1
|
Yu D, Song W, Tan EYJ, Liu L, Cao Y, Jirschitzka J, Li E, Logemann E, Xu C, Huang S, Jia A, Chang X, Han Z, Wu B, Schulze-Lefert P, Chai J. TIR domains of plant immune receptors are 2',3'-cAMP/cGMP synthetases mediating cell death. Cell 2022; 185:2370-2386.e18. [PMID: 35597242 DOI: 10.1016/j.cell.2022.04.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
2',3'-cAMP is a positional isomer of the well-established second messenger 3',5'-cAMP, but little is known about the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have the NADase function necessary but insufficient to activate plant immune responses. Here, we show that plant TIR proteins, besides being NADases, act as 2',3'-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data show that a TIR domain adopts distinct oligomers with mutually exclusive NADase and synthetase activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana (Nb), supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7, displays 2',3'-cAMP/cGMP but not 3',5'-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in Nb. Our study identifies a family of 2',3'-cAMP/cGMP synthetases and establishes a critical role for them in plant immune responses.
Collapse
Affiliation(s)
- Dongli Yu
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wen Song
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Eddie Yong Jun Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Li Liu
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yu Cao
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jan Jirschitzka
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ertong Li
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Elke Logemann
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Chenrui Xu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shijia Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Aolin Jia
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Chang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhifu Han
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| | | | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany; Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Li J, Bai L, Liu Z, Wang W. Dual roles of PDE9a in meiotic maturation of zebrafish oocytes. Biochem Biophys Res Commun 2020; 532:40-46. [PMID: 32826058 DOI: 10.1016/j.bbrc.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023]
Abstract
The essential role of cyclic guanosine monophosphate (cGMP) signaling in regulating the oocyte meiotic cell cycle has been established. However, control of the level of cGMP in ovarian follicles is unclear. The cGMP-hydrolyzing phosphodiesterases (PDEs) are important in regulating the cellular cGMP level. We used zebrafish as a model to study the role of a cGMP-hydrolyzing phosphodiesterase-9a (PDE9a) in meiotic maturation of oocytes. Three PDE9a coding genes (PDE9aa, PDE9ab, and PDE9ac) were identified in zebrafish. Both pde9aa and pde9ac are expressed in most adult tissues including the ovary, but pde9ab is only expressed in the ovary, kidney, pituitary, and brain. All three pde9as mRNA exhibited different expression profiles during folliculogenesis. All of them are highly expressed in the oocyte but not in the follicular cell. The expression of both pde9aa and pde9ab, but not pde9ac, in ovarian follicles increases during oocyte maturation either in natural ovulatory cycle or induced by administration of hCG in vivo. We overexpressed pde9aa by injection of capped pde9aa mRNA into the oocytes. The cGMP level was decreased, and oocyte maturation was stimulated. When the activity of PDE9a was blocked by a specific inhibitor, Bay736691, the oocyte maturation was also stimulated. The stimulatory effect could be blocked by a gap junction blocker. However, the spontaneous oocyte maturation of denuded oocytes was not largely affected after treatment with Bay736691. All of the mature oocytes obtained by either treatment of Bay736691 or injection of pde9aa mRNA, could be fertilized in vitro. These results demonstrate the dual roles of PDE9a in oocyte maturation. The basal level of PDE9a is responsible for maintaining the meiotic arrest, and the increased level of PDE9a induced by LH signaling is helpful for stimulating meiotic maturation by hydrolyzing cGMP in oocytes.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - Lin Bai
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhiquan Liu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Wenyi Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
3
|
Gupta A, Pandey AN, Sharma A, Tiwari M, Yadav PK, Yadav AK, Pandey AK, Shrivastav TG, Chaube SK. Cyclic nucleotide phosphodiesterase inhibitors: possible therapeutic drugs for female fertility regulation. Eur J Pharmacol 2020; 883:173293. [PMID: 32663542 DOI: 10.1016/j.ejphar.2020.173293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes responsible for the hydrolysis of cyclic adenosine 3', 5' monophosphate (cAMP) and cyclic guanosine 3', 5' monophosphate (cGMP) levels in wide variety of cell types. These PDEs are detected in encircling granulosa cells or in oocyte with in follicular microenvironment and responsible for the decrease of cAMP and cGMP levels in mammalian oocytes. A transient decrease of cAMP level initiates downstream pathways to cause spontaneous meiotic resumption from diplotene arrest and induces oocyte maturation. The nonspecific PDE inhibitors (caffeine, pentoxifylline, theophylline, IBMX etc.) as well as specific PDE inhibitors (cilostamide, milrinone, org 9935, cilostazol etc.) have been used to elevate cAMP level and inhibit meiotic resumption from diplotene arrest and oocyte maturation, ovulation, fertilization and pregnancy rates both in vivo as well as under in vitro culture conditions. The PDEs inhibitors are used as powerful experimental tools to demonstrate cyclic nucleotide mediated changes in ovarian functions and thereby fertility. Indeed, non-hormonal nature and reversible effects of nonspecific as well as specific PDE inhibitors hold promise for the development of novel therapeutic drugs for female fertility regulation.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi, 110067, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
4
|
Tscharke M, Kind K, Kelly J, Kleemann D, Len J. The Phosphodiesterase Inhibitor, Isobutyl-1-Methylxanthine Prevents the Sudden Drop in Cyclic Adenosine Monophosphate Concentration and Modulates Glucose Metabolism of Equine Cumulus-Oocyte Complexes Matured in Vitro. J Equine Vet Sci 2020; 91:103112. [PMID: 32684257 DOI: 10.1016/j.jevs.2020.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023]
Abstract
Spontaneous nuclear maturation of mammalian oocytes can occur when physically removed from the ovarian follicle during in vitro oocyte maturation (IVM), largely because of a decrease in cyclic adenosine monophosphate (cAMP) concentration. Modulation of oocyte cAMP during IVM by using phosphodiesterase inhibitors has been shown to maintain elevated oocyte cAMP concentrations and control meiotic resumption of bovine and ovine oocytes. This study determined the effect of inclusion of isobutyl-1-methylxanthine (IBMX) during collection and the first 12 hours of incubation of equine oocytes on cAMP concentration and glucose metabolism of cumulus-oocyte complexes (COCs). Abattoir-derived COCs were collected in aspiration medium with (Asp-IBMX) or without (Asp) IBMX. Cumulus-oocyte complexes were then incubated for 12 hours in IVM medium with (Mat-IBMX) or without (Mat) IBMX, followed by additional 24 hours in Mat medium. The cAMP concentration, glucose consumption, lactate production, and metaphase II rates of the COCs were assessed. Cumulus-oocyte complexes aspirated into Asp-IBMX (62.2 ± 2.6 fmol per COC) medium had higher cAMP concentration than Asp (31.8 ± 2.8 fmol per COC) control group (P < .05). Likewise, at 12 hours of IVM, Mat-IBMX group (33.2 ± 2.1 fmol per COC) had higher cAMP concentration than the Mat group (7.68 ± 0.5 fmol per COC; P < .05). Glucose consumption and lactate production were lower during the first 12 hours of incubation in COCs cultured in Mat-IBMX (P < .05). Isobutyl-1-methylxanthine prevented the rapid drop in cAMP concentration and altered metabolism of glucose by the COC. Preventing the sudden drop in cAMP prevents the premature nuclear maturation of in vitro-matured oocytes causing poor developmental competence.
Collapse
Affiliation(s)
- Megan Tscharke
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Karen Kind
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Jennifer Kelly
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, Australia
| | - Dave Kleemann
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, Australia
| | - Jose Len
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| |
Collapse
|
5
|
Wang PX, Li ZM, Cai SD, Li JY, He P, Huang Y, Feng GS, Luo HB, Chen SR, Liu PQ. C33(S), a novel PDE9A inhibitor, protects against rat cardiac hypertrophy through upregulating cGMP signaling. Acta Pharmacol Sin 2017. [PMID: 28649129 DOI: 10.1038/aps.2017.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphodiesterase-9A (PDE9A) expression is upregulated during cardiac hypertrophy and heart failure. Accumulating evidence suggests that PDE9A might be a promising therapeutic target for heart diseases. The present study sought to investigate the effects and underlying mechanisms of C33(S), a novel selective PDE9A inhibitor, on cardiac hypertrophy in vitro and in vivo. Treatment of neonatal rat cardiomyocytes (NRCMs) with PE (100 μmol/L) or ISO (1 μmol/L) induced cardiac hypertrophy characterized by significantly increased cell surface areas and increased expression of fetal genes (ANF and BNP). Furthermore, PE or ISO significantly increased the expression of PDE9A in the cells; whereas knockdown of PDE9A significantly alleviated PE-induced hypertrophic responses. Moreover, pretreatment with PDE9A inhibitor C33(S) (50 and 500 nmol/L) or PF-7943 (2 μmol/L) also alleviated the cardiac hypertrophic responses in PE-treated NRCMs. Abdominal aortic constriction (AAC)-induced cardiac hypertrophy and ISO-induced heart failure were established in SD rats. In ISO-treated rats, oral administration of C33(S) (9, 3, and 1 mg·kg-1·d-1, for 3 consecutive weeks) significantly increased fractional shortening (43.55%±3.98%, 54.79%±1.95%, 43.98%±7.96% vs 32.18%±6.28%), ejection fraction (72.97%±4.64%, 84.29%±1.56%, 73.41%±9.37% vs 49.17%±4.20%) and cardiac output (60.01±9.11, 69.40±11.63, 58.08±8.47 mL/min vs 48.97±2.11 mL/min) but decreased the left ventricular internal diameter, suggesting that the transition to heart failure was postponed by C33(S). We further revealed that C33(S) significantly elevated intracellular cGMP levels, phosphorylation of phospholamban (PLB) and expression of SERCA2a in PE-treated NRCMs in vitro and in ISO-induced heart failure model in vivo. Our results demonstrate that C33(S) effectively protects against cardiac hypertrophy and postpones the transition to heart failure, suggesting that it is a promising agent in the treatment of cardiac diseases.
Collapse
|
6
|
Influence of nitric oxide and phosphodiesterases during in vitro maturation of bovine oocytes on meiotic resumption and embryo production. ZYGOTE 2017; 25:321-330. [PMID: 28651653 DOI: 10.1017/s096719941700017x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to examine the effects of nitric oxide (NO) and different phosphodiesterase (PDE) families on meiosis resumption, nucleotides levels and embryo production. Experiment I, COCs were matured in vitro with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) associated or not with the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), meiotic resumption and nucleotides levels were assessed. SNAP delayed germinal vesicle breakdown (GVBD) (53.4 ± 1.2 versus 78.4 ± 2.4% for controls, P 0.05). Cyclic GMP levels were higher in SNAP (3.94 ± 0.18, P 0.05). Embryo development did not differ from the control for SNAP and cilostamide groups (38.7 ± 5.8, 37.9 ± 6.2 and 40.5 ± 5.8%, P > 0.05), but SNAP + cilostamide decreased embryo production (25.7 ± 6.9%, P < 0.05). In conclusion, SNAP was confirmed to delay meiosis resumption by the NO/sGC/cGMP pathway, by increasing cGMP, but not cAMP. Inhibiting different PDEs to further increase nucleotides in association with SNAP did not show any additive effects on meiosis resumption, indicating that other pathways are involved. Moreover, SNAP + cilostamide affected the meiosis progression and decreased embryo development.
Collapse
|
7
|
Richard S, Baltz JM. Preovulatory suppression of mouse oocyte cell volume-regulatory mechanisms is via signalling that is distinct from meiotic arrest. Sci Rep 2017; 7:702. [PMID: 28386066 PMCID: PMC5429605 DOI: 10.1038/s41598-017-00771-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 12/02/2022] Open
Abstract
GLYT1-mediated glycine transport is the main cell volume-homeostatic mechanism in mouse eggs and early preimplantation embryos. It is unique to these developmental stages and key to their healthy development. GLYT1 first becomes activated in oocytes only after ovulation is triggered, when meiotic arrest of the oocyte is released, but how this occurs was unknown. Here we show that GLYT1 activity is suppressed in oocytes in the preovulatory antral follicle and that its suppression is mediated by a mechanism distinct from the gap junction-dependent Natriuretic Peptide Precursor C (NPPC) pathway that controls meiotic arrest. GLYT1 remained suppressed in isolated antral follicles but not isolated cumulus-oocyte complexes (COCs) or isolated oocytes. Moreover, activating the NPPC signalling pathway could not prevent GLYT1 activation in oocytes within COCs despite maintaining meiotic arrest. Furthermore, blocking gap junctions in isolated follicles failed to induce GLYT1 activity in enclosed oocytes for an extended period after meiosis had resumed. Finally, isolated mural granulosa cells from preovulatory antral follicles were sufficient to suppress GLYT1 in oocytes within co-cultured COCs. Together, these results suggest that suppression of GLYT1 activity before ovulation is mediated by a novel signalling pathway likely originating from preovulatory mural granulosa cells.
Collapse
Affiliation(s)
- Samantha Richard
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology and Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Jay M Baltz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Obstetrics and Gynecology and Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Chakravarthi VP, Sireesha Y, Kumar YN, Siva kumar AVN, Bhaskar M. cGMP and epigenetic factor in the suppression of apoptosis in ovarian follicles. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gupta A, Tiwari M, Prasad S, Chaube SK. Role of Cyclic Nucleotide Phosphodiesterases During Meiotic Resumption From Diplotene Arrest in Mammalian Oocytes. J Cell Biochem 2016; 118:446-452. [PMID: 27662514 DOI: 10.1002/jcb.25748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes that hydrolyze cyclic nucleotides in wide variety of cell types including encircling granulosa cells as well as associated oocytes. One group of PDEs are located in encircling granulosa cells and another group get expressed in the oocyte, while few other PDEs are expressed in both compartments. The PDE1A, PDE4D, PDE5A, PDE8A, and PDE8B are granulosa cell specific PDEs that hydrolyze adenosine 3',5'-cyclic monophosphate (cAMP) as well as guanosine 3',5'-cyclic monophosphate (cGMP) with different affinities. PDE3A, PDE8A as well as PDE9A are expressed in oocyte and specifically responsible for the cyclic nucleotide hydrolysis in the oocyte itself. Few other PDEs such as PDE7B, PDE10A, and PDE11A are either detected in granulosa cells or oocytes. Activation of these PDEs either in encircling granulosa cells or in oocyte directly or indirectly reduces intraoocyte cAMP level. Reduction of intraoocyte cAMP level modulates phosphorylation status of cyclin-dependent kinase 1 (Cdk1) and triggers cyclin B1 degradation that destabilizes maturation promoting factor (MPF) and/or increases Cdk1 activity. The destabilized MPF and/or increased Cdk1 activity leads to resumption of meiosis, which initiates the achievement of meiotic competency in preovulatory follicles of several mammalian species. Use of specific PDEs inhibitors block cyclic nucleotides hydrolysis that results in increase of intraoocyte cyclic nucleotides level, which leads to maintenance of meiotic arrest at diplotene stage in vivo as well as in vitro. Thus, cyclic nucleotide PDEs play important role in the achievement of meiotic competency by reducing intraoocyte cyclic nucleotides level in mammalian oocytes. J. Cell. Biochem. 118: 446-452, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Rahiminia T, Faramarzi A, Khoradmehr A, Khalili MA. Cumulus co-culture system does not improve the in-vitro maturation (IVM) of oocytes in mice. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2016. [DOI: 10.1016/j.mefs.2015.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Celik O, Celik N, Gungor S, Haberal ET, Aydin S. Selective Regulation of Oocyte Meiotic Events Enhances Progress in Fertility Preservation Methods. BIOCHEMISTRY INSIGHTS 2015; 8:11-21. [PMID: 26417205 PMCID: PMC4577271 DOI: 10.4137/bci.s28596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022]
Abstract
Following early embryonic germ cell migration, oocytes are surrounded by somatic cells and remain arrested at diplotene stage until luteinizing hormone (LH) surge. Strict regulation of both meiotic arrest and meiotic resumption during dormant stage are critical for future fertility. Inter-cellular signaling system between the somatic compartment and oocyte regulates these meiotic events and determines the follicle quality. As well as the collected number of eggs, their qualities are also important for in vitro fertilization (IVF) outcome. In spontaneous and IVF cycles, germinal vesicle (GV)–stage oocytes, premature GV breakdown, and persistence of first meiotic arrest limit the reproductive performance. Likewise, both women with premature ovarian aging and young cancer women are undergoing chemoradiotherapy under the risk of follicle loss because of unregulated meiotic events. Understanding of oocyte meiotic events is therefore critical for the prevention of functional ovarian reserve. High levels of cyclic guanosine monophophate (cGMP), cyclic adenosine monophophate (cAMP) and low phosphodiesterase (PDE) 3A enzyme activity inside the oocyte are responsible for maintaining of meiotic arrest before the LH surge. cGMP is produced in the somatic compartment, and natriuretic peptide precursor C (Nppc) and natriuretic peptide receptor 2 (Npr2) regulate its production. cGMP diffuses into the oocyte and reduces the PDE3A activity, which inhibits the conversion of cAMP to the 5′AMP, and cAMP levels are enhanced. In addition, oocyte itself has the ability to produce cAMP. Taken together, accumulation of cAMP inside the oocyte induces protein kinase activity, which leads to the inhibition of maturation-promoting factor and meiotic arrest also continues. By stimulating the expression of epidermal growth factor, LH inhibits the Nppc/Npr2 system, blocks cGMP synthesis, and initiates meiotic resumption. Oocytes lacking the functional of this pathway may lead to persistence of the GV oocyte, which reduces the number of good quality eggs. Selective regulation of somatic cell signals and oocyte meiotic events enhance progress in fertility preservation methods, which may give us the opportunity to prevent follicle loss in prematurely aging women and young women with cancer are undergoing chemoradiotherapy.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Obstetrics and Gynecology, Usak, Turkey
| | - Nilufer Celik
- Behçet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Sami Gungor
- Private Medical Hospital, Obstetrics and Gynecology, Elazig, Turkey
| | - Esra Tustas Haberal
- Umraniye Education and Research Hospital, Obstetrics and Gynecology, İstanbul, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormone Research Group), School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
12
|
Blaha M, Nemcova L, Prochazka R. Cyclic guanosine monophosphate does not inhibit gonadotropin-induced activation of mitogen-activated protein kinase 3/1 in pig cumulus-oocyte complexes. Reprod Biol Endocrinol 2015; 13:1. [PMID: 25567742 PMCID: PMC4293816 DOI: 10.1186/1477-7827-13-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent results indicate a key role for cyclic guanosine monophosphate (cGMP) in the regulation of oocyte meiotic arrest in preovulatory mammalian follicles. The aim of our study was to determine whether the resumption of oocyte meiosis and expansion of cumulus cells in isolated pig cumulus-oocyte complexes (COCs) can be blocked by a high intracellular concentration of cGMP, and whether this effect is mediated by a cGMP-dependent inhibition of mitogen-activated protein kinase 3/1 (MAPK3/1). METHODS The COCs were isolated from ovaries of slaughtered gilts and cultured in vitro in M199 supplemented with 5% fetal calf serum. The expression levels of the C-type natriuretic peptide (CNP) precursor (NPPC) and its receptor (NPR2) mRNAs during the culture of COCs were determined by real-time RT-PCR. To control the intracellular concentration of cGMP in the COCs, the culture medium was further supplemented with CNP or various concentrations of synthetic cGMP analogues; the concentration of cGMP in COCs was then assessed by ELISA. The effect of the drugs on oocyte maturation was assessed after 24 and 44 h of culture by determining nuclear maturation. The expansion of cumulus cells was assessed by light microscopy and the expression of cumulus expansion-related genes by real-time RT-PCR. A possible effect of cGMP on FSH-induced activation of MAPK3/1 was assessed by immunoblotting the COC proteins with phospho-specific and total anti-Erk1/2 antibodies. RESULTS The COCs expressed NPPC and NPR2, the key components of cGMP synthesis, and produced a large amount of cGMP upon stimulation with exogenous CNP, which lead to a significant (P < 0.05) delay in oocyte meiotic resumption. The COCs also responded to cGMP analogues by inhibiting the resumption of oocyte meiosis. The inhibitory effect of cGMP on meiotic resumption was reversed by stimulating the COCs with FSH. However, high concentration of intracellular cGMP was not able to suppress FSH-induced activation of MAPK3/1 in cumulus cells, cumulus expansion and expression of expansion-related genes (P > 0.05). CONCLUSIONS The findings of this study indicate that high cGMP concentrations inhibit the maturation of pig oocytes in vitro but the inhibitory mechanism does not involve the suppression of MAPK3/1 activation in cumulus cells.
Collapse
Affiliation(s)
- Milan Blaha
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic
| |
Collapse
|
13
|
Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes. Theriogenology 2013; 81:556-64. [PMID: 24331454 DOI: 10.1016/j.theriogenology.2013.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 01/18/2023]
Abstract
Nitric oxide (NO) is a chemical messenger involved in the control of oocyte maturation. It stimulates guanylate cyclase to produce cyclic guanosine monophosphate (cGMP), which in turn activates cGMP-dependent protein kinase (PKG) and some phosphodiesterases that may interfere with cAMP levels, a nucleotide also involved in meiosis resumption. The aim of this study was to determine the role played by NO on the cGMP/cAMP pathway during meiosis resumption in bovine oocytes. The effects of increasing NO generated by S-nitroso-N-acetylpenicillamine (SNAP; 10(-7)-10(-3) mol/L) and of other drugs that may affect the NO/cGMP pathway (proptoporfirin IX and 8-Br-cGMP) on meiosis resumption were investigated in bovine cumulus-oocyte complexes (COCs) matured for 9 hours in a semidefined medium (TCM199 + 3 mg/mL BSA). The COCs matured with 10(-7) mol/L SNAP associated or not with 100 μmol/L oxadiazole-one quinoxaline, a guanylate cyclase inhibitor, also had their cGMP and cAMP levels measured during the first hours of maturation (1, 3, and 6 hours). Quantitative polymerase chain reaction was performed by real-time polymerase chain reaction to determine the effects of NO on expression of genes encoding for enzymes of the NO/guanylate cyclase/cGMP and cAMP pathways during the first 9 hours of oocyte maturation. Increasing NO levels using 10(-7) mol/L SNAP resulted in lower rate of germinal vesicle breakdown (36% germinal vesicle breakdown; P < 0.05) at 9 hours IVM, whereas control group and the treatments with 10(-9) and 10(-8) mol/L SNAP showed about 70% germinal vesicle breakdown (P > 0.05). A temporary increase in cGMP levels was also observed with the same treatment (4.51 pmol/COC) at 1 hour IVM, which was superior to the control group (2.97 pmol/COC; P < 0.05) and was reversed by inhibiting guanylate cyclase activity with 100 μmol/L oxadiazole-one quinoxaline. Neither cAMP levels nor gene expression were affected by NO. These results suggest that NO acts via guanylate cyclase/cGMP and that even a temporary increase in cGMP levels leads to a delay in meiosis resumption, even when cAMP levels have declined. Nitric oxide does not act on oocyte maturation by affecting cAMP levels or the expression of genes related to the NO/guanylate cyclase/cGMP and cAMP pathways. Also, to our knowledge this is the first report to detect PKG1, PKG2, phosphodiesterase-5A, ADCY3, ADCY6, and ADCY9 transcripts in bovine oocytes.
Collapse
|
14
|
Meng F, Hou J, Shao YX, Wu PY, Huang M, Zhu X, Cai Y, Li Z, Xu J, Liu P, Luo HB, Wan Y, Ke H. Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. J Med Chem 2012; 55:8549-58. [PMID: 22985069 PMCID: PMC3469756 DOI: 10.1021/jm301189c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new series of phosphodiesterase-9 (PDE9) inhibitors that contain a scaffold of 6-amino-pyrazolopyrimidinone have been discovered by a combination of structure-based design and computational docking. This procedure significantly saved the load of chemical synthesis and is an effective method for the discovery of inhibitors. The best compound 28 has an IC(50) of 21 nM and 3.3 μM, respectively, for PDE9 and PDE5 and about 3 orders of magnitude of selectivity against other PDE families. The crystal structure of the PDE9 catalytic domain in complex with 28 has been determined and shows a hydrogen bond between 28 and Tyr424. This hydrogen bond may account for the 860-fold selectivity of 28 against PDE1B, in comparison with about 30-fold selectivity of BAY73-6691. Thus, our studies suggest that Tyr424, a unique residue of PDE8 and PDE9, is a potential target for improvement of selectivity of PDE9 inhibitors.
Collapse
Affiliation(s)
- Fei Meng
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jing Hou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yong-Xian Shao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Pei-Ying Wu
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Manna Huang
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xinhai Zhu
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yonghong Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jie Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yiqian Wan
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hengming Ke
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|