1
|
Shrivastav AM, Ali N, Singh N, Lunenfeld E, Abdulhalim I, Huleihel M. Identification of spermatogenesis in individual seminiferous tubules and testicular tissue of adult normal and busulfan-treated mice employing Raman spectroscopy and principal component analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124232. [PMID: 38593538 DOI: 10.1016/j.saa.2024.124232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/05/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
The present study aims to identify spermatogenesis in testicular seminiferous tubules (ST) and testicular tissue of adult normal and busulfan-treated mice utilizing PCA and Raman spectroscopy. Raman measurements were conducted on single tubules and testes samples from adult and immature mice, comparing them with those from busulfan-treated adult mice, with validation through histological examination. The analysis revealed a higher signal variability (30 %-40 % at the peaks), prompting scrutiny of individual Raman spectra as a means of spermatogenesis measurement. However, principal component analysis (PCA) demonstrated significant cluster separation between the ST of mature and immature mice. Similar investigations were performed to compare ST from normal mature mice and those from busulfan-treated (BS-treated) mature mice, revealing substantial separation along PC1 and PC2 for all comparison sets. Additionally, comparing testicular samples from mature and immature mice revealed distinct separation in PCA. The study concludes that the combined approach of PCA and Raman spectroscopy proves to be a noninvasive and potentially valuable method for identifying spermatogenesis in seminiferous tubules and testicular samples.
Collapse
Affiliation(s)
- Anand M Shrivastav
- Department of Electrooptics and Photonics Engineering, ECE School, Ilse-Kats Nanoscale Science and Technology Center, Ben Gurion University, Beer Sheva 84105, Israel; Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulthar, Tamil Nadu 603203, India
| | - Nagham Ali
- The Shraga Segal Dept. of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Neetika Singh
- Department of Electrooptics and Photonics Engineering, ECE School, Ilse-Kats Nanoscale Science and Technology Center, Ben Gurion University, Beer Sheva 84105, Israel
| | | | - Ibrahim Abdulhalim
- Department of Electrooptics and Photonics Engineering, ECE School, Ilse-Kats Nanoscale Science and Technology Center, Ben Gurion University, Beer Sheva 84105, Israel.
| | - Mahmoud Huleihel
- The Shraga Segal Dept. of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
2
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
3
|
Aydos OS, Yukselten Y, Ozkan T, Ozkavukcu S, Tuten Erdogan M, Sunguroglu A, Aydos K. Co-Culture of Cryopreserved Healthy Sertoli Cells with Testicular Tissue of Non-Obstructive Azoospermia (NOA) Patients in Culture Media Containing Follicle-Stimulating Hormone (FSH)/Testosterone Has No Advantage in Germ Cell Maturation. J Clin Med 2023; 12:jcm12031073. [PMID: 36769720 PMCID: PMC9917953 DOI: 10.3390/jcm12031073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Different cell culture conditions and techniques have been used to mature spermatogenic cells to increase the success of in vitro fertilization. Sertoli cells (SCs) are essential in maintaining spermatogenesis and FSH stimulation exerts its effect through direct or indirect actions on SCs. The effectiveness of FSH and testosterone added to the co-culture has been demonstrated in other studies to provide microenvironment conditions of the testicular niche and to contribute to the maturation and meiotic progression of spermatogonial stem cells (SSCs). In the present study, we investigated whether co-culture of healthy SCs with the patient's testicular tissue in the medium supplemented with FSH/testosterone provides an advantage in the differentiation and maturation of germ cells in NOA cases (N = 34). In men with obstructive azoospermia (N = 12), healthy SCs from testicular biopsies were identified and purified, then cryopreserved. The characterization of healthy SCs was done by flow cytometry (FC) and immunohistochemistry using antibodies specific for GATA4 and vimentin. FITC-conjugated annexin V/PI staining and the MTT assay were performed to compare the viability and proliferation of SCs before and after freezing. In annexin V staining, no difference was found in percentages of live and apoptotic SCs, and MTT showed that cryopreservation did not inhibit SC proliferation compared to the pre-freezing state. Then, tissue samples from NOA patients were processed in two separate environments containing FSH/testosterone and FSH/testosterone plus co-culture with thawed healthy SCs for 7 days. FC was used to measure 7th-day levels of specific markers expressed in spermatogonia (VASA), meiotic cells (CREM), and post-meiotic cells (protamine-2 and acrosin). VASA and acrosin basal levels were found to be lower in infertile patients compared to the OA group (8.2% vs. 30.6% and 12.8% vs. 30.5%, respectively; p < 0.05). Compared to pre-treatment measurements, on the 7th day in the FSH/testosterone environment, CREM levels increased by 58.8% and acrosin levels increased by 195.5% (p < 0.05). Similarly, in medium co-culture with healthy SCs, by day 7, CREM and acrosin levels increased to 92.2% and 204.8%, respectively (p < 0.05). Although VASA and protamine levels increased in both groups, they did not reach a significant level. No significant difference was found between the day 7 increase rates of CREM, VASA, acrosin and protamine-2 in either FSH/testosterone-containing medium or in medium additionally co-cultured with healthy SCs (58.8% vs. 92.2%, 120.6% vs. 79.4%, 195.5% vs. 204.8%, and 232.3% vs. 198.4%, respectively; p > 0.05). Our results suggest that the presence of the patient's own SCs for maturation of germ cells in the culture medium supplemented with FSH and testosterone is sufficient, and co-culture with healthy SCs does not have an additional advantage. In addition, the freezing-thawing process would not impair the viability and proliferation of SCs.
Collapse
Affiliation(s)
- O. Sena Aydos
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
- Correspondence: (O.S.A.); (Y.Y.); Tel.: +90-3125958050 (O.S.A.)
| | - Yunus Yukselten
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520, USA
- Correspondence: (O.S.A.); (Y.Y.); Tel.: +90-3125958050 (O.S.A.)
| | - Tulin Ozkan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Sinan Ozkavukcu
- Center for Assisted Reproduction, School of Medicine, Ankara University, Ankara 06230, Turkey
- Postgraduate Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Meltem Tuten Erdogan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara 06230, Turkey
| | - Kaan Aydos
- Department of Urology, School of Medicine, Ankara University, Ankara 06230, Turkey
| |
Collapse
|
4
|
Bashiri Z, Zahiri M, Allahyari H, Esmaeilzade B. Proliferation of human spermatogonial stem cells on optimized PCL/Gelatin nanofibrous scaffolds. Andrologia 2022; 54:e14380. [PMID: 35083770 DOI: 10.1111/and.14380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
Improvement of culture system and increasing the proliferation of spermatogonia stem cells under in vitro condition are the essential treatment options for infertility before autologous transplantation. Therefore, the present study aimed to evaluate the proliferation of human spermatogonia stem cells on the electrospun polycaprolactone/gelatin nanocomposite. Therefore, for this purpose, nanofiber porous scaffolds were prepared using the electrospinning method and their structures were then confirmed by SEM. After performing swelling, biodegradability and cell adhesion tests, human spermatogonia stem cells were cultured on scaffolds. In addition, both cell viability and proliferation were assessed using immunocytochemistry, flow cytometry and real-time PCR techniques in culturing during a 3-week period. SEM images indicated the presence of fibres with suitable diameters and arrangement as well as a sufficient porosity in nanocomposite scaffolds, showing good biocompatibility and biodegradability. The results show a significant increase in the number of spermatogonia stem cells in the cultured group on scaffold compared with the control group (p ≤ 0.05). As well, the results show that the expressions of integrin ɑ6 and β1 and Plzf genes estimated using real-time PCR in nanofiber scaffolds were significantly higher than those of the control group (p ≤ 0.05). However, the expression of c-Kit gene in the 3D group showed a significant decrease compared with the 2D group. Flow cytometry analysis also showed that the number of Plzf-positive cells was significantly higher in nanofiber porous scaffolds compared with the control group (p ≤ 0.05). Additionally, immunocytochemistry findings confirmed the presence of human spermatogonia stem cell colonies. In general, it seems that the designed nanocomposite scaffold could provide a suitable capacity for self-renewal of human spermatogonia stem cells, which can have a good application potential in research and reconstructive medicine related to the field of male infertility.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Allahyari
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Banafshe Esmaeilzade
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
5
|
Evaluation of co-cultured spermatogonial stem cells encapsulated in alginate hydrogel with Sertoli cells and their transplantation into azoospermic mice. ZYGOTE 2021; 30:344-351. [PMID: 34610855 DOI: 10.1017/s0967199421000733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An in vitro spermatogonial stem cell (SSC) culture can serve as an effective technique to study spermatogenesis and treatment for male infertility. In this research, we compared the effect of a three-dimensional alginate hydrogel with Sertoli cells in a 3D culture and co-cultured Sertoli cells. After harvest of SSCs from neonatal mice testes, the SSCs were divided into two groups: SSCs on a 3D alginate hydrogel with Sertoli cells and a co-culture of SSCs with Sertoli cells for 1 month. The samples were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays and bromodeoxyuridine (BrdU) tracing, haematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining after transplantation into an azoospermic testis mouse. The 3D group showed rapid cell proliferation and numerous colonies compared with the co-culture group. Molecular assessment showed significantly increased integrin alpha-6, integrin beta-1, Nanog, Plzf, Thy-1, Oct4 and Bcl2 expression levels in the 3D group and decreased expression levels of P53, Fas, and Bax. BrdU tracing, and H&E and PAS staining results indicated that the hydrogel alginate improved spermatogenesis after transplantation in vivo. This finding suggested that cultivation of SSCs on alginate hydrogel with Sertoli cells in a 3D culture can lead to efficient proliferation and maintenance of SSC stemness and enhance the efficiency of SSC transplantation.
Collapse
|
6
|
KERVANCIOĞLU G, KARADENİZ Z, KERVANCIOĞLU E. Current Approach to Spermatogonial Stem Cells in Vitro Maturation. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.918781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Gharenaz NM, Movahedin M, Mazaheri Z. Comparison of two methods for prolong storage of decellularized mouse whole testis for tissue engineering application: An experimental study. Int J Reprod Biomed 2021; 19:321-332. [PMID: 33997591 PMCID: PMC8106816 DOI: 10.18502/ijrm.v19i4.9058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/04/2020] [Accepted: 09/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Biological scaffolds are derived by the decellularization of tissues or organs. Various biological scaffolds, such as scaffolds for the liver, lung, esophagus, dermis, and human testicles, have been produced. Their application in tissue engineering has created the need for cryopreservation processes to store these scaffolds. Objective The aim was to compare the two methods for prolong storage testicular scaffolds. Materials and Methods In this experimental study, 20 male NMRI mice (8 wk) were sacrificed and their testes were removed and treated with 0.5% sodium dodecyl sulfate followed by Triton X-100 0.5%. The efficiency of decellularization was determined by histology and DNA quantification. Testicular scaffolds were stored in phosphate-buffered saline solution at 4°C or cryopreserved by programmed slow freezing followed by storage in liquid nitrogen. Masson's trichrome staining, Alcian blue staining and immunohistochemistry, collagen assay, and glycosaminoglycan assay were done prior to and after six months of storage under each condition. Results Hematoxylin-eosin staining showed no remnant cells after the completion of decellularization. DNA content analysis indicated that approximately 98% of the DNA was removed from the tissue (p = 0.02). Histological evaluation confirmed the preservation of extracellular matrix components in the fresh and frozen-thawed scaffolds. Extracellular matrix components were decreased by 4°C-stored scaffolds. Cytotoxicity tests with mouse embryonic fibroblast showed that the scaffolds were biocompatible and did not have a harmful effect on the proliferation of mouse embryonic fibroblast cells. Conclusion Our results demonstrated the superiority of the slow freezing method for prolong storage of testicular scaffolds.
Collapse
Affiliation(s)
- Nasrin Majidi Gharenaz
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
8
|
Vardiani M, Ghaffari Novin M, Koruji M, Nazarian H, Goossens E, Aghaei A, Seifalian AM, Ghasemi Hamidabadi H, Asgari F, Gholipourmalekabadi M. Gelatin Electrospun Mat as a Potential Co-culture System for In Vitro Production of Sperm Cells from Embryonic Stem Cells. ACS Biomater Sci Eng 2020; 6:5823-5832. [PMID: 33320586 DOI: 10.1021/acsbiomaterials.0c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering of 3D substrates with maximum similarity to seminiferous tubules would help to produce functional sperm cells in vitro from stem cells. Here, we present a 3D electrospun gelatin (EG) substrate seeded with Sertoli cells and determine its potential for guided differentiation of embryonic stem cells (ESCs) toward germline cells. The EG was fabricated by electrospinning, and its morphology under SEM, as well as cytobiocompatibility for Sertoli cells and ESCs, was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and cell attachment assay. Embryoid bodies (EBs) were formed from ESCs and co-cultured with Sertoli cells, induced with BMP4 for 3 and 7 consecutive days to induce the differentiation of EBs toward germline cells. The differentiation was investigated by immunocytochemistry (ICC), flow cytometry, and RT-PCR in four experimental groups of EBs (EBs cultured in gelatin-coated cell culture plates); Scaffold/EB (EBs cultured on EG); ESCs/Ser (EBs and Sertoli cells co-cultured on gelatin-coated cell culture plates without EG); and Scaffold/EB/Ser (EBs and Sertoli cells co-cultured on EG). All experimental groups exhibited a significantly increased MVH (germline-specific marker) and decreased c-KIT (stemness marker) expression when compared with the EB group. ICC and flow cytometry revealed that Scaffold/EB/Ser had the highest level of MVH and the lowest c-KIT expression at both 3 and 7 days postdifferentiation compared with other groups. RT-PCR results showed a significant increase in the germline marker (Dazl) and a significant decrease in the ESC stemness marker (Nanog) in Scaffold/EB compared to the EB group. The germline markers Gcna, Stella, Mvh, Stra8, Piwil2, and Dazl were significantly increased in Scaffold/EB/Ser compared to the Scaffold/EB group. Our findings revealed that the EG scaffold can provide an excellent substrate biomimicking the micro/nanostructure of native seminiferous tubules and a platform for Sertoli cell-EB communication required for growth and differentiation of ESCs into germline cells.
Collapse
Affiliation(s)
- Mina Vardiani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Reproductive Biotechnology Research Center, Aviccena Research Institute, ACECR, 14115-343 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Hamid Nazarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Ellen Goossens
- Biology of the Testis Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Abbas Aghaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd.), The London BioScience Innovation Centre, NW1 0NH London, United Kingdom
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran.,Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, 2093716496 Sari, Iran
| | - Fatemeh Asgari
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, 14496-14535 Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
9
|
Ibtisham F, Honaramooz A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells 2020; 9:E745. [PMID: 32197440 PMCID: PMC7140722 DOI: 10.3390/cells9030745] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the only adult stem cells capable of passing genes onto the next generation. SSCs also have the potential to provide important knowledge about stem cells in general and to offer critical in vitro and in vivo applications in assisted reproductive technologies. After century-long research, proof-of-principle culture systems have been introduced to support the in vitro differentiation of SSCs from rodent models into haploid male germ cells. Despite recent progress in organotypic testicular tissue culture and two-dimensional or three-dimensional cell culture systems, to achieve complete in vitro spermatogenesis (IVS) using non-rodent species remains challenging. Successful in vitro production of human haploid male germ cells will foster hopes of preserving the fertility potential of prepubertal cancer patients who frequently face infertility due to the gonadotoxic side-effects of cancer treatment. Moreover, the development of optimal systems for IVS would allow designing experiments that are otherwise difficult or impossible to be performed directly in vivo, such as genetic manipulation of germ cells or correction of genetic disorders. This review outlines the recent progress in the use of SSCs for IVS and potential in vivo applications for the restoration of fertility.
Collapse
Affiliation(s)
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
10
|
Oncofertility: Pharmacological Protection and Immature Testicular Tissue (ITT)-Based Strategies for Prepubertal and Adolescent Male Cancer Patients. Int J Mol Sci 2019; 20:ijms20205223. [PMID: 31640294 PMCID: PMC6834329 DOI: 10.3390/ijms20205223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023] Open
Abstract
While the incidence of cancer in children and adolescents has significantly increased over the last decades, improvements made in the field of cancer therapy have led to an increased life expectancy for childhood cancer survivors. However, the gonadotoxic effect of the treatments may lead to infertility. Although semen cryopreservation represents the most efficient and safe fertility preservation method for males producing sperm, it is not feasible for prepubertal boys. The development of an effective strategy based on the pharmacological protection of the germ cells and testicular function during gonadotoxic exposure is a non-invasive preventive approach that prepubertal boys could benefit from. However, the progress in this field is slow. Currently, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells is offered to prepubertal boys as an experimental fertility preservation strategy by a number of medical centers. Several in vitro and in vivo fertility restoration approaches based on the use of ITT have been developed so far with autotransplantation of ITT appearing more promising. In this review, we discuss the pharmacological approaches for fertility protection in prepubertal and adolescent boys and the fertility restoration approaches developed on the utilization of ITT.
Collapse
|
11
|
Ljubicic ML, Jørgensen A, Acerini C, Andrade J, Balsamo A, Bertelloni S, Cools M, Cuccaro RT, Darendeliler F, Flück CE, Grinspon RP, Maciel-Guerra A, Guran T, Hannema SE, Lucas-Herald AK, Hiort O, Holterhus PM, Lichiardopol C, Looijenga LHJ, Ortolano R, Riedl S, Ahmed SF, Juul A. Clinical but Not Histological Outcomes in Males With 45,X/46,XY Mosaicism Vary Depending on Reason for Diagnosis. J Clin Endocrinol Metab 2019; 104:4366-4381. [PMID: 31127831 DOI: 10.1210/jc.2018-02752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/19/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Larger studies on outcomes in males with 45,X/46,XY mosaicism are rare. OBJECTIVE To compare health outcomes in males with 45,X/46,XY diagnosed as a result of either genital abnormalities at birth or nongenital reasons later in life. DESIGN A retrospective, multicenter study. SETTING Sixteen tertiary centers. PATIENTS OR OTHER PARTICIPANTS Sixty-three males older than 13 years with 45,X/46,XY mosaicism. MAIN OUTCOME MEASURES Health outcomes, such as genital phenotype, gonadal function, growth, comorbidities, fertility, and gonadal histology, including risk of neoplasia. RESULTS Thirty-five patients were in the genital group and 28 in the nongenital. Eighty percent of all patients experienced spontaneous pubertal onset, significantly more in the nongenital group (P = 0.023). Patients were significantly shorter in the genital group with median adult heights of 156.7 cm and 164.5 cm, respectively (P = 0.016). Twenty-seven percent of patients received recombinant human GH. Forty-four patients had gonadal histology evaluated. Germ cells were detected in 42%. Neoplasia in situ was found in five patients. Twenty-five percent had focal spermatogenesis, and another 25.0% had arrested spermatogenesis. Fourteen out of 17 (82%) with semen analyses were azoospermic; three had motile sperm. CONCLUSION Patients diagnosed as a result of genital abnormalities have poorer health outcomes than those diagnosed as a result of nongenital reasons. Most patients, however, have relatively good endocrine gonadal function, but most are also short statured. Patients have a risk of gonadal neoplasia, and most are azoospermic, but almost one-half of patients has germ cells present histologically and up to one-quarter has focal spermatogenesis, providing hope for fertility treatment options.
Collapse
Affiliation(s)
- Marie Lindhardt Ljubicic
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Acerini
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Juliana Andrade
- Faculty of Medical Sciences, Department of Medical Genetics, State University of Campinas, São Paulo, Brazil
| | - Antonio Balsamo
- Department of Medical and Surgical Sciences, Pediatric Endocrinology Unit, Centre for Rare Endocrine Conditions, Policlinico S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Silvano Bertelloni
- Dipartimento Materno-Infantile Azienda Ospedaliero, Universitaria Pisana, Pisa, Italy
| | - Martine Cools
- Department of Paediatric Endocrinology, University Hospital Ghent, and Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Rieko Tadokoro Cuccaro
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | | | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, and Department of BioMedical Research, Bern University Children's Hospital, University of Bern, Bern, Switzerland
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), National Scientific and Technical Research Council (CONICET) - Fundación de Endocrinología Infantil (FEI) - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Andrea Maciel-Guerra
- Faculty of Medical Sciences, Department of Medical Genetics, State University of Campinas, São Paulo, Brazil
| | - Tulay Guran
- Department of Paediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sabine E Hannema
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatric Endocrinology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Angela K Lucas-Herald
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Olaf Hiort
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Luebeck, Luebeck, Germany
| | - Paul Martin Holterhus
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Corina Lichiardopol
- Department of Endocrinology, University of Medicine and Pharmacy Craiova, University Emergency Hospital, Craiova, Romania
| | - Leendert H J Looijenga
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Cancer Institute, Rotterdam, and Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Rita Ortolano
- Department of Medical and Surgical Sciences, Pediatric Endocrinology Unit, Centre for Rare Endocrine Conditions, Policlinico S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Stefan Riedl
- Pediatric Endocrinology, St. Anna Children´s Hospital, Medical University of Vienna, Vienna, Austria
- Department of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Vardiani M, Gholipourmalekabadi M, Ghaffari Novin M, Koruji M, Ghasemi Hamidabadi H, Salimi M, Nazarian H. Three-dimensional electrospun gelatin scaffold coseeded with embryonic stem cells and sertoli cells: A promising substrate for in vitro coculture system. J Cell Biochem 2019; 120:12508-12518. [PMID: 30977186 DOI: 10.1002/jcb.28517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
Abstract
In this study, we present an electrospun gelatin (EG) scaffold to mimic the extracellular matrix of the testis. The EG scaffold was synthesized by electrospinning and crosslinked with glutaraldehyde vapor to decrease its water solubility and degradation rate. The scanning electron microscope micrographs showed the homogenous morphology of randomly aligned gelatin fibers. The average diameter of gelatin fibers before and after crosslinking was approximately 180 and 220 nm, respectively. Modulus, tensile strength, and elongation at break values were as 161.8 ± 24.4 MPa, 4.21 ± 0.54 MPa, and 7.06 ± 2.12 MPa, respectively. The crosslinked EG showed 75.2% ± 4.5% weight loss after 14 days with no changes in the pH value of degradation solution. Cytobiocompatibility of the EG for sertoli cells and embryonic stem cells (ESCs) was determined in vitro. Sertoli cells were isolated from mouse testis and characterized by immunostaining and flow cytometry. The effects of EG on proliferation and attachment of both sertoli cells and ESCs were examined. The EG scaffolds exhibited no cytotoxicity for sertoli and ESCs. Both sertoli and ESCs were well attached and grown on EG. Coculture of sertoli and ESCs on EG showed better ESCs adhesion compared with ESCs alone. Our findings indicate the potential of EG as a substrate for proliferation, adhesion, and coculture of sertoli and ESCs and may be considered as a promising engineered microenvironment for in vitro coculture system with the aim of guiding stem cells differentiation toward sperm-producing cells.
Collapse
Affiliation(s)
- Mina Vardiani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Anatomy & Cell Biology, Faculty of Medicine, Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Salimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Abofoul-Azab M, Lunenfeld E, Levitas E, Zeadna A, Younis JS, Bar-Ami S, Huleihel M. Identification of Premeiotic, Meiotic, and Postmeiotic Cells in Testicular Biopsies Without Sperm from Sertoli Cell-Only Syndrome Patients. Int J Mol Sci 2019; 20:E470. [PMID: 30678285 PMCID: PMC6387177 DOI: 10.3390/ijms20030470] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Sertoli cell-only syndrome (SCOS) affects about 26.3⁻57.8% of azoospermic men, with their seminiferous tubules containing only Sertoli cells. Recently, it was reported that testicular biopsies from nonobstructive azoospermic (NOA) patients contained germ cells, and that sperm could be found in the tubules of 20% of SCOS patients using testicular sperm extraction technology. Since the patients without sperm in their testicular biopsies do not have therapy to help them to father a biological child, in vitro maturation of spermatogonial stem cells (SSCs) isolated from their testis is a new approach for possible future infertility treatment. Recently, the induction of human and mice SSCs proliferation and differentiation was demonstrated using different culture systems. Our group reported the induction of spermatogonial cell proliferation and differentiation to meiotic and postmeiotic stages in mice, rhesus monkeys, and prepubertal boys with cancer using 3D agar and methylcellulose (MCS) culture systems. The aim of the study was to identify the type of spermatogenic cells present in biopsies without sperm from SCOS patients, and to examine the possibility of inducing spermatogenesis from isolated spermatogonial cells of these biopsies in vitro using 3D MCS. We used nine biopsies without sperm from SCOS patients, and the presence of spermatogenic markers was evaluated by PCR and specific immunofluorescence staining analyses. Isolated testicular cells were cultured in MCS in the presence of StemPro enriched media with different growth factors and the development of colonies/clusters was examined microscopically. We examined the presence of cells from the different stages of spermatogenesis before and after culture in MCS for 3⁻7 weeks. Our results indicated that these biopsies showed the presence of premeiotic markers (two to seven markers/biopsy), meiotic markers (of nine biopsies, cAMP responsive element modulator-1 (CREM-1) was detected in five, lactate dehydrogenase (LDH) in five, and BOULE in three) and postmeiotic markers (protamine was detected in six biopsies and acrosin in three). In addition, we were able to induce the development of meiotic and/or postmeiotic stages from spermatogonial cells isolated from three biopsies. Thus, our study shows for the first time the presence of meiotic and/or postmeiotic cells in biopsies without the sperm of SCOS patients. Isolated cells from some of these biopsies could be induced to meiotic and/or postmeiotic stages under in vitro culture conditions.
Collapse
Affiliation(s)
- Maram Abofoul-Azab
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University, Beer Sheva 8410501, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| | - Eitan Lunenfeld
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Eliahu Levitas
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Atif Zeadna
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
- Fertility and IVF Unit, Department OB/GYN, Soroka Medical Center, Beer-Sheva 85025, Israel.
| | - Johnny S Younis
- Reproductive Medicine Unit, Department OB/GYN, Poriya Medical Center, Tiberias; Azrieli Faculty of Medicine in Galilee, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Shalom Bar-Ami
- Reproductive Medicine Unit, Department OB/GYN, Poriya Medical Center, Tiberias; Azrieli Faculty of Medicine in Galilee, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University, Beer Sheva 8410501, Israel.
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Beer Sheva 8410501, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
14
|
Komeya M, Sato T, Ogawa T. In vitro spermatogenesis: A century-long research journey, still half way around. Reprod Med Biol 2018; 17:407-420. [PMID: 30377394 PMCID: PMC6194268 DOI: 10.1002/rmb2.12225] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Spermatogenesis is one of the most complicated cellular differentiation processes in a body. Researchers struggled to find and develop a micro-environmental condition that can support the process in vitro. Such endeavors can be traced back to a century ago and are yet continuing. METHODS Reports on in vitro spermatogenesis and related works were selected and classified into four categories based on the method used; organ culture, tubule culture, cell culture, and 3-dimensional cell culture methods. Each report was critically reviewed from the present point of view by authors who have been working on in vitro spermatogenesis with organ culture method over a decade. RESULTS The organ culture method has the longest history and is the most successful method, which produced fertile mouse sperm from spermatogonial stem cells. Formulation of the medium was a key factor, most importantly serum-derived substances. However, factors in the serum that induce and support spermatogenesis in the cultured tissue remain to be identified. In addition, the success of mouse spermatogenesis is yet to be applied to other animals. On looking into the history of cell culture method, it became clear that Sertoli cells as feeder cells play an important role. Even with Sertoli cells, however, spermatogenic development has been limited to small parts of spermatogenesis, a segmented period of meiotic prophase for instance. Recent developments of organoid or 3-dimensional culture techniques are promising but they still need further refinements. CONCLUSION The study of in vitro spermatogenesis progressed significantly over the last century. We need more work, however, to establish a culture system that can induce and maintain complete spermatogenesis of many if not all mammalian species.
Collapse
Affiliation(s)
- Mitsuru Komeya
- Department of UrologyYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
- Laboratory of Biopharmaceutical and Regenerative SciencesInstitute of Molecular Medicine and Life ScienceYokohama City University Association of Medical ScienceYokohamaKanagawaJapan
| | - Takuya Sato
- Laboratory of Biopharmaceutical and Regenerative SciencesInstitute of Molecular Medicine and Life ScienceYokohama City University Association of Medical ScienceYokohamaKanagawaJapan
| | - Takehiko Ogawa
- Department of UrologyYokohama City University Graduate School of MedicineYokohamaKanagawaJapan
- Laboratory of Biopharmaceutical and Regenerative SciencesInstitute of Molecular Medicine and Life ScienceYokohama City University Association of Medical ScienceYokohamaKanagawaJapan
| |
Collapse
|
15
|
Tharmalingam MD, Jorgensen A, Mitchell RT. Experimental models of testicular development and function using human tissue and cells. Mol Cell Endocrinol 2018; 468:95-110. [PMID: 29309804 DOI: 10.1016/j.mce.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
The mammalian testis has two main roles, production of gametes for reproduction and synthesis of steroid- and peptide hormones for masculinization. These processes are tightly regulated and involve complex interactions between a number of germ and somatic cell-types that comprise a unique microenvironment known as the germ stem cell niche. In humans, failure of normal testicular development or function is associated with susceptibility to a variety of male reproductive disorders including disorders of sex development, infertility and testicular cancer. Whilst studies in rodent models have provided detailed insight into the signaling pathways and molecular mechanisms that regulate the testis, there are important species differences in testicular development, function and reproductive disorders that highlight the need for suitable experimental models utilising human testicular tissues or cells. In this review, we outline experimental approaches used to sustain cells and tissue from human testis at different developmental time-points and discuss relevant end-points. These include survival, proliferation and differentiation of cell lineages within the testis as well as autocrine, paracrine and endocrine function. We also highlight the utility of these experimental approaches for modelling the effects of environmental exposures on testicular development and function.
Collapse
Affiliation(s)
- Melissa D Tharmalingam
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Anne Jorgensen
- Department of Growth and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK; Department of Endocrinology and Diabetes, Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK.
| |
Collapse
|
16
|
Hernandez-Cortes D, Alvarado-Cruz I, Solís-Heredia MJ, Quintanilla-Vega B. Epigenetic modulation of Nrf2 and Ogg1 gene expression in testicular germ cells by methyl parathion exposure. Toxicol Appl Pharmacol 2018. [PMID: 29540303 DOI: 10.1016/j.taap.2018.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methyl parathion (Me-Pa) is an oxidizing organophosphate (OP) pesticide that generates reactive oxygen species (ROS) through its biotransformation. Some studies have also suggested that OP pesticides have the capacity to alkylate biomolecules, including DNA. In general, DNA methylation in gene promoters represses transcription. NRF2 is a key transcription factor that regulates the expression of antioxidant, metabolic and detoxifying genes through the antioxidant response element (ARE) situated in promoters of regulated genes. Furthermore, DNA repair genes, including 8-oxoguanine DNA glycosidase (OGG1), have been proposed as NRF2 target genes. Me-Pa exposure produces poor semen quality, genetic and oxidative damage in sperm cells, and reduced fertility. However, the Me-Pa effects on the methylation status and the expression of antioxidant (Nrf2) or DNA repair (Ogg1) genes in male germ cells have not been investigated. Therefore, mice were exposed to Me-Pa to evaluate the global (%5-mC) and specific methylation of Nrf2 and Ogg1 genes using pyrosequencing, gene expression, and total protein carbonylation in male germ cells. The results showed that Me-Pa significantly decreased the global DNA methylation pattern and significantly increased the methylation of two CpG sites within Ogg1 promoter and one CpG site within Nrf2 promoter. In addition, Ogg1 or Nrf2 expression did not change after Me-Pa exposure despite the oxidative damage produced. Altogether, our data suggest that Me-Pa toxicity alters Ogg1 and Nrf2 promoter methylation in male germ cells that may be modulating their gene expression.
Collapse
Affiliation(s)
| | - I Alvarado-Cruz
- Department of Toxicology, Cinvestav, Mexico City 07360, Mexico
| | | | | |
Collapse
|
17
|
Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ 2018; 25:749-766. [PMID: 29305586 PMCID: PMC5864226 DOI: 10.1038/s41418-017-0015-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022] Open
Abstract
Generation of functional spermatids from human spermatogonial stem cells (SSCs) in vitro is of utmost importance for uncovering mechanisms underlying human germ cell development and treating infertility. Here we report a three-dimensional-induced (3D-I) system by which human SSCs were efficiently differentiated into functional haploid spermatids. Human SSCs were isolated and identified phenotypically. Meiotic chromatin spreads and DNA content assays revealed that spermatocytes and haploid cells were effectively generated from human SSCs by 3D-I system. Haploid cells derived from human SSCs harbored normal chromosomes and excluded Y chromosome microdeletions. RNA sequencing and bisulfite sequencing analyses reflected similarities in global gene profiles and DNA methylation in human SSCs-derived spermatids and normal round spermatids. Significantly, haploid spermatids generated from human SSCs via 3D-I system were capable of fertilizing mouse oocytes, which subsequently enabled the development of hybrid embryos. This study thus provides invaluable human male gametes for treating male infertility.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review evaluates the state of the art in terms of challenges and strategies used to restore fertility with spermatogonial stem cells retrieved from prepubertal boys affected by cancer. Although these boys do not yet produce spermatozoa, the only option to preserve their fertility is cryopreservation of spermatogonial stem cells in the form of testicular cell suspensions or whole tissue pieces. Different techniques have been described to achieve completion of spermatogenesis from human, spermatogonial stem cells but none is yet ready for clinical application. A crucial point to address is gaining a full understanding of spermatogonial stem cell niche pathophysiology, where germ cells undergo proliferation and differentiation. Various fertility restoration approaches will be presented depending on the presence of an intact niche, dissociated niche, or reconstituted niche. RECENT FINDINGS Testicular organoids open the way to providing further insights into the niche. They can recreate the three-dimensional architecture of the testicular microenvironment in vitro, allowing a large number of applications, from physiology to drug toxicity investigations. SUMMARY In addition to the full elucidation of the niche microenvironment, achieving fertility restoration from cryopreserved human spermatogonial stem cells implies overcoming other important challenges. Testicular organoids might prove to be essential tools to progress in this field.
Collapse
Affiliation(s)
- Francesca de Michele
- aInstitut de Recherche Expérimentale et Clinique, Université Catholique de Louvain bDepartment of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | | |
Collapse
|
19
|
Ibtisham F, Wu J, Xiao M, An L, Banker Z, Nawab A, Zhao Y, Li G. Progress and future prospect of in vitro spermatogenesis. Oncotarget 2017; 8:66709-66727. [PMID: 29029549 PMCID: PMC5630449 DOI: 10.18632/oncotarget.19640] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Infertility has become a major health issue in the world. It affects the social life of couples and of all infertility cases; approximately 40–50% is due to “male factor” infertility. Male infertility could be due to genetic factors, environment or due to gonadotoxic treatment. Developments in reproductive biotechnology have made it possible to rescue fertility and uphold biological fatherhood. In vitro production of haploid male germ cell is a powerful tool, not only for the treatment of infertility including oligozoospermic or azoospermic patient, but also for the fertility preservation in pre-pubertal boys whose gonadal function is threatened by gonadotoxic therapies. Genomic editing of in-vitro cultured germ cells could also potentially cure flaws in spermatogenesis due to genomic mutation. Furthermore, this ex-vivo maturation technique with genomic editing may be used to prevent paternal transmission of genomic diseases. Here, we summarize the historical progress of in vitro spermatogenesis research by using organ and cell culture techniques and the future clinical application of in vitro spermatogenesis.
Collapse
Affiliation(s)
- Fahar Ibtisham
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiang Wu
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mei Xiao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lilong An
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zachary Banker
- Foreign Language College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Aamir Nawab
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yi Zhao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanghui Li
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
20
|
Galdon G, Atala A, Sadri-Ardekani H. In Vitro Spermatogenesis: How Far from Clinical Application? Curr Urol Rep 2016; 17:49. [PMID: 27107595 DOI: 10.1007/s11934-016-0605-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Male infertility affects 7 % of the male population, and 10 % of infertile men are azoospermic. In these instances, using microsurgical testicular sperm extraction (m-TESE) and intra-cytoplasmic sperm injection (ICSI) helps a significant number of patients. However, in vitro differentiation of diploid germ cells to mature haploid germ cell has the potential to benefit many others, including pediatric cancer survivors who have previously cryopreserved their immature testicular tissue prior to starting gonadotoxic cancer treatment as well as men with spermatogenic arrest. This systematic review evaluates and summarizes half a century of researchers' efforts towards achieving in vitro spermatogenesis in mammalian species. A myriad of experimental assays and approaches has been developed using whole testis tissue or separated single cells from testis in two- or three-dimensional cell culture systems (2D versus 3D). Recent advances in the mammalian in vitro spermatogenesis, particularly in murine and nonhuman primate systems, hold promise towards translating the availability of in vitro spermatogenesis models in the human clinical setting in the near future.
Collapse
Affiliation(s)
- Guillermo Galdon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.,Department of Urology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA. .,Department of Urology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.
| |
Collapse
|
21
|
Heidargholizadeh S, Aydos SE, Yukselten Y, Ozkavukcu S, Sunguroglu A, Aydos K. A differential cytokine expression profile before and after rFSH treatment in Sertoli cell cultures of men with nonobstructive azoospermia. Andrologia 2016; 49. [DOI: 10.1111/and.12647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- S. Heidargholizadeh
- Department of Medical Biology; School of Medicine; Ankara University; Ankara Turkey
| | - S. E. Aydos
- Department of Medical Biology; School of Medicine; Ankara University; Ankara Turkey
| | - Y. Yukselten
- Department of Medical Biology; School of Medicine; Ankara University; Ankara Turkey
| | - S. Ozkavukcu
- Department of Obstetrics and Gynecology; School of Medicine; Assisted Reproduction Center; Ankara University; Ankara Turkey
| | - A. Sunguroglu
- Department of Medical Biology; School of Medicine; Ankara University; Ankara Turkey
| | - K. Aydos
- Department of Urology; School of Medicine; Ankara University; Ankara Turkey
| |
Collapse
|
22
|
Reda A, Hou M, Winton TR, Chapin RE, Söder O, Stukenborg JB. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture. Mol Hum Reprod 2016; 22:601-12. [PMID: 27430551 PMCID: PMC5013872 DOI: 10.1093/molehr/gaw047] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/08/2016] [Indexed: 01/21/2023] Open
Abstract
STUDY QUESTION Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? SUMMARY ANSWER We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. WHAT IS KNOWN ALREADY Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. MAIN RESULTS AND THE ROLE OF CHANCE Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in vitro or testosterone production was observed. LIMITATIONS, REASONS FOR CAUTION The human testis is very different in physiology from the rat testis, further investigations are still needed to optimize the organ culture system for future use in humans. WIDER IMPLICATIONS OF THE FINDINGS The successful differentiation of undifferentiated spermatogonia using the testis explant culture system might be employed in future to produce sperm from human spermatogonia as a clinical tool for fertility preservation in boys and men suffering infertility. LARGE SCALE DATA None. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported financially by the Frimurare Barnhuset in Stockholm, the Paediatric Research Foundation, Jeanssons Foundation, Sällskåpet Barnåvard in Stockholm, Swedish Research Council/Academy of Finland, Emil and Wera Cornells Foundation, Samariten Foundation, the Swedish Childhood Cancer Foundation as well as through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet. All authors declare no conflicts of interests.
Collapse
Affiliation(s)
- A Reda
- Department of Women's and Children's Health, Pediatric Endocrinology Unit; Q2:08; Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - M Hou
- Department of Women's and Children's Health, Pediatric Endocrinology Unit; Q2:08; Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - T R Winton
- Pfizer Worldwide R&D, Drug Safety R&D, MS-8274-1336 , Groton, CT 06340, USA
| | - R E Chapin
- Pfizer Worldwide R&D, Drug Safety R&D, MS-8274-1336 , Groton, CT 06340, USA
| | - O Söder
- Department of Women's and Children's Health, Pediatric Endocrinology Unit; Q2:08; Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - J-B Stukenborg
- Department of Women's and Children's Health, Pediatric Endocrinology Unit; Q2:08; Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
23
|
Abstract
Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.
Collapse
Affiliation(s)
- Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| | - Xinbao Ding
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jian Wang
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
24
|
Moreno I, Míguez-Forjan JM, Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015; 42:33-44. [PMID: 26161331 PMCID: PMC4496429 DOI: 10.5653/cerm.2015.42.2.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.
Collapse
Affiliation(s)
- Inmaculada Moreno
- Department of Research and Development, Igenomix S.L., Paternam, Spain
| | | | - Carlos Simón
- Department of Research and Development, Igenomix S.L., Paternam, Spain. ; Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia, Spain. ; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
Guo Y, Hai Y, Yao C, Chen Z, Hou J, Li Z, He Z. Long-term culture and significant expansion of human Sertoli cells whilst maintaining stable global phenotype and AKT and SMAD1/5 activation. Cell Commun Signal 2015; 13:20. [PMID: 25880873 PMCID: PMC4380114 DOI: 10.1186/s12964-015-0101-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sertoli cells play key roles in regulating spermatogenesis and testis development by providing structural and nutritional supports. Recent studies demonstrate that Sertoli cells can be converted into functional neural stem cells. Adult Sertoli cells have previously been considered the terminally differentiated cells with a fixed and unmodifiable population after puberty. However, this concept has been challenged. Since the number of adult human Sertoli cells is limited, it is essential to culture these cells for a long period and expand them to obtain sufficient cells for their basic research and clinic applications. Nevertheless, the studies on human Sertoli cells are restricted, because it is difficult to get access to human testis tissues. RESULTS Here we isolated adult human Sertoli cells with a high purity and viability from obstructive azoospermia patients with normal spermatogenesis. Adult human Sertoli cells were cultured with DMEM/F12 and fetal bovine serum for 2 months, and they could be expanded with a 59,049-fold increase of cell numbers. Morphology, phenotypic characteristics, and the signaling pathways of adult human Sertoli cells from different passages were compared. Significantly, adult human Sertoli cells assumed similar morphological features, stable global gene expression profiles and numerous proteins, and activation of AKT and SMAD1/5 during long-period culture. CONCLUSIONS This study demonstrates that adult human Sertoli cells can be cultured for a long period and expanded with remarkable increase of cell numbers whilst maintaining their primary morphology, phenotype and signaling pathways. This study could provide adequate human Sertoli cells for reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Chencheng Yao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Zheng Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai, 200001, China.
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Andrology, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai, 200001, China. .,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, 200025, China.
| |
Collapse
|
26
|
Yang S, Ping P, Ma M, Li P, Tian R, Yang H, Liu Y, Gong Y, Zhang Z, Li Z, He Z. Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients. Stem Cell Reports 2014; 3:663-75. [PMID: 25358793 PMCID: PMC4223697 DOI: 10.1016/j.stemcr.2014.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/21/2022] Open
Abstract
Generation of functional spermatids from azoospermia patients is of unusual significance in the treatment of male infertility. Here, we report an efficient approach to obtain human functional spermatids from cryptorchid patients. Spermatogonia remained whereas meiotic germ cells were rare in cryptorchid patients. Expression of numerous markers for meiotic and postmeiotic male germ cells was enhanced in human spermatogonial stem cells (SSCs) of cryptorchidism patients by retinoic acid (RA) and stem cell factor (SCF) treatment. Meiotic spreads and DNA content assays revealed that RA and SCF induced a remarkable increase of SCP3-, MLH1-, and CREST-positive cells and haploid cells. Single-cell RNA sequencing analysis reflected distinct global gene profiles in embryos derived from round spermatids and nuclei of somatic cells. Significantly, haploid spermatids generated from human SSCs of cryptorchid patients possessed fertilization and development capacity. This study thus provides an invaluable source of autologous male gametes for treating male infertility in azoospermia patients. Spermatogonia remain whereas meiotic male germ cells are rare in cryptorchid patients Human SSCs of cryptorchid patients differentiate into phenotypic haploid spermatids Round spermatids derived from human SSCs have fertilization and development capacity Distinct gene profiles exist in embryos from round spermatid and somatic cell nuclei
Collapse
Affiliation(s)
- Shi Yang
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Ping Ping
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Meng Ma
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Peng Li
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Ruhui Tian
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China
| | - Hao Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Yang Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Yuehua Gong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Zheng Li
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200001, China.
| | - Zuping He
- Department of Urology, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200001, China.
| |
Collapse
|
27
|
Hou J, Yang S, Yang H, Liu Y, Liu Y, Hai Y, Chen Z, Guo Y, Gong Y, Gao WQ, Li Z, He Z. Generation of male differentiated germ cells from various types of stem cells. Reproduction 2014; 147:R179-88. [PMID: 24534952 DOI: 10.1530/rep-13-0649] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients.
Collapse
Affiliation(s)
- Jingmei Hou
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Shi Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Hao Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Yang Liu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Zheng Chen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Ying Guo
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Yuehua Gong
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Zheng Li
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, ChinaState Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, ChinaState Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, ChinaShanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai 200135, ChinaShanghai Key Laboratory of Reproductive MedicineShanghai 200025, ChinaState Key Laboratory of Oncogenes and Related GenesStem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, ChinaDepartment of UrologyShanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Linshan Road, Shanghai 200135, Chin
| |
Collapse
|
28
|
Song W, Zhu H, Li M, Li N, Wu J, Mu H, Yao X, Han W, Liu W, Hua J. Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis. Cell Prolif 2014; 46:457-68. [PMID: 23869766 DOI: 10.1111/cpr.12048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. MATERIALS AND METHODS Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. RESULTS Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. CONCLUSIONS Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock.
Collapse
Affiliation(s)
- W Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Goossens E, Van Saen D, Tournaye H. Spermatogonial stem cell preservation and transplantation: from research to clinic. Hum Reprod 2013; 28:897-907. [PMID: 23427228 DOI: 10.1093/humrep/det039] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
STUDY QUESTION What issues remain to be solved before fertility preservation and transplantation can be offered to prepubertal boys? SUMMARY ANSWER The main issues that need further investigation are malignant cell decontamination, improvement of in vivo fertility restoration and in vitro maturation. WHAT IS KNOWN ALREADY Prepubertal boys who need gonadotoxic treatment might render sterile for the rest of their life. As these boys do not yet produce sperm cells, they cannot benefit from sperm banking. Spermatogonial stem cell (SSC) banking followed by autologous transplantation has been proposed as a fertility preservation strategy. But before this technique can be applied in the clinic, some important issues have to be resolved. STUDY DESIGN, SIZE DURATION Original articles as well as review articles published in English were included in a search of the literature. PARTICIPANTS/MATERIALS, SETTING, METHODS Relevant studies were selected by an extensive Medline search. Search terms were fertility preservation, cryopreservation, prepubertal, SSC, testis tissue, transplantation, grafting and in vitro spermatogenesis. The final number of studies selected for this review was 102. MAIN RESULTS AND THE ROLE OF CHANCE Cryopreservation protocols for testicular tissue have been developed and are already being used in the clinic. Since the efficiency and safety of SSC transplantation have been reported in mice, transplantation methods are now being adapted to the human testes. Very recently, a few publications reported on in vitro spermatogenesis in mice, but this technique is still far from being applied in a clinical setting. LIMITATIONS, REASONS FOR CAUTION Using tissue from cancer patients holds a potential risk for contamination of the collected testicular tissue. Therefore, it is of immense importance to separate malignant cells from the cell suspension before transplantation. Because biopsies obtained from young boys are small and contain only few SSCs, propagation of these cells in vitro will be necessary. WIDER IMPLICATIONS OF THE FINDINGS The ultimate use of the banked tissue will depend on the patient's disease. If the patient was suffering from a non-malignant disease, tissue grafting might be offered. In cancer patients, decontaminated cell suspensions will be injected in the testis. For patients with Klinefelter syndrome, the only option would be in vitro spermatogenesis. However, at present, restoring fertility in cancer and Klinefelter patients is not yet possible. STUDY FUNDING/COMPETING INTEREST(S) Research Foundation, Flanders (G.0385.08 to H.T.), the Institute for the Agency for Innovation, Belgium (IWT/SB/111245 to E.G.), the Flemish League against Cancer (to E.G.), Kom op tegen kanker (G.0547.11 to H.T.) and the Fund Willy Gepts (to HT). E.G. is a Postdoctoral Fellow of the FWO, Research Foundation, Flanders. There are no conflicts of interest.
Collapse
Affiliation(s)
- E Goossens
- Biology of the testis, Department for Embryology and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
| | | | | |
Collapse
|