1
|
Delgouffe E, Silva SM, Chalmel F, Cools W, Raets C, Tilleman K, T'Sjoen G, Baert Y, Goossens E. Partial rejuvenation of the spermatogonial stem cell niche after gender-affirming hormone therapy in trans women. eLife 2025; 13:RP94825. [PMID: 39773877 PMCID: PMC11706602 DOI: 10.7554/elife.94825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.
Collapse
Affiliation(s)
- Emily Delgouffe
- Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit BrusselBrusselsBelgium
| | - Samuel Madureira Silva
- Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit BrusselBrusselsBelgium
| | - Frédéric Chalmel
- Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail (IRSET), Université de RennesRennesFrance
| | - Wilfried Cools
- Core facility, Support for Quantitative and Qualitative Research (SQUARE), Vrije Universiteit BrusselBrusselsBelgium
| | - Camille Raets
- Core facility, Support for Quantitative and Qualitative Research (SQUARE), Vrije Universiteit BrusselBrusselsBelgium
| | - Kelly Tilleman
- Department for Reproductive Medicine, Ghent University HospitalGhentBelgium
| | - Guy T'Sjoen
- Department of Endocrinology and Center for Sexology and Gender, Ghent University HospitalGhentBelgium
| | - Yoni Baert
- Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit BrusselBrusselsBelgium
- In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit BrusselBrusselsBelgium
| | - Ellen Goossens
- Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
2
|
Giudice MG, Kanbar M, Poels J, Duquenne A, Wyns C. Long-term culture of human Sertoli cells from adult Klinefelter patients as a first step to develop new tools for unravelling the testicular physiopathology. Hum Reprod 2024; 39:2400-2410. [PMID: 39237101 DOI: 10.1093/humrep/deae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
STUDY QUESTION Are Sertoli cells (SCs) from adult Klinefelter men (47,XXY) capable of proliferating in vitro and maintaining their main phenotypical and functional characteristics as do SCs from adult 46,XY patients? SUMMARY ANSWER Isolated SCs from patients with Klinefelter syndrome (KS) can be expanded in vitro while maintaining their characteristics and a stable karyotype, similar to SCs from 46,XY patients. WHAT IS KNOWN ALREADY The mechanism leading to testicular tissue degeneration in KS is still unknown. A few recent studies highlight the main role played by SCs in the physiopathology of the disease, but new study models based on co-culture or testicular organoids are needed to further understand the SC's involvement in the mechanism of testicular degeneration and fibrosis, and to find therapeutical targets. KS SC expansion could be the first step towards developing such in vitro study models. SCs have been isolated from 46,XY men and expanded in vitro while maintaining the expression of phenotypical and functional markers, but propagation of SCs from KS men has not been achieved yet. STUDY DESIGN, SIZE, DURATION Testicular tissue was obtained during a testicular sperm extraction procedure for infertility treatment between 2019 and 2021 from three azoospermic adult KS (47,XXY) men (33±3.6 years old) and from three control patients (46,XY) (36±2 years old) presenting with obstructive azoospermia. SCs isolated from frozen-thawed tissue of KS and 46,XY patients were cultured for 60 days and compared. All patients signed an informed consent according to the ethical board approval of the study protocol. PARTICIPANTS/MATERIALS, SETTING, METHODS Testicular biopsies obtained from KS (n = 3) and 46,XY (n = 3) adult patients were slow-frozen. After tissue thawing SCs were isolated using a double-step enzymatic digestion and differential plating, and cultured for 60 days in DMEM medium containing FBS. Analyses were performed at different culture times (passages 5 (P5) and 10 (P10)). Quantification of cells using immunofluorescence (IF) for cell type-specific markers (Sox9, GATA4, ACTA2, INSL3, MAGEA4), SCs characterization using both IF and quantitative real-time PCR for GDNF, BMP4, AR and CLDN11 and cells karyotyping were performed. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate for the first time that a small population of human SCs isolated from frozen-thawed testis of adult KS patients can be expanded in vitro while retaining expression of characteristic markers of SCs and the 47,XXY karyotype, and exhibiting cell-specific functional proteins and gene expression (GDNF, BMP4, AR, and CLDN11) after 60 days in culture. At P10, 83.39 ± 4.2% of cultured cells from KS men and 85.34 ± 4.1% from 46,XY men expressed Sox9, and 88.8 ± 3.9% of KS cells versus 82.9 ± 3.2% of the control cells were positive for GATA4 without any differences between two groups; both Sox9 and GATA4 are typical SC markers. No differences were found between KS and 46,XY SCs in vitro in terms of cells expansion (exponential growth between P1 and P10 with an average cell count of 2.8±1.5×107 versus 3.8±1.2×107 respectively for the KS and control groups at P10). There was no significant statistical difference for functional proteins and genes expressions (GDNF, BMP4, AR, and CLDN11) neither between KS SCs and control SCs nor between P5 and P10. LIMITATIONS, REASONS FOR CAUTION The small number of donor samples is a limitation but it is due to limited availability of tissue for research in KS populations. Although no differences were observed in SCs function in the culture of isolated SCs after 60 days, the possibility of a SCs dysfunction needs to be investigated in more complex 3-dimensional models allowing the establishment of a proper cell organization and further analyses of cell functions and interactions during longer culture periods. WIDER IMPLICATIONS OF THE FINDINGS The demonstration of the possibility to propagate KS SCs in vitro could be useful to build new in vitro models for deciphering testicular cell interactions, determining deficient signalling pathways involved in impaired spermatogenesis, and identifying targets for infertility treatment in KS. As the cell numbers achieved in this study are higher than cell numbers used to develop testicular organoids, we may expect to be able to understand the behaviour and physiopathology of SCs in the disease during the long-term culture of these organoids. Such models could be further applied to understand other causes of deficiencies in seminiferous tubules. STUDY FUNDING/COMPETING INTEREST(S) M.G.G is funded by a grant from the Cliniques Universitaires Saint-Luc (FRC) for the research project on Klinefelter Syndrome Physiopathology. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER NCT05997706.
Collapse
Affiliation(s)
- Maria Grazia Giudice
- Pôle de recherche en Physiologie de la Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de recherche en Physiologie de la Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jonathan Poels
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Armelle Duquenne
- Center for Human Genetic, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de recherche en Physiologie de la Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
3
|
Gül S, Vloeberghs V, Gies I, Goossens E. Testicular mosaicism in non-mosaic postpubertal Klinefelter patients with focal spermatogenesis and in non-mosaic prepubertal Klinefelter boys. Hum Reprod 2024; 39:2210-2220. [PMID: 39198007 DOI: 10.1093/humrep/deae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Indexed: 09/01/2024] Open
Abstract
STUDY QUESTION Do testis-specific cells have a normal karyotype in non-mosaic postpubertal Klinefelter syndrome (KS) patients with focal spermatogenesis and in non-mosaic prepubertal KS boys? SUMMARY ANSWER Spermatogonia have a 46, XY karyotype, and Sertoli cells surrounding these spermatogonia in postpubertal patients also have a 46, XY karyotype, whereas, in prepubertal KS boys, Sertoli cells surrounding the spermatogonia still have a 47, XXY karyotype. WHAT IS KNOWN ALREADY A significant proportion of patients with non-mosaic KS can have children by using assisted reproductive techniques thanks to focal spermatogenesis. However, the karyotype of the cells that are able to support focal spermatogenesis has not been revealed. STUDY DESIGN, SIZE, DURATION Testicular biopsy samples from non-mosaic KS patients were included in the study. Karyotyping for sex chromosomes in testis-specific cells was performed by immunohistochemical analysis of inactive X (Xi) chromosome and/or fluorescent in situ hybridization (FISH) analysis of chromosomes 18, X, and Y. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 22 KS patients (17 postpubertal and 5 prepubertal) who were non-mosaic according to lymphocyte karyotype analysis, were included in the study. After tissue processing, paraffin embedding, and sectioning, the following primary antibodies were used for cell-specific analysis and Xi detection; one section was stained with MAGE A4 for spermatogonia, SOX9 for Sertoli cells, and H3K27me3 for Xi; the other one was stained with CYP17A1 for Leydig cells, ACTA2 for peritubular myoid cells, and H3K27me3 for Xi. Xi negative (Xi-) somatic cells (i.e. Sertoli cells, Leydig cells, and peritubular myoid cells) were evaluated as having the 46, XY karyotype; Xi positive (Xi+) somatic cells were evaluated as having the 47, XXY. FISH stain for chromosomes 18, X, and Y was performed on the same sections to investigate the karyotype of spermatogonia and to validate the immunohistochemistry results for somatic cells. MAIN RESULTS AND THE ROLE OF CHANCE According to our data, all spermatogonia in both postpubertal and prepubertal non-mosaic KS patients seem to have 46, XY karyotype. However, while the Sertoli cells surrounding spermatogonia in postpubertal samples also had a 46, XY karyotype, the Sertoli cells surrounding spermatogonia in prepubertal samples had a 47, XXY karyotype. In addition, while the Sertoli cells in some of the Sertoli cell-only tubules had 46, XY karyotype, the Sertoli cells in some of the other Sertoli cell-only tubules had 47, XXY karyotype in postpubertal samples. In contrast to the postpubertal samples, Sertoli cells in all tubules in the prepubertal samples had the 47, XXY karyotype. Our data also suggest that germ cells lose the extra X chromosome during embryonic, fetal, or neonatal life, while Sertoli cells lose it around puberty. Peritubular myoid cells and Leydig cells may also be mosaic in both postpubertal patients and prepubertal boys, but it requires further investigation. LIMITATIONS, REASONS FOR CAUTION The number of prepubertal testicle samples containing spermatogonia is limited, so more samples are needed for a definitive conclusion. The fact that not all the cell nuclei coincide with the section plane limits the accurate detection of X chromosomes by immunohistochemistry and FISH in some cells. To overcome this limitation, X chromosome analysis could be performed by different techniques on intact cells isolated from fresh tissue. Additionally, there is no evidence that X chromosome inactivation reoccurs after activation of the Xi during germ cell migration during embryogenesis, limiting the prediction of X chromosome content in germ cells by H3K27me3. WIDER IMPLICATIONS OF THE FINDINGS Our findings will lay the groundwork for new clinically important studies on exactly when and by which mechanism an extra X chromosome is lost in spermatogonia and Sertoli cells. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by The Scientific and Technological Research Council of Türkiye (TUBITAK) (2219 - International Postdoctoral Research Fellowship Program for Turkish Citizens) and the Strategic Research Program (SRP89) from the Vrije Universiteit Brussel. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Semir Gül
- Biology of the Testis Lab, Research Group Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Faculty of Medicine, Histology and Embryology Department, Malatya Turgut Özal University, Malatya, Turkey
- Faculty of Medicine, Histology and Embryology Department, , Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Veerle Vloeberghs
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels IVF, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Inge Gies
- Division of Pediatric Endocrinology, Department of Pediatrics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ellen Goossens
- Biology of the Testis Lab, Research Group Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation of spermatogenesis. Stem Cell Res Ther 2024; 15:294. [PMID: 39256786 PMCID: PMC11389459 DOI: 10.1186/s13287-024-03893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yan He
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| | - Mengjie Tang
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
5
|
Zheng Y, Li DM, Jiang XH, Bai HZ, Zhao GC. A Prediction Model of Sperm Retrieval in Males with Idiopathic Non-obstructive Azoospermia for Microdissection Testicular Sperm Extraction. Reprod Sci 2024; 31:366-374. [PMID: 37749447 DOI: 10.1007/s43032-023-01362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Patients with Idiopathic non-obstructive azoospermia (iNOA) can achieve fertility by extracting testicular sperm through microdissection testicular sperm extraction (mTESE). But more than half of iNOA patients still cannot benefit from mTESE. In recent years, some studies had reported that serum hormones may be related to the outcome of sperm retrieval, but few had been verified. We hope to obtain a predictive method that is convenient for clinical application and can help judge the outcome of sperm extraction before implementing mTESE. We performed a retrospective analysis of NOA patients who underwent mTESE in the same andrology center from June 2020 to November 2022. A total of 261 patients with complete data were collected, logistic regression analysis was performed and a predictive model was constructed. Then, from December 2022 to May 2023, one prospective cohort of 48 NOA patients who met the inclusion criteria from the same center was recruited to validate the risk prediction model. We successfully constructed a logistic regression model to predict the outcome of iNOA patients undergoing mTESE and found that higher serum anti-Müllerian hormone (AMH) levels were associated with failure sperm retrieval, resulting in an AMH cut-off of 2.60 ng/ml. The area under the receiver operating curve was 0.811, the sensitivity was 0.870, and the specificity was 0.705. Decision curve analysis demonstrated that the threshold probability was above 4%, and unnecessary mTESE could be reduced using this model. In a prospective cohort at the same center, 85.42% (41/48) of iNOA patients correctly identified the mTESE outcome using this model. A logistic regression model with AMH as an independent predictor can predict mTESE outcomes in iNOA patients. Preoperative selection of mTESE in patients with iNOA using this model had clinical benefit in reducing unnecessary surgery. The model demonstrated good accuracy in a small prospective cohort validation.
Collapse
Affiliation(s)
- Yi Zheng
- Human Sperm Bank, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Andrology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Ding-Ming Li
- Human Sperm Bank, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Andrology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.
| | - Xiao-Hui Jiang
- Human Sperm Bank, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Andrology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Heng-Zhou Bai
- Human Sperm Bank, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Andrology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Gui-Cheng Zhao
- Human Sperm Bank, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Andrology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| |
Collapse
|
6
|
Bradshaw AW, Deebel NA, Xu MC, Kogan S, Atala A, Sadri-Ardekani H. Examining potential mechanisms of testicular fibrosis in Klinefelter Syndrome: A review of current understanding. Andrology 2023; 11:435-443. [PMID: 36252136 DOI: 10.1111/andr.13327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Men with Klinefelter Syndrome develop some degree of seminiferous tubule degeneration, hyalinization, and fibrosis by adulthood. However, the pathophysiology surrounding testicular fibrosis in Klinefelter Syndrome patients remains incompletely understood. OBJECTIVES To perform a systematic review of literature studying the mechanisms of fibrosis initiation or propagation in Klinefelter Syndrome testes. MATERIALS/METHODS PubMed was searched systematically for articles specific to Klinefelter Syndrome and the process of fibrosis. Articles that did not contain original data or specifically addressed the target material were excluded. Additional references were extracted when pertinent from the reference lists of included studies. RESULTS Primary search yielded 139 articles for abstract review, which was narrowed to 16 for full-text review. Following full-text review, eight contained original data and met topic criteria, with one paper added from reference review for a total of nine papers. DISCUSSION The date range for included papers was 1992-2022. The proposed mechanisms of fibrosis mainly were centered around the impact of altered Sertoli cells on germ cells, the hormonal impact on Leydig cells, the inflammation mediated by mast cells, or the fibrous extracellular matrix deposition by peritubular myoid cells. Additionally, discussions of the role of the altered microvasculature and the specific proteins involved in the blood-testis barrier or the seminiferous tubule architecture are reviewed. Recent papers have incorporated advanced sequencing and offer future directions for targeted gene expression analysis. Still, much of the published data consists solely of immunohistological assessment by age range, creating difficulties in extrapolating causality. CONCLUSION The specific initiating factors of fibrosis of the seminiferous tubules and the propagation mechanisms unique to Klinefelter Syndrome remain incompletely understood with a relative paucity of data. Nonetheless, academic interest is increasing in this field as it may further elucidate the pathophysiology behind Klinefelter syndrome.
Collapse
Affiliation(s)
- Aaron W Bradshaw
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholas A Deebel
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark C Xu
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stanley Kogan
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
7
|
Wang X, Liu X, Qu M, Li H. Sertoli cell-only syndrome: advances, challenges, and perspectives in genetics and mechanisms. Cell Mol Life Sci 2023; 80:67. [PMID: 36814036 PMCID: PMC11072804 DOI: 10.1007/s00018-023-04723-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Male infertility can be caused by quantitative and/or qualitative abnormalities in spermatogenesis, which affects men's physical and mental health. Sertoli cell-only syndrome (SCOS) is the most severe histological phenotype of male infertility characterized by the depletion of germ cells with only Sertoli cells remaining in the seminiferous tubules. Most SCOS cases cannot be explained by the already known genetic causes including karyotype abnormalities and microdeletions of the Y chromosome. With the development of sequencing technology, studies on screening new genetic causes for SCOS are growing in recent years. Directly sequencing of target genes in sporadic cases and whole-exome sequencing applied in familial cases have identified several genes associated with SCOS. Analyses of the testicular transcriptome, proteome, and epigenetics in SCOS patients provide explanations regarding the molecular mechanisms of SCOS. In this review, we discuss the possible relationship between defective germline development and SCOS based on mouse models with SCO phenotype. We also summarize the advances and challenges in the exploration of genetic causes and mechanisms of SCOS. Knowing the genetic factors of SCOS offers a better understanding of SCO and human spermatogenesis, and it also has practical significance for improving diagnosis, making appropriate medical decisions, and genetic counseling. For therapeutic implications, SCOS research, along with the achievements in stem cell technologies and gene therapy, build the foundation to develop novel therapies for SCOS patients to produce functional spermatozoa, giving them hope to father children.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinyu Liu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China.
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430000, China.
| |
Collapse
|
8
|
Sun H, Yang Z, Teng Z, Zhang Y, Han Z, Xu C, Wang Z, Wang H, Wen H, Chen X, Qu C, Wang Y. DDX58 expression promotes inflammation and growth arrest in Sertoli cells by stabilizing p65 mRNA in patients with Sertoli cell-only syndrome. Front Immunol 2023; 14:1135753. [PMID: 37033952 PMCID: PMC10073560 DOI: 10.3389/fimmu.2023.1135753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Sertoli cell -only syndrome (SCOS) is a type of testicular pathological failure that causes male infertility and no effective treatment strategy, is available for this condition. Moreover, the molecular mechanism underlying its development remains unknown. We identified DExD/H-Box helicase 58 (DDX58) as a key gene in SCOS based on four datasets of testicular tissue samples obtained from the Gene Expression Synthesis database. DDX58 was significantly upregulated in SCOS testicular Sertoli cells. Moreover, high expression of DDX58 was positively correlated with the expression of several testicular inflammatory factors, such as IL -1β, IL-18, and IL-6. Interestingly, DDX58 could be induced in the D-galactose (D-gal)-stimulated TM4 cell injury model. Whereas silencing of DDX58 inhibited D-gal -mediated p65 expression, inflammatory cytokine release, and growth arrest. Mechanistically, we found that DDX58 acts as an RNA-binding protein, which enhances p65 expression by promoting mRNA stability. Furthermore, p65 gene silencing decreased the expression of inflammatory cytokines and inhibition of cell growth in D-gal-induced cells. In conclusion, our findings demonstrate that DDX58 promotes inflammatory responses and growth arrest in SCOS Sertoli cells by stabilizing p65 mRNA. Accordingly, the DDX58/p65 regulatory axis might be a therapeutic target for SCOS.
Collapse
Affiliation(s)
- Hao Sun
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Xu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhuang Wen
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaodong Chen
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Changbao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Changbao Qu, ; Yaxuan Wang,
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Changbao Qu, ; Yaxuan Wang,
| |
Collapse
|
9
|
Transcriptomic differences between fibrotic and non-fibrotic testicular tissue reveal possible key players in Klinefelter syndrome-related testicular fibrosis. Sci Rep 2022; 12:21518. [PMID: 36513788 PMCID: PMC9748020 DOI: 10.1038/s41598-022-26011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Klinefelter syndrome (KS; 47,XXY) affects 1-2 in 1000 males. Most men with KS suffer from an early germ cell loss and testicular fibrosis from puberty onwards. Mechanisms responsible for these processes remain unknown. Previous genomics studies on testis tissue from men with KS focused on germ cell loss, while a transcriptomic analysis focused on testicular fibrosis has not yet been performed. This study aimed to identify factors involved in the fibrotic remodelling of KS testes by analysing the transcriptome of fibrotic and non-fibrotic testicular tissue. RNA sequencing was performed to compare the genes expressed in testicular samples with (KS and testis atrophy) and without (Sertoli cell-only syndrome and fertile controls) fibrosis (n = 5, each). Additionally, differentially expressed genes (DEGs) between KS and testis atrophy samples were studied to reveal KS-specific fibrotic genes. DEGs were considered significant when p < 0.01 and log2FC > 2. Next, downstream analyses (GO and KEGG) were performed. Lastly, RNA in situ hybridization was performed to validate the results. The first analysis (fibrotic vs non-fibrotic) resulted in 734 significant DEGs (167 up- and 567 down-regulated). Genes involved in the extracellular structure organization (e.g. VCAM1) were found up-regulated. KEGG analysis showed an up-regulation of genes involved in the TGF-β pathway. The KS vs testis atrophy analysis resulted in 539 significant DEGs (59 up- and 480 down-regulated). Chronic inflammatory response genes were found up-regulated. The overlap of X-linked DEGs from the two analyses revealed three genes: matrix-remodelling associated 5 (MXRA5), doublecortin (DCX) and variable charge X-Linked 3B (VCX3B). RNA in situ hybridization showed an overexpression of VCAM1, MXRA5 and DCX within the fibrotic group compared with the non-fibrotic group. To summarize, this study revealed DEGs between fibrotic and non-fibrotic testis tissue, including VCAM1. In addition, X-linked fibrotic genes were revealed, e.g. MXRA5, DCX and VCX3B. Their potential role in KS-related testicular fibrosis needs further study.
Collapse
|
10
|
Organotypic Culture of Testicular Tissue from Infant Boys with Cryptorchidism. Int J Mol Sci 2022; 23:ijms23147975. [PMID: 35887314 PMCID: PMC9316019 DOI: 10.3390/ijms23147975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Organotypic culture of human fetal testis has achieved fertilization-competent spermatids followed by blastocysts development. This study focuses on whether the organotypic culture of testicular tissue from infant boys with cryptorchidism could support the development of spermatogonia and somatic cells. Frozen-thawed tissues were cultured in two different media, with or without retinoic acid (RA), for 60 days and evaluated by tissue morphology and immunostaining using germ and somatic cell markers. During the 60-day culture, spermatocytes stained by boule-like RNA-binding protein (BOLL) were induced in biopsies cultured with RA. Increased AR expression (p < 0.001) and decreased AMH expression (p < 0.001) in Sertoli cells indicated advancement of Sertoli cell maturity. An increased number of SOX9-positive Sertoli cells (p < 0.05) was observed, while the percentage of tubules with spermatogonia was reduced (p < 0.001). More tubules with alpha-smooth muscle actin (ACTA, peritubular myoid cells (PTMCs) marker) were observed in an RA-absent medium (p = 0.02). CYP17A1/STAR-positive Leydig cells demonstrated sustained steroidogenic function. Our culture conditions support the initiation of spermatocytes and enhanced maturation of Sertoli cells and PTMCs within infant testicular tissues. This study may be a basis for future studies focusing on maintaining and increasing the number of spermatogonia and identifying different factors and hormones, further advancing in vitro spermatogenesis.
Collapse
|
11
|
Walczak-Jędrzejowska R, Forma E, Oszukowska E, Bryś M, Marchlewska K, Kula K, Słowikowska-Hilczer J. Expression of G-Protein-Coupled Estrogen Receptor ( GPER) in Whole Testicular Tissue and Laser-Capture Microdissected Testicular Compartments of Men with Normal and Aberrant Spermatogenesis. BIOLOGY 2022; 11:biology11030373. [PMID: 35336747 PMCID: PMC8945034 DOI: 10.3390/biology11030373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Nowadays, there is no doubt that estrogens play an important role in male reproduction, affecting testicular cell differentiation, proliferation, apoptosis and metabolism. It is also widely believed that intratesticular balance of androgens and estrogens is crucial for the testicular development and function and that the increased testicular estrogen production may be associated with spermatogenic failure. There is also growing epidemiological evidence that the exposure of men to endocrine disruptors demonstrating estrogenic activity (xenoestrogens) may lead to impairment of male fertility via interference with estrogen signaling pathways. Besides the two classical nuclear estrogen receptors, the membrane-bound G protein-coupled estrogen receptor (GPER) was described in human testicular tissue. However, there are little data on its expression in testes with disturbed spermatogenesis. In this study, we investigated the GPER expression pattern in biopsies of azoospermic men with complete and aberrant spermatogenesis. Our results showed an increased expression of the GPER in testes with impaired spermatogenesis. Moreover, they indicate a possible involvement of estrogen signaling through GPER in disturbed function of Sertoli cells—the cells that support spermatogenic process. Abstract In this study, we retrospectively investigated GPER expression in biopsies of azoospermic men with complete (obstructive azoospermia—OA) and aberrant spermatogenesis (nonobstructive azoospermia—NOA). Each biopsy was histologically evaluated with morphometry. The testicular GPER expression was analyzed by the immunohistochemistry and RT-PCR technique in the whole testicular tissue and in seminiferous tubules and Leydig cells after laser-capture microdissection. In laser-microdissected compartments, we also analyzed transcriptional expression of selected Leydig (CYP17A1, HSD17B3, StAR) and Sertoli cell (AMH, SCF, BMP4) function markers. Immunohistochemical staining revealed expression of GPER in the cytoplasm of Leydig and Sertoli cells. Its stronger intensity was observed in Sertoli cells of NOA biopsies. The RT-PCR analysis of the GPER mRNA level unequivocally showed its increased expression in seminiferous tubules (i.e., Sertoli cells), not Leydig cells in NOA biopsies. This increased expression correlated positively with the transcriptional level of AMH—a marker of Sertoli cell immaturity, as well as FSH serum level in NOA but not in the OA group. Our results clearly demonstrate altered GPER expression in testes with primary spermatogenic impairment that might be related to Sertoli cell maturity/function.
Collapse
Affiliation(s)
- Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland; (K.M.); (K.K.); (J.S.-H.)
- Correspondence: ; Tel.: +48-42-272-53-91
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland; (E.F.); (M.B.)
| | - Elżbieta Oszukowska
- II Clinic of Urology, Medical University of Lodz, Pabianicka Str. 62, 93-513 Lodz, Poland;
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland; (E.F.); (M.B.)
| | - Katarzyna Marchlewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland; (K.M.); (K.K.); (J.S.-H.)
| | - Krzysztof Kula
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland; (K.M.); (K.K.); (J.S.-H.)
| | - Jolanta Słowikowska-Hilczer
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland; (K.M.); (K.K.); (J.S.-H.)
| |
Collapse
|
12
|
Willems M, Seβenhausen P, Gies I, Vloeberghs V, Tournaye H, Goossens E, Van Saen D. To graft or not to graft? Intratesticular xenografting of (pre)pubertal testicular tissue from Klinefelter patients as potential ex vivo model to study testicular fibrosis. Reprod Biomed Online 2022; 44:896-906. [DOI: 10.1016/j.rbmo.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/01/2022]
|
13
|
Mahyari E, Guo J, Lima AC, Lewinsohn DP, Stendahl AM, Vigh-Conrad KA, Nie X, Nagirnaja L, Rockweiler NB, Carrell DT, Hotaling JM, Aston KI, Conrad DF. Comparative single-cell analysis of biopsies clarifies pathogenic mechanisms in Klinefelter syndrome. Am J Hum Genet 2021; 108:1924-1945. [PMID: 34626582 DOI: 10.1016/j.ajhg.2021.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
Klinefelter syndrome (KS), also known as 47, XXY, is characterized by a distinct set of physiological abnormalities, commonly including infertility. The molecular basis for Klinefelter-related infertility is still unclear, largely because of the cellular complexity of the testis and the intricate endocrine and paracrine signaling that regulates spermatogenesis. Here, we demonstrate an analysis framework for dissecting human testis pathology that uses comparative analysis of single-cell RNA-sequencing data from the biopsies of 12 human donors. By comparing donors from a range of ages and forms of infertility, we generate gene expression signatures that characterize normal testicular function and distinguish clinically distinct forms of male infertility. Unexpectedly, we identified a subpopulation of Sertoli cells within multiple individuals with KS that lack transcription from the XIST locus, and the consequence of this is increased X-linked gene expression compared to all other KS cell populations. By systematic assessment of known cell signaling pathways, we identify 72 pathways potentially active in testis, dozens of which appear upregulated in KS. Altogether our data support a model of pathogenic changes in interstitial cells cascading from loss of X inactivation in pubertal Sertoli cells and nominate dosage-sensitive factors secreted by Sertoli cells that may contribute to the process. Our findings demonstrate the value of comparative patient analysis in mapping genetic mechanisms of disease and identify an epigenetic phenomenon in KS Sertoli cells that may prove important for understanding causes of infertility and sex chromosome evolution.
Collapse
|
14
|
Deebel NA, Bradshaw AW, Sadri-Ardekani H. Infertility considerations in klinefelter syndrome: From origin to management. Best Pract Res Clin Endocrinol Metab 2020; 34:101480. [PMID: 33358481 DOI: 10.1016/j.beem.2020.101480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Klinefelter syndrome (KS) is defined as the presence of one or more extra "X" chromosome in a male patient. It affects approximately 1 in 600 newborn males and the most common chromosomal abnormality, leading to male hypogonadism and infertility. There is a lack of data supporting best practices for KS patients' care. In this paper we review controversial issues in KS research ranging from mechanisms of variation in KS phenotype to abnormalities resulting in reduced sperm production to successful sperm retrieval disparities after testicular sperm extraction (TESE). Translation to live birth and offspring health is also examined. Finally, medical therapies used to optimize the hormonal status and chances of fertility in KS patients are reviewed. We will also discuss the experimental spermatogonial stem cell (SSC) treatments, which are considered the future for TESE negative patients.
Collapse
Affiliation(s)
- Nicholas A Deebel
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Aaron W Bradshaw
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hooman Sadri-Ardekani
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Willems M, Gies I, Van Saen D. Germ cell loss in Klinefelter syndrome: When and why? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:356-370. [PMID: 32412180 DOI: 10.1002/ajmg.c.31787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
Klinefelter syndrome (KS) is a quite common disorder with an incidence of 1-2 in 1,000 new-born males. Most patients are diagnosed in the light of a clinical checkup when consulting a fertility clinic with an unfulfilled child wish. Infertility in KS patients is caused by a massive germ cell loss, leading to azoospermia in more than 90% of the adult patients. Most seminiferous tubules in the adult KS testis are degenerated or hyalinized and testicular fibrosis can be observed, starting from puberty. However, focal spermatogenesis can be found in the testis of some patients. This offers the opportunity to extract spermatozoa from the testis by testicular sperm extraction (TESE). Nevertheless, TESE is only successful in about half of the KS adults seeking to father children. The reason for the germ cell loss remains unclear. To date, it is still debated whether the testicular tissue changes and the germ cell loss seen in KS is directly caused by an altered X-linked gene expression, the altered somatic environment, or a deficiency in the germ cells. In this review, we provide an overview of the current knowledge about the germ cell loss in KS patients.
Collapse
Affiliation(s)
- Margo Willems
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Inge Gies
- Department of Pediatrics, Division of Pediatric Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Dorien Van Saen
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
16
|
Failing to mature: somatic cell dysfunction in the spermatogenic niche among patients with Sertoli cell-only and Klinefelter syndromes. Fertil Steril 2020; 113:1155-1156. [PMID: 32386867 DOI: 10.1016/j.fertnstert.2020.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/22/2022]
|