1
|
Guo Z, Zhao W, Wang H, Zhai J. Recent insights into the in vitro culture systems for mammalian embryos. Curr Opin Genet Dev 2025; 91:102309. [PMID: 39827579 DOI: 10.1016/j.gde.2025.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Mammalian early embryonic development is the cornerstone for a healthy life. Any aberrations during early embryonic development may lead to adverse pregnancy outcomes. Therefore, the comprehensive study of embryonic developmental events is essential for understanding biological and pathological pregnancy. However, due to mammalian embryo development taking place in the uterus, it is hard to directly observe the developing embryos that are undergoing dramatic and complex morphologies, proliferation, and differentiation. The in vitro culture (IVC) of mammalian embryos is a pivotal model for studying developmental events. Recent advancements in establishing long-term culture systems for early mammalian embryos have allowed researchers to culture human embryos up to the embryonic day (E) 14 ethical limitations and extend mouse and macaque embryos to early organogenesis. Here, we review the development of IVC systems for mammalian embryos, emphasize the important improvements in culture elements, and offer our perspectives on potential future optimizations of IVC systems.
Collapse
Affiliation(s)
- Zhiyuan Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wentao Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
2
|
Bashiri Z, Afzali A, Koruji M, Torkashvand H, Ghorbanlou M, Sheibak N, Zandieh Z, Amjadi F. Advanced strategies for single embryo selection in assisted human reproduction: A review of clinical practice and research methods. Clin Exp Reprod Med 2025; 52:8-29. [PMID: 38853126 DOI: 10.5653/cerm.2023.06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/29/2024] [Indexed: 06/11/2024] Open
Abstract
Among the primary objectives of contemporary assisted reproductive technology research are achieving the births of healthy singletons and improving overall fertility outcomes. Substantial advances have been made in refining the selection of single embryos for transfer, with the aim of maximizing the likelihood of successful implantation. The principal criterion for this selection is embryo morphology. Morphological evaluation systems are based on traditional parameters, including cell count and fragmentation, pronuclear morphology, cleavage rate, blastocyst formation, and various sequential embryonic assessments. To reduce the incidence of multiple pregnancies and to identify the single embryo with the highest potential for growth, invasive techniques such as preimplantation genetic screening are employed in in vitro fertilization clinics. However, new approaches have been suggested for clinical application that do not harm the embryo and that provide consistent, accurate results. Noninvasive technologies, such as time-lapse imaging and omics, leverage morphokinetic parameters and the byproducts of embryo metabolism, respectively, to identify noninvasive prognostic markers for competent single embryo selection. While these technologies have garnered considerable interest in the research community, they are not incorporated into routine clinical practice and still have substantial room for improvement. Currently, the most promising strategies involve integrating multiple methodologies, which together are anticipated to increase the likelihood of successful pregnancy.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Azita Afzali
- Hazrat Zahra Infertility Center, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Torkashvand
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ghorbanlou
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nadia Sheibak
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Guo S, Liu C, Wang Y, Chen F, Zhu J, Li S, Li E. Effect of resveratrol on spermatogenesis in breeding boars and the proteomic analysis for testes. Reprod Biol 2024; 24:100930. [PMID: 39173316 DOI: 10.1016/j.repbio.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Effect of resveratrol (RSV) on spermatogenesis and the mechanism of resveratrol in promoting spermatogenesis of breeding boars was explored by feeding sexually mature Duroc boars with normal diet and 20 mg/kg resveratrol diet for 14 days to the control group and experimental group, respectively. Semen volume, sperm density, motility, viability and abnormality rate were analyzed on day 0, 7, and 14. Blood samples were collected, and levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) in serum were analyzed. On day 14, the testis tissue was collected for antioxidant and proteomics analysis etc. The semen volume, sperm density, motility, and viability of the experimental group and the contents of serum FSH, LH, T and plasma SOD activity were significantly higher than those in the control group. However, the serum IL-6, TNF-α and plasma MDA were remarkably lower in experimental group. The above results showed that resveratrol can simulate spermatogenesis in breeding boars. Proteomic results demonstrated that three differentially expressed proteins (DEPs) were up-regulated and 12 DEPs were down-regulated; ODF1, calmodulin, Cabs1, and Hp were involved in spermatogenesis; and the main enriched metabolic pathway is steroid hormone synthesis pathway. Therefore, the improvement in sperm quality by resveratrol may be achieved by regulating the changes in outer dense fiber 1, calmodulin, spermatid specific 1, and haptoglobin expression and steroid synthesis pathway.
Collapse
Affiliation(s)
- Shuang Guo
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Chaoying Liu
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China; Zhumadian Academy of Industry Innovation and Development, Zhumadian, Henan province 463000, PR China
| | - Ye Wang
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Fujia Chen
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Jinjin Zhu
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Siqiang Li
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Enzhong Li
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China.
| |
Collapse
|
4
|
Ahmadi H, Aghebati-Maleki L, Rashidiani S, Csabai T, Nnaemeka OB, Szekeres-Bartho J. Long-Term Effects of ART on the Health of the Offspring. Int J Mol Sci 2023; 24:13564. [PMID: 37686370 PMCID: PMC10487905 DOI: 10.3390/ijms241713564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Assisted reproductive technologies (ART) significantly increase the chance of successful pregnancy and live birth in infertile couples. The different procedures for ART, including in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), intrauterine insemination (IUI), and gamete intrafallopian tube transfer (GIFT), are widely used to overcome infertility-related problems. In spite of its inarguable usefulness, concerns about the health consequences of ART-conceived babies have been raised. There are reports about the association of ART with birth defects and health complications, e.g., malignancies, high blood pressure, generalized vascular functional disorders, asthma and metabolic disorders in later life. It has been suggested that hormonal treatment of the mother, and the artificial environment during the manipulation of gametes and embryos may cause genomic and epigenetic alterations and subsequent complications in the health status of ART-conceived babies. In the current study, we aimed to review the possible long-term consequences of different ART procedures on the subsequent health status of ART-conceived offspring, considering the confounding factors that might account for/contribute to the long-term consequences.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
| | - Leili Aghebati-Maleki
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Shima Rashidiani
- Department of Medical Biochemistry, Medical School, Pécs University, 7624 Pécs, Hungary;
| | - Timea Csabai
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
| | - Obodo Basil Nnaemeka
- Department of Laboratory Diagnostics, Faculty of Health Sciences, Pécs University, 7621 Pécs, Hungary;
| | - Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
- MTA—PTE Human Reproduction Research Group, 7624 Pecs, Hungary
| |
Collapse
|
5
|
Kanaka V, Proikakis S, Drakakis P, Loutradis D, Tsangaris GT. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:237-260. [PMID: 35719135 PMCID: PMC9203609 DOI: 10.1007/s13167-022-00282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 10/28/2022]
Abstract
The evolution of the field of assisted reproduction technology (ART) in the last 40 years has significantly contributed to the management of global infertility. Despite the great numbers of live births that have been achieved through ART, there is still potential for increasing the success rates. As a result, there is a need to create optimum conditions in order to increase ART efficacy. The selection of the best sperm, oocyte, and embryo, as well as the achievement of optimal endometrial receptivity, through the contribution of new diagnostic and treatment methods, based on a personalized proteomic approach, may assist in the attainment of this goal. Proteomics represent a powerful new technological development, which seeks for protein biomarkers in human tissues. These biomarkers may aid to predict the outcome, prevent failure, and monitor in a personalized manner in vitro fertilization (IVF) cycles. In this review, we will present data from studies that have been conducted in the search for such biomarkers in order to identify proteins related to good sperm, oocyte, and embryo quality, as well as optimal endometrial receptivity, which may later lead to greater results and the desirable ART outcome.
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stavros Proikakis
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
6
|
Li J, Li C, Liu X, Yang J, Zhang Q, Han W, Huang G. GDF9 concentration in embryo culture medium is linked to human embryo quality and viability. J Assist Reprod Genet 2022; 39:117-125. [PMID: 34845575 PMCID: PMC8866627 DOI: 10.1007/s10815-021-02368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE We aimed to evaluate the link between the GDF9 concentration in day 3 human embryo culture medium and embryo quality and viability. METHODS Two independent, prospective, observational studies were conducted. In study 1, a total of 280 embryos from 70 patients who obtained at least 4 embryos with 6-10 blastomeres (2 transferable and 2 non-transferable embryos) at day 3 were enrolled. In study 2, a total of 119 embryos from 61 patients (29 fully implanted and 32 non-implanted patients) were enrolled. The corresponding GDF9 concentrations in spent culture medium of embryos were quantified by ELISA assay. The expression pattern of GDF9 in human embryos was investigated using Q-PCR and immunofluorescence. RESULTS GDF9 mRNA and protein were detected from human oocytes to eight-cell embryos and displayed a slow decreasing trend. In study 1, GDF9 concentration in culture medium is lower for transferable embryos compared with non-transferable embryos (331 pg/mL (quartiles: 442, 664 pg/mL) vs. 518 pg/mL (quartiles: 328, 1086 pg/mL), P < 0.001), and increased commensurate with the diminution of the embryo quality (P < 0.001). In study 2, significantly lower GDF9 concentration was detected for implanted embryos than non-implanted embryos (331 pg/mL (quartiles: 156, 665 pg/mL) vs. 518 pg/mL (quartiles: 328, 1086 pg/mL), P < 0.001). The same trend was found between the embryos that led to live birth and those that failed. CONCLUSION The GDF9 concentration in culture medium is linked to embryo quality and viability, and exhibited the potential to be a non-invasive biomarker for embryo selection.
Collapse
Affiliation(s)
- Jingyu Li
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Chong Li
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Xuemei Liu
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Jingwei Yang
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
| | - Qi Zhang
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
| | - Wei Han
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Guoning Huang
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China ,Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
| |
Collapse
|
7
|
Vani V, Vasan SS, Adiga SK, Varsha SR, Sachdeva G, Kumar P, Seshagiri PB. Soluble human leukocyte antigen-G is a potential embryo viability biomarker and a positive predictor of live-births in humans. Am J Reprod Immunol 2021; 86:e13499. [PMID: 34766406 DOI: 10.1111/aji.13499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Human infertility affects 15-20% of reproductive-age couples and it is mitigated by assisted reproductive technology (ART) approaches. Poor biological viability of embryos contributes to implantation failure and live birth rate (LBR). This study is aimed to examine whether or not embryo-secreted soluble human leukocyte antigen-G (sHLA-G) is (i) associated with developing embryos and (ii) able to predict successful pregnancy outcome. METHOD OF STUDY A retrospective, multicentric study using 539 human embryo spent medium samples (E-SMs), analysed for sHLA-G levels by ELISA. Correlation analysis was performed on sHLA-G levels with developing embryonic stages, their quality scores and pregnancy outcome in terms of LBR. RESULTS Of 539 E-SMs analysed, 445 had detectable sHLA-G (83%) with levels varying within and across clinics and, between stages of embryonic development. Levels of sHLA-G (ng/mL) were significantly (P < .05) different in E-SMs of cleavage-stage embryos versus blastocysts. There was an insignificant correlation between the sHLA-G levels and morphology scores of embryos. But, sHLA-G levels showed a positive correlation with grades of blastocysts and importantly, its levels were significantly (P < .05) higher in live-birth vis-a-vis no-birth cases. Also, levels were higher in live-births out of blastocysts-ETs versus cleavage-stage-embryo transfers. Altered levels were observed with embryos, which resulted in miscarriages. Overall, a significant (P < .0001) association of sHLA-G with live births was observed. CONCLUSION Embryo-derived sHLA-G can be a valuable embryo viability, independent, biomarker, which can predict live-birth outcome and it could be useful as an adjunct to existing criteria for elective single embryo transfer.
Collapse
Affiliation(s)
- Venkatappa Vani
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Road, Bangalore, India
| | - Satya S Vasan
- Manipal Ankur Andrology & Reproductive Services, Bangalore, India
| | - Satish K Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, India
| | | | | | - Pratap Kumar
- Department of Reproductive Medicine & Surgery, Kasturba Medical College, Manipal, India
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Road, Bangalore, India
| |
Collapse
|
8
|
Gombos K, Gálik B, Kalács KI, Gödöny K, Várnagy Á, Alpár D, Bódis J, Gyenesei A, Kovács GL. NGS-Based Application for Routine Non-Invasive Pre-Implantation Genetic Assessment in IVF. Int J Mol Sci 2021; 22:ijms22052443. [PMID: 33671014 PMCID: PMC7957524 DOI: 10.3390/ijms22052443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/04/2023] Open
Abstract
Although non-invasive pre-implantation genetic testing for aneuploidy (NIPGT-A) is potentially appropriate to assess chromosomal ploidy of the embryo, practical application of it in a routine IVF centre have not been started in the absence of a recommendation. Our objective in this study was to provide a comprehensive workflow for a clinically applicable strategy for NIPGT-A based on next-generation sequencing (NGS) technology with the corresponding bioinformatic pipeline. In a retrospective study, we performed NGS on spent blastocyst culture media of Day 3 embryos fertilised with intracytoplasmic sperm injection (ICSI) with quality score on morphology assessment using the blank culture media as background control. Chromosomal abnormalities were identified by an optimised bioinformatics pipeline applying copy number variation (CNV) detecting algorithm. In this study, we demonstrate a comprehensive workflow covering both wet- and dry-lab procedures supporting a clinically applicable strategy for NIPGT-A that can be carried out within 48 h, which is critical for the same-cycle blastocyst transfer. The described integrated approach of non-invasive evaluation of embryonic DNA content of the culture media can potentially supplement existing pre-implantation genetic screening methods.
Collapse
Affiliation(s)
- Katalin Gombos
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13., 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
| | - Bence Gálik
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- Department of Clinical Molecular Biology, Medical University of Bialystok, ul. Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krisztina Ildikó Kalács
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
| | - Krisztina Gödöny
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
| | - Ákos Várnagy
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
| | - Donát Alpár
- MTA-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., 1085 Budapest, Hungary;
| | - József Bódis
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
| | - Attila Gyenesei
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- Department of Clinical Molecular Biology, Medical University of Bialystok, ul. Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Gábor L. Kovács
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13., 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
- Correspondence: ; Tel.: +36-72-501-668
| |
Collapse
|
9
|
Huo P, Zhu Y, Liang C, Yao J, Le J, Qin L, Lei X, Zhang S. Non-invasive Amino Acid Profiling of Embryo Culture Medium Using HPLC Correlates With Embryo Implantation Potential in Women Undergoing in vitro Fertilization. Front Physiol 2020; 11:405. [PMID: 32508665 PMCID: PMC7251166 DOI: 10.3389/fphys.2020.00405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to determine the correlation between amino acid profiling of a 3-day-old embryo culture medium and embryo implantation potential in women undergoing in vitro fertilization (IVF). The data of 98 patients who received IVF treatment in our hospital from December 2015 to February 2017 were retrospectively analyzed. The 98 patients were grouped into a pregnant group (gemellary pregnancy), a non-pregnant group (non-pregnancy), and a blank control group. The amino acids from a 3-day-old embryo culture medium and blank control medium were collected and were analyzed using high performance liquid chromatography (HPLC). The HPLC results showed that amino acids including aspartate (ASP), serine (SER), glycine (GLY), histidine (HIS), taurine (TAU), arginine (ARG), threonine (THR), alanine (ALA), and proline (PRO) were detected in the 3-day-old embryo culture medium and blank control medium. There are significant differences between the pregnant group and non-pregnant group in peak height (H)-SER, surface area (S)-ASP, S-SER, S-HIS, and S-ALA. The discrimination analysis according to the peak height and peak area of amino acids revealed that the prediction rate of the pregnant group, non-pregnant group, and blank control group were 82.7, 95.7, and 100%. Further, by using the principal component analysis, we found that the prediction rate in these three groups were 90.4, 91.3, and 100%. Our data may suggest that using amino acid concentrations for principal component analysis and discriminant analysis has high accuracy in predicting the relationship between amino acid fingerprint and embryo implantation potential.
Collapse
Affiliation(s)
- Peng Huo
- School of Public Health, Guilin Medical University, Guilin, China
| | - Yunshan Zhu
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chengqin Liang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Jun Yao
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Linyuan Qin
- School of Public Health, Guilin Medical University, Guilin, China
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
10
|
Ji H, Shi X, Wang J, Cao S, Ling X, Zhang J, Shen R, Zhao C. Peptidomic analysis of blastocyst culture medium and the effect of peptide derived from blastocyst culture medium on blastocyst formation and viability. Mol Reprod Dev 2019; 87:191-201. [PMID: 31828871 DOI: 10.1002/mrd.23308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/23/2019] [Indexed: 12/22/2022]
Abstract
High-quality in vitro human embryo culture medium can improve the blastocyst formation rate and blastocyst quality and be beneficial for the clinical application of single blastocyst transfer. Mammalian embryos can secrete protein products into the surrounding medium. As a group of bioactive molecules and degraded proteins, peptides have been shown to participate in various biological processes. Using liquid chromatography-tandem mass spectrometry, we performed comparative peptidomic analysis of human culture medium in blastocyst formation and nonblastocyst-formation groups. A total of 201 differentially expressed peptides originating from 157 precursor proteins were identified. Among these, a peptide derived from HERC2 (peptide derived from blastocyst culture medium [PDBCM]) passed through the zona pellucida, was distributed on the perivitelline space, was absent in arrest embryos and highly expressed in high-quality blastocysts compared with low-quality blastocysts, and significantly promoted blastocyst formation in a concentration-dependent manner. These results indicate that PDBCM may be a novel biomarker for predicting blastocyst formation and viability. The mechanism remains unclear and needs to be explored in the future.
Collapse
Affiliation(s)
- Hui Ji
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaodan Shi
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Wang
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanren Cao
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Zhao
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Montskó G, Gödöny K, Herczeg R, Várnagy Á, Bódis J, Kovács GL. Alpha-1 chain of human haptoglobin as viability marker of in vitro fertilized human embryos: information beyond morphology. Syst Biol Reprod Med 2018; 65:174-180. [PMID: 30222008 DOI: 10.1080/19396368.2018.1518499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Only one third of the in vitro fertilization treatments result in successful delivery following morphological viability assessment worldwide. A paper by Montskó et al. (2015) describes the identification of the alpha-1 chain of human haptoglobin as a potential marker of embryo viability. Using mass spectrometry, the concentration of the haptoglobin alpha-1 chain was determined in spent culture media samples of in vitro fertilized embryos and correlation was found with the outcome of the respective transfer. In the present study we investigated, whether the concentration of haptoglobin alpha-1 chain shows any correlation with morphological scores to clarify whether levels of the alpha-1 chain provide additional information on embryo viability unnoticed by the morphological assessment. In the study, pregnancy and live birth rates were examined in 143 transferred samples of 86 patients, retrospectively. Two sample groups were created. The control group contained embryos classified as 'good' or 'fair' based on the Istanbul Consensus Criteria System, while the double-assay group contained embryos assessed as 'good' or 'fair' by the morphological evaluation and as 'viable' by the haptoglobin assay. Clinical pregnancy rate was 30.2% in the control group, while 47.6% in the group scored parallel with morphological criteria and proteomic analysis (p < 0.05). The increased clinical pregnancy rate observed in the double-assayed group can be attributed to decreased false-positivity of the double assay. Abbreviations: IVF: in vitro fertilization; SEC: spent embryo culture medium; HSA: human serum albumin; Hpt: haptoglobin; HptA1: haptoglobin alpha-1 chain; ICCS: Istanbul Consensus Criteria System; BMI: body mass index; ICSI: intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Gergely Montskó
- a Szentágothai Research Centre , University of Pécs , Pécs , Hungary.,b MTA-PTE Human Reproduction Scientific Research Group , University of Pécs , Pécs , Hungary
| | - Krisztina Gödöny
- b MTA-PTE Human Reproduction Scientific Research Group , University of Pécs , Pécs , Hungary.,c Department of Obstetrics and Gynecology , University of Pécs , Pécs , Hungary
| | - Róbert Herczeg
- a Szentágothai Research Centre , University of Pécs , Pécs , Hungary
| | - Ákos Várnagy
- b MTA-PTE Human Reproduction Scientific Research Group , University of Pécs , Pécs , Hungary.,c Department of Obstetrics and Gynecology , University of Pécs , Pécs , Hungary
| | - József Bódis
- b MTA-PTE Human Reproduction Scientific Research Group , University of Pécs , Pécs , Hungary.,c Department of Obstetrics and Gynecology , University of Pécs , Pécs , Hungary
| | - Gábor L Kovács
- a Szentágothai Research Centre , University of Pécs , Pécs , Hungary.,b MTA-PTE Human Reproduction Scientific Research Group , University of Pécs , Pécs , Hungary.,d Department of Laboratory Medicine, Faculty of Medicine , University of Pécs , Pécs , Hungary
| |
Collapse
|
12
|
Siristatidis CS, Sertedaki E, Vaidakis D, Varounis C, Trivella M. Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies. Cochrane Database Syst Rev 2018; 3:CD011872. [PMID: 29547689 PMCID: PMC6494410 DOI: 10.1002/14651858.cd011872.pub3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND In order to overcome the low effectiveness of assisted reproductive technologies (ART) and the high incidence of multiple births, metabolomics is proposed as a non-invasive method to assess oocyte quality, embryo viability, and endometrial receptivity, and facilitate a targeted subfertility treatment. OBJECTIVES To evaluate the effectiveness and safety of metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity for improving live birth or ongoing pregnancy rates in women undergoing ART, compared to conventional methods of assessment. SEARCH METHODS We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL and two trial registers (Feburary 2018). We also examined the reference lists of primary studies and review articles, citation lists of relevant publications, and abstracts of major scientific meetings. SELECTION CRITERIA Randomised controlled trials (RCTs) on metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity in women undergoing ART. DATA COLLECTION AND ANALYSIS Pairs of review authors independently assessed trial eligibility and risk of bias, and extracted the data. The primary outcomes were rates of live birth or ongoing pregnancy (composite outcome) and miscarriage. Secondary outcomes were clinical pregnancy, multiple and ectopic pregnancy, cycle cancellation, and foetal abnormalities. We combined data to calculate odds ratios (ORs) for dichotomous data and 95% confidence intervals (CIs). Statistical heterogeneity was assessed using the I² statistic. We assessed the overall quality of the evidence for the main comparisons using GRADE methods. MAIN RESULTS We included four trials with a total of 924 women, with a mean age of 33 years. All assessed the role of metabolomic investigation of embryo viability. We found no RCTs that addressed the metabolomic assessment of oocyte quality or endometrial receptivity.We found low-quality evidence of little or no difference between metabolomic and non-metabolomic assessment of embryos for rates of live birth or ongoing pregnancy (OR 1.02, 95% CI 0.77 to 1.35, I² = 0%; four RCTs; N = 924), live birth alone (OR 0.99, 95% CI 0.69 to 1.44, I² = 0%; three RCTs; N = 597), or miscarriage (OR 1.18, 95% CI 0.77 to 1.82; I² = 0%; three RCTs; N = 869). A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for live birth or ongoing pregnancy (OR 0.90, 95% CI 0.66 to 1.25, I² = 0%; two RCTs; N = 744). Our findings suggested that if the rate of live birth or ongoing pregnancy was 36% in the non-metabolomic group, it would be between 32% and 45% with the use of metabolomics.We found low-quality evidence of little or no difference between groups in rates of clinical pregnancy (OR 1.11, 95% CI 0.85 to 1.45; I²= 44%; four trials; N = 924) or multiple pregnancy (OR 1.50, 95% CI 0.70 to 3.19; I² = 0%; two RCTs, N = 180). Rates of cycle cancellation were higher in the metabolomics group (OR 1.78, 95% CI 1.18 to 2.69; I² = 51%; two RCTs; N = 744, low quality evidence). There was very low-quality evidence of little or no difference between groups in rates of ectopic pregnancy rates (OR 3.00, 95% CI 0.12 to 74.07; one RCT; N = 417), and foetal abnormality (no events; one RCT; N = 125). Data were lacking on other adverse effects. A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for clinical pregnancy (OR 1.03, 95% CI 0.76 to 1.38; I² = 40%; two RCTs; N = 744).The overall quality of the evidence ranged from very low to low. Limitations included serious risk of bias (associated with poor reporting of methods, attrition bias, selective reporting, and other biases), imprecision, and inconsistency across trials. AUTHORS' CONCLUSIONS According to current trials in women undergoing ART, there is no evidence to show that metabolomic assessment of embryos before implantation has any meaningful effect on rates of live birth, ongoing pregnancy, miscarriage, multiple pregnancy, ectopic pregnancy or foetal abnormalities. The existing evidence varied from very low to low-quality. Data on other adverse events were sparse, so we could not reach conclusions on these. At the moment, there is no evidence to support or refute the use of this technique for subfertile women undergoing ART. Robust evidence is needed from further RCTs, which study the effects on live birth and miscarriage rates for the metabolomic assessment of embryo viability. Well designed and executed trials are also needed to study the effects on oocyte quality and endometrial receptivity, since none are currently available.
Collapse
Affiliation(s)
- Charalampos S Siristatidis
- Medical School, National and Kapodistrian University of AthensAssisted Reproduction Unit, 3rd Department of Obstetrics and GynaecologyAttikon University HospitalRimini 1AthensChaidariGreece12462
| | - Eleni Sertedaki
- Medical School, National and Kapodistrian University of Athens75 M. Assias StreetGoudiAthensGreece115 27
| | - Dennis Vaidakis
- University of Athens3rd Department of Obstetrics and Gynecology'Attikon' Hospital, ChaidariAthensGreece
| | - Christos Varounis
- Attikon University Hospital2nd Department of Cardiology, University of Athens Medical SchoolRimini 1HaidariAthensGreece12462
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | | |
Collapse
|
13
|
Abstract
The phenotype of the human embryo conceived through in vitro fertilization (IVF), that is its morphology, developmental kinetics, physiology and metabolism, can be affected by numerous components of the laboratory and embryo culture system (which comprise the laboratory environment). The culture media formulation is important in determining embryo phenotype, but this exists within a culture system that includes oxygen, temperature, pH and whether an embryo is cultured individually or in a group, all of which can influence embryo development. Significantly, exposure of an embryo to one suboptimal component of the culture system of laboratory typically predisposes the embryo to become more vulnerable to a second stressor, as has been well documented for atmospheric oxygen and individual culture, as well as for oxygen and ammonium. Furthermore, the inherent viability of the human embryo is derived from the quality of the gametes from which it is created. Patient age, aetiology, genetics, lifestyle (as well as ovarian stimulation in women) are all known to affect the developmental potential of gametes and hence the embryo. Thus, as well as considering the impact of the IVF laboratory environment, one needs to be aware of the status of the infertile couple, as this impacts how their gametes and embryos will respond to an in vitro environment. Although far from straight forward, analysing the interactions that exist between the human embryo and its environment will facilitate the creation of more effective and safer treatments for the infertile couple.
Collapse
|
14
|
Siristatidis CS, Sertedaki E, Vaidakis D. Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies. Cochrane Database Syst Rev 2017; 5:CD011872. [PMID: 28534597 PMCID: PMC6481756 DOI: 10.1002/14651858.cd011872.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In order to overcome the low effectiveness of assisted reproductive technologies (ART) and the high incidence of multiple births, metabolomics is proposed as a non-invasive method to assess oocyte quality, embryo viability, and endometrial receptivity, and facilitate a targeted subfertility treatment. OBJECTIVES To evaluate the effectiveness and safety of metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity for improving live birth or ongoing pregnancy rates in women undergoing ART, compared to conventional methods of assessment. SEARCH METHODS We searched the Cochrane Gynaecology and Fertility Group Trials Register, CENTRAL, MEDLINE, Embase, CINAHL and two trial registers (November 2016). We also examined the reference lists of primary studies and review articles, citation lists of relevant publications, and abstracts of major scientific meetings. SELECTION CRITERIA Randomised controlled trials (RCTs) on metabolomic assessment of oocyte quality, embryo viability, and endometrial receptivity in women undergoing ART. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and risk of bias, and extracted the data. The primary outcomes were rates of live birth or ongoing pregnancy (composite outcome) and miscarriage. Secondary outcomes were clinical pregnancy, multiple and ectopic pregnancy, cycle cancellation, and foetal abnormalities. We combined data to calculate odds ratios (ORs) for dichotomous data and 95% confidence intervals (CIs). Statistical heterogeneity was assessed using the I² statistic. We assessed the overall quality of the evidence for the main comparisons using GRADE methods. MAIN RESULTS We included four trials with a total of 802 women, with a mean age of 33 years. All assessed the role of metabolomic investigation of embryo viability. We found no RCTs that addressed the metabolomic assessment of oocyte quality or endometrial receptivity.We found low-quality evidence of little or no difference between metabolomic and non-metabolomic assessment of embryos for rates of live birth or ongoing pregnancy (OR 1.11, 95% CI 0.83 to 1.48; I² = 0%; four RCTs; N = 802), or miscarriage (OR 0.96, 95% CI 0.52 to 1.78; I² = 0%; two RCTs; N = 434). A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for live birth or ongoing pregnancy (OR 0.99, 95% CI 0.71 to 1.38; I² = 0%; two RCTs; N = 621). Our findings suggested that if the rate of live birth or ongoing pregnancy was 36% in the non-metabolomic group, it would be between 32% and 45% with the use of metabolomics.We found low-quality evidence of little or no difference between groups in rates of clinical pregnancy (OR 1.22, 95% CI 0.92 to 1.62; I²= 26%; four trials; N = 802), or multiple pregnancy (OR 1.52, 95% CI 0.71 to 3.23; I² = 0%; two RCTs, N = 181). There was very low-quality evidence of little or no difference between groups in ectopic pregnancy rates (OR 3.37, 95% CI 0.14 to 83.40; one RCT; N = 309), and foetal abnormalities (no events; one RCT; N = 125), and very low-quality evidence of higher rates of cycle cancellation in the metabolomics group (OR 1.78, 95% CI 1.18 to 2.69; I² = 51%; two RCTs; N = 744). Data were lacking on other adverse effects. A sensitivity analysis excluding studies at high risk of bias did not change the interpretation of the results for clinical pregnancy (OR 1.14, 95% CI 0.83 to 1.57; I² = 0%; two RCTs; N = 621).The overall quality of the evidence ranged from very low to low. Limitations included serious risk of bias (associated with poor reporting of methods, attrition bias, selective reporting, and other biases), imprecision, and inconsistency across trials. AUTHORS' CONCLUSIONS According to current trials in women undergoing ART, there is insufficient evidence to show that metabolomic assessment of embryos before implantation has any meaningful effect on rates of live birth, ongoing pregnancy, or miscarriage rates. The existing evidence varied from very low to low-quality. Data on adverse events were sparse, so we could not reach conclusions on these. At the moment, there is no evidence to support or refute the use of this technique for subfertile women undergoing ART. Robust evidence is needed from further RCTs, which study the effects on live birth and miscarriage rates for the metabolomic assessment of embryo viability. Well designed and executed trials are also needed to study the effects on oocyte quality and endometrial receptivity, since none are currently available.
Collapse
Affiliation(s)
- Charalampos S Siristatidis
- Medical School, National and Kapodistrian University of AthensAssisted Reproduction Unit, 3rd Department of Obstetrics and GynaecologyAttikon University Hospital,Rimini 1AthensGreece12462
| | - Eleni Sertedaki
- Medical School, National and Kapodistrian University of Athens75 M. Assias StreetGoudiAthensGreece115 27
| | - Dennis Vaidakis
- University of Athens3rd Department of Obstetrics and Gynecology'Attikon' Hospital, ChaidariAthensGreece
| |
Collapse
|
15
|
Bouvier S, Paulmyer-Lacroix O, Molinari N, Bertaud A, Paci M, Leroyer A, Robert S, Dignat George F, Blot-Chabaud M, Bardin N. Soluble CD146, an innovative and non-invasive biomarker of embryo selection for in vitro fertilization. PLoS One 2017; 12:e0173724. [PMID: 28291830 PMCID: PMC5349662 DOI: 10.1371/journal.pone.0173724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/24/2017] [Indexed: 11/21/2022] Open
Abstract
Although progress was made in in vitro fertilization (IVF) techniques, the majority of embryos transferred fail to implant. Morphology embryo scoring is the standard procedure for most of IVF centres for choosing the best embryo, but remains limited since even the embryos classified as "top quality" may not implant. As it has been shown that i) CD146 is involved in embryo implantation and ii) membrane form is shed to generate soluble CD146 (sCD146), we propose that sCD146 in embryo supernatants may constitute a new biomarker of embryo selection. Immunocytochemical staining showed expression of CD146 in early embryo stages and sCD146 was detected by ELISA and Western-blot in embryo supernatants from D2. We retrospectively studied 126 couples who underwent IVF attempt. The embryo culture medium from each transferred embryo (n = 222) was collected for measurement of sCD146 by ELISA. Significantly higher sCD146 concentrations were present in embryo supernatants that did not implant (n = 185) as compared to those that successfully implanted (n = 37) (1310 +/- 1152 pg.mL-1 vs. 845+/- 1173 pg.mL-1, p = 0.024). Sensitivity analysis performed on single embryo transfers (n = 71) confirmed this association (p = 0.0054). The computed ROC curve established that the optimal sCD146 concentration for embryo implantation is under 1164 pg.mL-1 (sensitivity: 76%, specificity: 48%, PPV: 25% and NPV: 92%). Over this sCD146 threshold, the implantation rate was significantly lower (9% with sCD146 levels >1164 pg.ml-1 vs. 22% with sCD146 levels ≤ 1164 pg.mL-1, p = 0.01). Among the embryos preselected by morphologic scoring, sCD146 determination could allow a better selection of the embryo(s), thus improving the success of elective single embryo transfer. This study establishes the proof of concept for the use of sCD146 as a biomarker for IVF by excluding the embryo with the highest sCD146 level. A multicentre prospective study will now be necessary to further establish its use in clinical practice.
Collapse
Affiliation(s)
| | - Odile Paulmyer-Lacroix
- Assisted Reproductive Center, Laboratory of Reproduction, CHU La Conception, AP-HM, Marseille and Laboratory of Histology-Embryology/Biology of Reproduction, Aix-Marseille University, Marseille, France
| | - Nicolas Molinari
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | | | - Marine Paci
- Assisted Reproductive Center, Laboratory of Reproduction, CHU La Conception, AP-HM, Marseille and Laboratory of Histology-Embryology/Biology of Reproduction, Aix-Marseille University, Marseille, France
| | | | | | | | | | - Nathalie Bardin
- Aix Marseille Univ, Inserm U1076, Marseille, France
- Immunology Laboratory, Pole de Biologie, CHU Conception Marseille, AP-HM, Marseille, France
| |
Collapse
|
16
|
Pallinger E, Bognar Z, Bodis J, Csabai T, Farkas N, Godony K, Varnagy A, Buzas E, Szekeres-Bartho J. A simple and rapid flow cytometry-based assay to identify a competent embryo prior to embryo transfer. Sci Rep 2017; 7:39927. [PMID: 28057937 PMCID: PMC5216337 DOI: 10.1038/srep39927] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022] Open
Abstract
Multiple pregnancy is a risk for prematurity and preterm birth. The goal of assisted reproduction is to achieve a single pregnancy, by transferring a single embryo. This requires improved methods to identify the competent embryo. Here, we describe such a test, based on flow cytometric determination of the nucleic acid (PI+) containing extracellular vesicle (EV) count in day 5 embryo culture media. 88 women undergoing IVF were included in the study. More than 1 embryos were transferred to most patients. In 58 women, the transfer resulted in clinical pregnancy, whereas in 30 women in implantation failure. In 112 culture media of embryos from the "clinical pregnancy" group, the number of PI+ EVs was significantly lower than in those of 49 embryos, from the "implantation failure" group. In 14 women, transfer of a single embryo resulted in a singleton pregnancy, or, transfer of two embryos in twin pregnancy. The culture media of 19 out of the 20 "confirmed competent" embryos contained a lower level of PI+ EVs than the cut off level, suggesting that the competent embryo can indeed be identified by low PI+ EV counts. We developed a noninvasive, simple, inexpensive, quick test, which identifies the embryos that are most likely to implant.
Collapse
Affiliation(s)
- Eva Pallinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltan Bognar
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary
- János Szentágothai Research Centre, University of Pecs, Hungary
- Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary
| | - Jozsef Bodis
- Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary
- Department of Obstetrics and Gynaecology, Medical School, Pecs University, Pecs, Hungary
- MTA - PTE Human Reproduction Research Group, Pecs, Hungary
| | - Timea Csabai
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary
- János Szentágothai Research Centre, University of Pecs, Hungary
- Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, Pecs University, Pecs, Hungary
| | - Krisztina Godony
- Department of Obstetrics and Gynaecology, Medical School, Pecs University, Pecs, Hungary
| | - Akos Varnagy
- Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary
- Department of Obstetrics and Gynaecology, Medical School, Pecs University, Pecs, Hungary
- MTA - PTE Human Reproduction Research Group, Pecs, Hungary
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Julia Szekeres-Bartho
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary
- János Szentágothai Research Centre, University of Pecs, Hungary
- Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary
- MTA - PTE Human Reproduction Research Group, Pecs, Hungary
| |
Collapse
|
17
|
Szekeres-Bartho J. Successful Implantation from the Embryonic Aspect. Am J Reprod Immunol 2015; 75:382-7. [DOI: 10.1111/aji.12448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Julia Szekeres-Bartho
- Department of Medical Microbiology and Immunology; Medical School; Pecs University; Pecs Hungary
- MTA-PTE Human Reproduction Research Group; University of Pécs; Pecs Hungary
- János Szentágothai Research Centre; University of Pécs; Pecs Hungary
| |
Collapse
|