct sequencing on genomic DNA did not reveal a mutation in the SRY, SF1 and WT1 genes. After the diagnosis of Swyer syndrome was made, the patient started to have spontaneous menstrual cycles and therefore failed to attend her follow-up visits. After nine months, the patient underwent diagnostic laparoscopy. Frozen examination of multiple biopsies from gonad tissues revealed gonadoblastoma. With this report, we emphasize the importance of performing karyotype analysis, which is diagnostic for Swyer syndrome, in all cases with primary or secondary amenorrhea even in the presence of normal breast development. We also suggest that normal pubertal development in patients with Swyer syndrome may be associated with the presence of a hormonally active tumor.
Collapse
Affiliation(s)
- Gönül Çatlı
- Tepecik Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey Phone: +90 232 469 69 69-3817 E-mail:
| | - Caner Alparslan
- Tepecik Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey
| | - P. Şule Can
- Tepecik Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey
| | - Sinem Akbay
- Tepecik Training and Research Hospital, Clinic of Pediatric Endocrinology, İzmir, Turkey
| | - Sefa Kelekçi
- Katip Çelebi University Faculty of Medicine, Department of Obstetrics and Gynecology, İzmir, Turkey
| | - Tahir Atik
- Ege University Faculty of Medicine, Department of Medical Genetics, İzmir, Turkey
| | - Berk Özyılmaz
- Tepecik Training and Research Hospital, Clinic of Medical Genetics, İzmir, Turkey
| | - Bumin N. Dündar
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| |
Collapse
|
7
|
Helszer Z, Dmochowska A, Szemraj J, Słowikowska-Hilczer J, Wieczorek M, Jędrzejczyk S, Kałużewski B. A novel mutation (c. 341A>G) in the SRY gene in a 46,XY female patient with gonadal dysgenesis. Gene 2013; 526:467-70. [PMID: 23624391 DOI: 10.1016/j.gene.2013.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022]
Abstract
SRY (sex-determining region Y) gene, MIM 480000, NM_005634) is crucial for sex differentiation which encodes the protein responsible for initiating testis differentiation. SRY mutations are associated with the presence of XY gonadal dysgenesis symptoms. We studied a 46,XY female patient with primary amenorrhoea and negative family history. The clinical, endocrine, histopathologic and cytogenetic data are consistent with gonadal dysgenesis. Using a molecular analysis, a novel (c.341A>G, p. N65D) missense mutation within the HMGbox of SRY gene was detected. Escherichia coli expression of SRY study showed reduced expression of the mutated protein and gel retardation assay method revealed lowered DNA-binding ability in N65D variant of SRY. The novel mutation detected in the SRY gene may be an aetiopathogenic factor in clinically defined 46,XY complete gonadal dysgenesis (CGD). Because of an increased risk of gonadoblastoma, proper early diagnosis and treatment prevent development of malignancies.
Collapse
Affiliation(s)
- Zofia Helszer
- Department of Clinical Genetics, Medical University of Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
8
|
Hersmus R, van der Zwan YG, Stoop H, Bernard P, Sreenivasan R, Oosterhuis JW, Brüggenwirth HT, de Boer S, White S, Wolffenbuttel KP, Alders M, McElreavy K, Drop SLS, Harley VR, Looijenga LHJ. A 46,XY female DSD patient with bilateral gonadoblastoma, a novel SRY missense mutation combined with a WT1 KTS splice-site mutation. PLoS One 2012; 7:e40858. [PMID: 22815844 PMCID: PMC3399878 DOI: 10.1371/journal.pone.0040858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/14/2012] [Indexed: 12/18/2022] Open
Abstract
Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10–15% of 46,XY gonadal dysgenesis cases (i.e., Swyer syndrome), SRY mutations, residing in the HMG (High Mobility Group) domain, are found to affect nuclear transport or binding to and bending of DNA. Frasier syndrome (FS) is characterized by gonadal dysgenesis with a high risk for development of GB as well as chronic renal failure in early adulthood, and is known to arise from a splice site mutation in intron 9 of the Wilms’ tumor 1 gene (WT1). Mutations in SRY as well as WT1 can lead to diminished expression and function of SRY, resulting in sub-optimal SOX9 expression, Sertoli cell formation and subsequent lack of proper testicular development. Embryonic germ cells residing in this unfavourable micro-environment have an increased risk for malignant transformation. Here a unique case of a phenotypically normal female (age 22 years) is reported, presenting with primary amenorrhoea, later diagnosed as hypergonadotropic hypogonadism on the basis of 46,XY gonadal dygenesis with a novel missense mutation in SRY. Functional in vitro studies showed no convincing protein malfunctioning. Laparoscopic examination revealed streak ovaries and a normal, but small, uterus. Pathological examination demonstrated bilateral GB and dysgerminoma, confirmed by immunohistochemistry. Occurrence of a delayed progressive kidney failure (focal segmental glomerular sclerosis) triggered analysis of WT1, revealing a pathogenic splice–site mutation in intron 9. Analysis of the SRY gene in an additional five FS cases did not reveal any mutations. The case presented shows the importance of multi-gene based diagnosis of DSD patients, allowing early diagnosis and treatment, thus preventing putative development of an invasive cancer.
Collapse
Affiliation(s)
- Remko Hersmus
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | - Yvonne G. van der Zwan
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
- Department of Pediatric Endocrinology, Erasmus MC - University Medical Center Rotterdam, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | - Pascal Bernard
- Molecular Genetics and Development Division, Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - Rajini Sreenivasan
- Molecular Genetics and Development Division, Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Victoria, Australia
| | - J. Wolter Oosterhuis
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | - Hennie T. Brüggenwirth
- Department of Clinical Genetics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Suzan de Boer
- Centre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Stefan White
- Centre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Katja P. Wolffenbuttel
- Department of Pediatric Urology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Stenvert L. S. Drop
- Department of Pediatric Endocrinology, Erasmus MC - University Medical Center Rotterdam, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Vincent R. Harley
- Molecular Genetics and Development Division, Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Stoppa-Vaucher S, Ayabe T, Paquette J, Patey N, Francoeur D, Vuissoz JM, Deladoëy J, Samuels ME, Ogata T, Deal CL. 46, XY gonadal dysgenesis: new SRY point mutation in two siblings with paternal germ line mosaicism. Clin Genet 2012; 82:505-13. [PMID: 22288726 DOI: 10.1111/j.1399-0004.2011.01832.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Familial recurrence risks are poorly understood in cases of de novo mutations. In the event of parental germ line mosaicism, recurrence risks can be higher than generally appreciated, with implications for genetic counseling and clinical practice. In the course of treating a female with pubertal delay and hypergonadotropic hypogonadism, we identified a new missense mutation in the SRY gene, leading to somatic feminization of this karyotypically normal XY individual. We tested a younger sister despite a normal onset of puberty, who also possessed an XY karyotype and the same SRY mutation. Imaging studies in the sister revealed an ovarian tumor, which was removed. DNA from the father's blood possessed the wild type SRY sequence, and paternity testing was consistent with the given family structure. A brother was 46, XY with a wild type SRY sequence strongly suggesting paternal Y-chromosome germline mosaicism for the mutation. In disorders of sexual development (DSDs), early diagnosis is critical for optimal psychological development of the affected patients. In this case, preventive karyotypic screening allowed early diagnosis of a gonadal tumor in the sibling prior to the age of normal puberty. Our results suggest that cytological or molecular diagnosis should be applied for siblings of an affected DSD individual.
Collapse
Affiliation(s)
- S Stoppa-Vaucher
- Endocrinology Service, Department of Pediatrics, CHU Sainte-Justine Research Center and Université de Montréal, Montréal H3T 1C5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|