1
|
Haghani M, Abbasi S, Abdoli L, Shams SF, Baha'addini Baigy Zarandi BF, Shokrpour N, Jahromizadeh A, Mortazavi SA, Mortazavi SMJ. Blue Light and Digital Screens Revisited: A New Look at Blue Light from the Vision Quality, Circadian Rhythm and Cognitive Functions Perspective. J Biomed Phys Eng 2024; 14:213-228. [PMID: 39027713 PMCID: PMC11252550 DOI: 10.31661/jbpe.v0i0.2106-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/29/2021] [Indexed: 07/20/2024]
Abstract
Research conducted over the years has established that artificial light at night (ALAN), particularly short wavelengths in the blue region (~400-500 nm), can disrupt the circadian rhythm, cause sleep disturbances, and lead to metabolic dysregulation. With the increasing number of people spending considerable amounts of time at home or work staring at digital screens such as smartphones, tablets, and laptops, the negative impacts of blue light are becoming more apparent. While blue wavelengths during the day can enhance attention and reaction times, they are disruptive at night and are associated with a wide range of health problems such as poor sleep quality, mental health problems, and increased risk of some cancers. The growing global concern over the detrimental effects of ALAN on human health is supported by epidemiological and experimental studies, which suggest that exposure to ALAN is associated with disorders like type 2 diabetes, obesity, and increased risk of breast and prostate cancer. Moreover, several studies have reported a connection between ALAN, night-shift work, reduced cognitive performance, and a higher likelihood of human errors. The purpose of this paper is to review the biological impacts of blue light exposure on human cognitive functions and vision quality. Additionally, studies indicating a potential link between exposure to blue light from digital screens and increased risk of breast cancer are also reviewed. However, more research is needed to fully comprehend the relationship between blue light exposure and adverse health effects, such as the risk of breast cancer.
Collapse
Affiliation(s)
- Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Abbasi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Abdoli
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Fatemeh Shams
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nasrin Shokrpour
- School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Jahromizadeh
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Wu J, Bu D, Wang H, Shen D, Chong D, Zhang T, Tao W, Zhao M, Zhao Y, Fang L, Li P, Xue B, Li CJ. The rhythmic coupling of Egr-1 and Cidea regulates age-related metabolic dysfunction in the liver of male mice. Nat Commun 2023; 14:1634. [PMID: 36964140 PMCID: PMC10038990 DOI: 10.1038/s41467-023-36775-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/14/2023] [Indexed: 03/26/2023] Open
Abstract
The liver lipid metabolism of older individuals canbecome impaired and the circadian rhythm of genes involved in lipid metabolism is also disturbed. Although the link between metabolism and circadian rhythms is already recognized, how these processes are decoupled in liver during aging is still largely unknown. Here, we show that the circadian rhythm for the transcription factor Egr-1 expression is shifted forward with age in male mice. Egr-1 deletion accelerates liver age-related metabolic dysfunction, which associates with increased triglyceride accumulation, disruption of the opposite rhythmic coupling of Egr-1 and Cidea (Cell Death Inducing DFFA Like Effector A) at the transcriptional level and large lipid droplet formation. Importantly, adjustment of the central clock with light via a 4-hour forward shift in 6-month-old mice, leads to recovery the rhythm shift of Egr-1 during aging and largely ameliorated liver metabolic dysfunction. All our collected data suggest that liver Egr-1 might integrate the central and peripheral rhythms and regulate metabolic homeostasis in the liver.
Collapse
Affiliation(s)
- Jing Wu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dandan Bu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Haiquan Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Di Shen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Danyang Chong
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Tongyu Zhang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Weiwei Tao
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengfei Zhao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Yue Zhao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Lei Fang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Peng Li
- Institute of Metabolism & Integrative Biology (IMIB), Fudan University, Shanghai, 200438, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most symmetric molecule, Buckminster fullerene C60, due to its unique properties, has been intensively studied for various medical and technological advances. Minimally invasive and minimally toxic treatments hold great promise for future applications. With this in mind, this research exploited the physical properties of fullerene molecules for potential therapeutic effects. Pristine fullerenes have peak absorbance in the 380–500 nm range, making them an attractive violet-blue light filter. Since spectral quality of light can affect behavior, this research used resting state functional magnetic resonance imaging (rs fMRI) and behavioral testing to directly evaluate the effects of fullerene-filtered light on brain processing and behavior in mice. The same method was used to study if hydroxyl fullerene water complexes (3HFWC), with or without fullerene-filtered light, modulated brain processing. A month-long, daily exposure to fullerene-filtered light led to decreased activation of the brain area involved in emotional processing (amygdala). Water supplemented with 3HFWC resulted in an activation of brain areas involved in pain modulation and processing (periaqueductal gray), and decreased latency to first reaction when tested with a hot plate. The combination of fullerene-filtered light with 3HFWC in drinking water led to restored sensitivity to a hot plate and activation of brain areas involved in cognitive functions (prelimbic, anterior cingulate and retrosplenial cortex). These results uncovered the potential of fullerene-filtered light to impact emotional processing and modulate pain perception, indicating its further use in stress and pain management.
Collapse
|
4
|
Optimal adjustment of the human circadian clock in the real world. PLoS Comput Biol 2020; 16:e1008445. [PMID: 33370265 PMCID: PMC7808694 DOI: 10.1371/journal.pcbi.1008445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/14/2021] [Accepted: 10/15/2020] [Indexed: 11/23/2022] Open
Abstract
Which suggestions for behavioral modifications, based on mathematical models, are most likely to be followed in the real world? We address this question in the context of human circadian rhythms. Jet lag is a consequence of the misalignment of the body’s internal circadian (~24-hour) clock during an adjustment to a new schedule. Light is the clock’s primary synchronizer. Previous research has used mathematical models to compute light schedules that shift the circadian clock to a new time zone as quickly as possible. How users adjust their behavior when provided with these optimal schedules remains an open question. Here, we report data collected by wearables from more than 100 travelers as they cross time zones using a smartphone app, Entrain. We find that people rarely follow the optimal schedules generated through mathematical modeling entirely, but travelers who better followed the optimal schedules reported more positive moods after their trips. Using the data collected, we improve the optimal schedule predictions to accommodate real-world constraints. We also develop a scheduling algorithm that allows for the computation of approximately optimal schedules "on-the-fly" in response to disruptions. User burnout may not be critically important as long as the first parts of a schedule are followed. These results represent a crucial improvement in making the theoretical results of past work viable for practical use and show how theoretical predictions based on known human physiology can be efficiently used in real-world settings. Jet lag, a significant problem for travelers and shift workers, occurs when our body’s internal circadian (~24-hour) clock is misaligned with the time of day in the environment. Such circadian misalignment can lead to decreased performance, impaired sleep, and increased risk for severe health conditions, ranging from cancer to cardiovascular disease. Previous work has proposed mathematically optimal schedules, based on mathematical models of the human circadian pacemaker, to overcome jet lag in minimal time. Here, we use data collected from over 100 travelers by a mobile app to track when users followed or deviated from optimal schedules. Better adherence to the schedules yielded better outcomes. We also propose more practical schedules, which can be adjusted to the real-world challenges in overcoming jet lag. Our work sets the stage for changing human behaviors in other domains by computing personalized recommendations from mathematical models.
Collapse
|
5
|
LOWDEN A, ÖZTÜRK G, REYNOLDS A, BJORVATN B. Working Time Society consensus statements: Evidence based interventions using light to improve circadian adaptation to working hours. INDUSTRIAL HEALTH 2019; 57:213-227. [PMID: 30700675 PMCID: PMC6449639 DOI: 10.2486/indhealth.sw-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Interventions and strategies to improve health through the management of circadian (re) adaptation have been explored in the field, and in both human and animal laboratory manipulations of shiftwork. As part of an initiative by the Working Time Society (WTS) and International Committee on Occupational Health (ICOH), this review summarises the literature on the management of circadian (re) adaption using bright light treatment. Recommendations to maximise circadian adaptation are summarised for practitioners based on a variety of shiftwork schedules. In slowly rotating night shift schedules bright light appears most suitable when used in connection with the first three night shifts. These interventions are improved when combined with orange glasses (to block blue-green light exposure) for the commute home. Non-shifting strategies involve a lower dosage of light at night and promoting natural daylight exposure during the day (also recommended for day shifts) in acordance with the phase and amplitude response curves to light in humans.
Collapse
Affiliation(s)
- Arne LOWDEN
- Stress Research Institute, Stockholm University, Sweden
- *To whom correspondence should be addressed. E-mail:
| | - Gülcin ÖZTÜRK
- Stress Research Institute, Stockholm University, Sweden
| | | | - Bjørn BJORVATN
- Department of Global Public Health and Primary Care,
University of Bergen, Norway
| |
Collapse
|
6
|
Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, Rodella LF, Rezzani R. Melatonin: Protection against age-related cardiac pathology. Ageing Res Rev 2017; 35:336-349. [PMID: 27884595 DOI: 10.1016/j.arr.2016.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Aging is a complex and progressive process that involves physiological and metabolic deterioration in every organ and system. Cardiovascular diseases are one of the most common causes of mortality and morbidity among elderly subjects worldwide. Most age-related cardiovascular disorders can be influenced by modifiable behaviours such as a healthy diet rich in fruit and vegetables, avoidance of smoking, increased physical activity and reduced stress. The role of diet in prevention of various disorders is a well-established factor, which has an even more important role in the geriatric population. Melatonin, an indoleamine with multiple actions including antioxidant properties, has been identified in a very large number of plant species, including edible plant products and medical herbs. Among products where melatonin has been identified include wine, olive oil, tomato, beer, and others. Interestingly, consumed melatonin in plant foods or melatonin supplementation may promote health benefits by virtue of its multiple properties and it may counteract pathological conditions also related to cardiovascular disorders, carcinogenesis, neurological diseases and aging. In the present review, we summarized melatonin effects against age-related cardiac alterations and abnormalities with a special focus on heart ischemia/reperfusion (IR) injury and myocardial infarction.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences, University of Manitoba and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
7
|
Alkozi HA, Wang X, Perez de Lara MJ, Pintor J. Presence of melanopsin in human crystalline lens epithelial cells and its role in melatonin synthesis. Exp Eye Res 2017; 154:168-176. [DOI: 10.1016/j.exer.2016.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022]
|
8
|
Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila. Sci Rep 2016; 6:37784. [PMID: 27883065 PMCID: PMC5121609 DOI: 10.1038/srep37784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.
Collapse
|
9
|
Krishnan HC, Lyons LC. Synchrony and desynchrony in circadian clocks: impacts on learning and memory. ACTA ACUST UNITED AC 2015; 22:426-37. [PMID: 26286653 PMCID: PMC4561405 DOI: 10.1101/lm.038877.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation.
Collapse
Affiliation(s)
- Harini C Krishnan
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
10
|
Fu M, Zhang L, Ahmed A, Plaut K, Haas DM, Szucs K, Casey TM. Does Circadian Disruption Play a Role in the Metabolic-Hormonal Link to Delayed Lactogenesis II? Front Nutr 2015; 2:4. [PMID: 25988133 PMCID: PMC4428372 DOI: 10.3389/fnut.2015.00004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/05/2015] [Indexed: 11/13/2022] Open
Abstract
Breastfeeding improves maternal and child health. The American Academy of Pediatrics recommends exclusive breastfeeding for 6 months, with continued breastfeeding for at least 1 year. However, in the US, only 18.8% of infants are exclusively breastfed until 6 months of age. For mothers who initiate breastfeeding, the early post-partum period sets the stage for sustained breastfeeding. Mothers who experience breastfeeding problems in the early post-partum period are more likely to discontinue breastfeeding within 2 weeks. A major risk factor for shorter breastfeeding duration is delayed lactogenesis II (DLII; i.e., onset of milk "coming in" more than 72 h post-partum). Recent studies report a metabolic-hormonal link to DLII. This is not surprising because around the time of birth the mother's entire metabolism changes to direct nutrients to mammary glands. Circadian and metabolic systems are closely linked, and our rodent studies suggest circadian clocks coordinate hormonal and metabolic changes to support lactation. Molecular and environmental disruption of the circadian system decreases a dam's ability to initiate lactation and negatively impacts milk production. Circadian and metabolic systems evolved to be functional and adaptive when lifestyles and environmental exposures were quite different from modern times. We now have artificial lights, longer work days, and increases in shift work. Disruption in the circadian system due to shift work, jet-lag, sleep disorders, and other modern life style choices are associated with metabolic disorders, obesity, and impaired reproduction. We hypothesize that DLII is related to disruption of the mother's circadian system. Here, we review literature that supports this hypothesis, and describe interventions that may help to increase breastfeeding success.
Collapse
Affiliation(s)
- Manjie Fu
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Lingsong Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Azza Ahmed
- School of Nursing, Purdue University, West Lafayette, IN, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - David M. Haas
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Kinga Szucs
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Theresa M. Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
New Framework of Sustainable Indicators for Outdoor LED (Light Emitting Diodes) Lighting and SSL (Solid State Lighting). SUSTAINABILITY 2015. [DOI: 10.3390/su7011028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
|