1
|
Kaltsas A, Zikopoulos A, Moustakli E, Zachariou A, Tsirka G, Tsiampali C, Palapela N, Sofikitis N, Dimitriadis F. The Silent Threat to Women's Fertility: Uncovering the Devastating Effects of Oxidative Stress. Antioxidants (Basel) 2023; 12:1490. [PMID: 37627485 PMCID: PMC10451552 DOI: 10.3390/antiox12081490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress (OS), which arises through an imbalance between the formation of reactive oxygen species (ROS) and antioxidant defenses, plays a key role in the pathophysiology of female infertility, with the latter constituting just one of a number of diseases linked to OS as a potential cause. The aim of the present article is to review the literature regarding the association between OS and female infertility. Among the reproductive diseases considered are endometriosis and polycystic ovary syndrome (PCOS), while environmental pollutants, lifestyle variables, and underlying medical conditions possibly resulting in OS are additionally examined. Current evidence points to OS likely contributing to the pathophysiology of the above reproductive disorders, with the amount of damage done by OS being influenced by such variables as duration and severity of exposure and the individual's age and genetic predisposition. Also discussed are the processes via which OS may affect female fertility, these including DNA damage and mitochondrial dysfunction. Finally, the last section of the manuscript contains an evaluation of treatment options, including antioxidants and lifestyle modification, capable of minimizing OS in infertile women. The prime message underlined by this review is the importance of considering OS in the diagnosis and treatment of female infertility. Further studies are, nevertheless required to identify the best treatment regimen and its ideal duration.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Athanasios Zikopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Efthalia Moustakli
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (G.T.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Georgia Tsirka
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.); (G.T.)
| | | | - Natalia Palapela
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (A.Z.); (N.S.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Ray A, Bhati T, Arora R, Parvez S, Rastogi S. Association of functional superoxide gene polymorphism with chlamydia trachomatis-associated recurrent spontaneous abortion. Mol Biol Rep 2023; 50:4907-4915. [PMID: 37072652 DOI: 10.1007/s11033-023-08405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Oxidative stress generated by Chlamydia trachomatis infection is associated with reproductive complications such as recurrent spontaneous abortion. Aim of prospective study was to evaluate whether single nucleotide polymorphisms (SNPs) of SOD1 and SOD2 gene are associated with C. trachomatis-infected recurrent spontaneous abortion (RSA). METHODS 150 patients with history of RSA and 150 patients with history of successful deliveries were recruited from Department of Obstetrics and Gynecology, Safdarjung hospital, New Delhi, India. Urine and non-heparinized blood samples were collected and C. trachomatis was detected by polymerase chain reaction (PCR). Using qualitative real time PCR, SNPs rs4998557 (SOD1) and rs4880 (SOD2) were screened in enrolled patients. Level of 8-hydroxyguanosine (8-OHdG), 8-isoprostane (8-IP), progesterone and estrogen was determined by enzyme-linked immunosorbent assays and correlated with SNPs. RESULTS Significant differences were found in frequency of AA genotype of SOD1 gene among RSA patients versus controls, (82% and 54.66%, respectively; p = 0.02; OR 0.40; CI 95%). Frequency of AA genotype of SOD1 gene among RSA patients with C. trachomatis infection was 87.33%, while in uninfected RSA patients was 71.33% (p < 0.0001; OR 8; CI 95%). No significant relation was found between SOD2 (rs4880) genotype and RSA. Furthermore, significant increase in 8-OHdG, 8-IP and estrogen and significant decrease in progesterone was observed among patients carrying AA genotype. CONCLUSIONS Findings suggest the clinical importance of AA genotype along with 8-OHdG, 8-IP and estrogen and progesterone in screening C. trachomatis-infected RSA women.
Collapse
Affiliation(s)
- Ankita Ray
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung hospital campus, Post Box no. 4909, New Delhi, 110029, India
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
| | - Tanu Bhati
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung hospital campus, Post Box no. 4909, New Delhi, 110029, India
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung hospital, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
| | - Sangita Rastogi
- Molecular Microbiology laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung hospital campus, Post Box no. 4909, New Delhi, 110029, India.
| |
Collapse
|
3
|
Identification of noninvasive diagnostic biomarkers for ectopic pregnancy using data-independent acquisition (DIA)proteomics: a pilot study. Sci Rep 2022; 12:19992. [PMID: 36411308 PMCID: PMC9678856 DOI: 10.1038/s41598-022-23374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
At present, the diagnosis of ectopic pregnancy mainly depends on transvaginal ultrasound and β-hCG. However, these methods may delay diagnosis and treatment time. Therefore, we aimed to screen for serological molecular markers for the early diagnosis of ectopic pregnancy (EP).Using data-independent acquisition (DIA)proteomics, the differential proteins in serum were selected between the intrauterine pregnancy (IP) and EP groups. Then, the expression levels of these differential proteins were measured by enzyme-linked immunosorbent assay. The diagnostic value of the serum biomarkers was evaluated by receiver operating characteristic curve analysis.GSTO1, ECM-1 and β-hCG showed significant differences between the EP and IP groups (P < 0.05). The combination of GSTO1/ECM-1/β-hCG had an area under the curve of 0.93 (95% CI 0.88-0.99), a sensitivity of 88.89% (95% CI 73.94-96.89) and a specificity of 86.11% (95% CI 70.50-95.33) with a likelihood ratio of 6.40.The combination of GSTO1/ECM-1/β-hCG may be developed into a possible approach for the early diagnosis of EP.
Collapse
|
4
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
5
|
Zhang D, Sun X, Ren L, Yang C, Liu X, Zhang H, Jiang Y, Hu X. Proteomic profiling of human decidual immune proteins during Toxoplasma gondii infection. J Proteomics 2018; 186:28-37. [PMID: 30031066 DOI: 10.1016/j.jprot.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
A Toxoplasma gondii infection during pregnancy can result in spontaneous abortion, preterm labor, or congenital fetal defects. The decidual immune system plays a critical role in regulating the immune micro-environment and in the induction of immune tolerance. To better understand the factors that mediate the decidual immune response associated with the T. gondii infection, a large-scale study employing TMT proteomics was conducted to characterize the differential decidual immune proteomes from infected and uninfected human decidual immune cells samples. The decidual immune cells from 105 human voluntary abortion tissues were purified, and of the 5510 unique proteins identified, 181 proteins were found to be differentially abundant (>1.2-fold cutoff, p < 0.05) in the T. gondii-infected decidual immune cells. 11 proteins of 181 differentially expressed proteins associated with trophoblast invasion, placental development, intrauterine fetal growth, and immune tolerance were verified using a quantitative real-time polymerase chain reaction and western blotting. This systematic analysis for the proteomics of decidual immune cells identified a broad range of immune factors in human decidual immune cells, shedding a new insight into the decidual immune molecular mechanism for abnormal pregnancy outcomes associated with T. gondii infection.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xinyue Sun
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Liqin Ren
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunyan Yang
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Haixia Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
6
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
7
|
Iorio A, Spinelli M, Polimanti R, Lorenzi F, Valensise H, Manfellotto D, Fuciarelli M. GSTA1 gene variation associated with gestational hypertension and its involvement in pregnancy-related pathogenic conditions. Eur J Obstet Gynecol Reprod Biol 2015; 194:34-7. [PMID: 26321410 DOI: 10.1016/j.ejogrb.2015.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE(S) Glutathione S-transferases (GSTs) are the main phase II enzymes involved in the cellular detoxification. Through phase I and phase II detoxification reactions, the cell is able to detoxify endogenous and exogenous toxic compounds. In this study, we focused our attention on the GSTA1*-69C/T gene polymorphism (rs3957357) in order to explore its involvement in the genetic predisposition to gestational hypertension (GH). STUDY DESIGN The case-control population consists of 195 subjects. The genotyping of the GSTA1*-69C/T was performed by using an RFLP-PCR technique. We calculated odds ratios (ORs), adjusted for the confounding variables, to estimate the association between GSTA1 and GH. RESULTS Significant allelic differences in GSTA1*-69C/T are present between GH women and pregnant women without cardiovascular complications (p<0.05). Specifically, we observed that the dominant genetic model best explains the observed genetic association, according to the Akaike information criterion and the Bayesian information criterion. CONCLUSION(S) Our study highlighted a significant association between the GSTA1 gene and the risk of GH in Italian patients. In particular, the -69C/T variant was significantly associated with disease risk. Since previous studies indicated that this GSTA1 polymorphism is associated with different pregnancy-related conditions, our finding supports the notion that GSTA1 may play a key role during pregnancy.
Collapse
Affiliation(s)
- Andrea Iorio
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marina Spinelli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, United States
| | - Federica Lorenzi
- Clinical Pathophysiology Center, AFaR Division, Fatebenefratelli Foundation, "San Giovanni Calibita" Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Herbert Valensise
- Department of Obstetrics and Gynecology, University of Rome "Tor Vergata", Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Dario Manfellotto
- Clinical Pathophysiology Center, AFaR Division, Fatebenefratelli Foundation, "San Giovanni Calibita" Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|