1
|
da Graca B, Johannesson L, Testa G, Wall AE. The Ethical Evolution of Uterus Transplantation From Concept to Clinical Procedure. Clin Obstet Gynecol 2022; 65:24-36. [PMID: 35045022 DOI: 10.1097/grf.0000000000000687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Uterus transplantation (UTx) offers women with absolute uterine factor infertility a path to motherhood that enables them to carry their own pregnancy. Debates about the ethics of UTx have evolved in tandem with its clinical evolution: clinical trials have provided evidence regarding risks and benefits to donors and recipients that were initially uncertain; technical advances have altered the balance between risks and benefits; and the experiences of donors and recipients has revealed questions that were not anticipated. As UTx transitions to a clinical procedure, questions remain about long-term risks and benefits, applications beyond carrying a pregnancy, and cost and access.
Collapse
Affiliation(s)
| | - Liza Johannesson
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center
- Department of Obstetrics and Gynecology, Baylor University Medical Center, Dallas, Texas
| | - Giuliano Testa
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center
| | - Anji E Wall
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center
| |
Collapse
|
3
|
Padma AM, Carrière L, Krokström Karlsson F, Sehic E, Bandstein S, Tiemann TT, Oltean M, Song MJ, Brännström M, Hellström M. Towards a bioengineered uterus: bioactive sheep uterus scaffolds are effectively recellularized by enzymatic preconditioning. NPJ Regen Med 2021; 6:26. [PMID: 34021161 PMCID: PMC8140118 DOI: 10.1038/s41536-021-00136-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Uterine factor infertility was considered incurable until recently when we reported the first successful live birth after uterus transplantation. However, risky donor surgery and immunosuppressive therapy are factors that may be avoided with bioengineering. For example, transplanted recellularized constructs derived from decellularized tissue restored fertility in rodent models and mandate translational studies. In this study, we decellularized whole sheep uterus with three different protocols using 0.5% sodium dodecyl sulfate, 2% sodium deoxycholate (SDC) or 2% SDC, and 1% Triton X-100. Scaffolds were then assessed for bioactivity using the dorsal root ganglion and chorioallantoic membrane assays, and we found that all the uterus scaffolds exhibited growth factor activity that promoted neurogenesis and angiogenesis. Extensive recellularization optimization was conducted using multipotent sheep fetal stem cells and we report results from the following three in vitro conditions; (a) standard cell culturing conditions, (b) constructs cultured in transwells, and (c) scaffolds preconditioned with matrix metalloproteinase 2 and 9. The recellularization efficiency was improved short-term when transwells were used compared with standard culturing conditions. However, the recellularization efficiency in scaffolds preconditioned with matrix metalloproteinases was 200–300% better than the other strategies evaluated herein, independent of decellularization protocol. Hence, a major recellularization hurdle has been overcome with the improved recellularization strategies and in vitro platforms described herein. These results are an important milestone and should facilitate the production of large bioengineered grafts suitable for future in vivo applications in the sheep, which is an essential step before considering these principles in a clinical setting.
Collapse
Affiliation(s)
- Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Laura Carrière
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Krokström Karlsson
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edina Sehic
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Bandstein
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom Tristan Tiemann
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF-EUGIN, Hammarby allé 93, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|