1
|
Kocur OM, Xie P, Cheung S, Ng L, De Jesus A, Rosenwaks Z, Palermo GD. The intricate "ART" of ICSI. J Assist Reprod Genet 2024:10.1007/s10815-024-03322-3. [PMID: 39714737 DOI: 10.1007/s10815-024-03322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/09/2024] [Indexed: 12/24/2024] Open
Abstract
This manuscript explores the intricacies and nuances of the Intracytoplasmic Sperm Injection (ICSI) procedure, drawing on insights from three decades of experience at a specialized center managing numerous cases of male factor infertility. Our center is comprised of an embryology laboratory, an andrology and assisted fertilization laboratory, and a Preimplantation Genetic Testing for Aneuploidy (PGT-A) laboratory, each fostering specialized expertise independently. Collaboration among these laboratories, alongside reproductive physicians and urologists, ensures comprehensive feedback and optimal care for patients undergoing infertility treatment. The manuscript specifically focuses on the andrology laboratory's pivotal role in evaluating and treating infertile patients, highlighting critical preparations for the ICSI procedure, and the key considerations essential to its successful implementation, including the selection of the ideal spermatozoon, oocyte dysmaturity, proper equipment, and most importantly the execution of the procedure itself.
Collapse
Affiliation(s)
- Olena M Kocur
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Stephanie Cheung
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Lily Ng
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Angela De Jesus
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Wang H, Kobayashi H, Shimada K, Oura S, Oyama Y, Kitakaze H, Noda T, Yabuta N, Miyata H, Ikawa M. MYCBPAP is a central apparatus protein required for centrosome-nuclear envelope docking and sperm tail biogenesis in mice. J Cell Sci 2024; 137:jcs261962. [PMID: 39092789 PMCID: PMC11385322 DOI: 10.1242/jcs.261962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
The structure of the sperm flagellar axoneme is highly conserved across species and serves the essential function of generating motility to facilitate the meeting of spermatozoa with the egg. During spermiogenesis, the axoneme elongates from the centrosome, and subsequently the centrosome docks onto the nuclear envelope to continue tail biogenesis. Mycbpap is expressed predominantly in mouse and human testes and conserved in Chlamydomonas as FAP147. A previous cryo-electron microscopy analysis has revealed the localization of FAP147 to the central apparatus of the axoneme. Here, we generated Mycbpap-knockout mice and demonstrated the essential role of Mycbpap in male fertility. Deletion of Mycbpap led to disrupted centrosome-nuclear envelope docking and abnormal flagellar biogenesis. Furthermore, we generated transgenic mice with tagged MYCBPAP, which restored the fertility of Mycbpap-knockout males. Interactome analyses of MYCBPAP using Mycbpap transgenic mice unveiled binding partners of MYCBPAP including central apparatus proteins, such as CFAP65 and CFAP70, which constitute the C2a projection, and centrosome-associated proteins, such as CCP110. These findings provide insights into a MYCBPAP-dependent regulation of the centrosome-nuclear envelope docking and sperm tail biogenesis.
Collapse
Affiliation(s)
- Haoting Wang
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroko Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Seiya Oura
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Oyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Kitakaze
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Kumamoto 860-8555, Japan
| | - Norikazu Yabuta
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Subbiah A, Caswell DL, Turner K, Jaiswal A, Avidor-Reiss T. CP110 and CEP135 Localize Near the Proximal Centriolar Remnants of Mice Spermatozoa. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001083. [PMID: 38351906 PMCID: PMC10862134 DOI: 10.17912/micropub.biology.001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Centrioles form centrosomes that organize microtubules, assist in cell structure, and nucleate cilia that provide motility and sensation. Within the sperm, the centrosome consists of two centrioles (proximal and distal centriole) and a pericentriolar material known as the striated column and capitulum. The distal centriole nucleates the flagellum. Mice spermatozoa, unlike other mammal spermatozoa (e.g., human and bovine), have no ultra-structurally recognizable centrioles, but their neck has the centriolar proteins POC1B and FAM161A, suggesting mice spermatozoa have remnant centrioles. Here, we examine whether other centriolar proteins, CP110 and CEP135, found in the human and bovine spermatozoa centrioles are also found in the mouse spermatozoa neck. CP110 is a tip protein controlling ciliogenesis, and CEP135 is a centriole-specific structural protein in the centriole base of canonical centrioles found in most cell types. Here, we report that CP110 and CEP135 were both located in the mice spermatozoa neck around the proximal centriolar remnants labeled by POC1B, increasing the number of centriolar proteins found in the mice spermatozoa neck, further supporting the hypothesis that a remnant proximal centriole is present in mice.
Collapse
|
4
|
Gallagher MT, Krasauskaite I, Kirkman-Brown JC. Only the Best of the Bunch-Sperm Preparation Is Not Just about Numbers. Semin Reprod Med 2023; 41:273-278. [PMID: 38113923 DOI: 10.1055/s-0043-1777756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this Seminar, we present an overview of the current and emerging methods and technologies for optimizing the man and the sperm sample for fertility treatment. We argue that sperms are the secret to success, and that there are many avenues for improving both treatment and basic understanding of their role in outcomes. These outcomes encompass not just whether treatment is successful or not, but the wider intergenerational health of the offspring. We discuss outstanding challenges and opportunities of new technologies such as microfluidics and artificial intelligence, including potential pitfalls and advantages. This article aims to provide a comprehensive overview of the importance of sperm in fertility treatment and suggests future directions for research and innovation.
Collapse
Affiliation(s)
- Meurig T Gallagher
- Centre for Human Reproductive Science, Institute of Metabolism and Systems Research, University of Birmingham and Birmingham Women's Fertility Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TT, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Ingrida Krasauskaite
- Centre for Human Reproductive Science, Institute of Metabolism and Systems Research, University of Birmingham and Birmingham Women's Fertility Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TT, United Kingdom
| | - Jackson C Kirkman-Brown
- Centre for Human Reproductive Science, Institute of Metabolism and Systems Research, University of Birmingham and Birmingham Women's Fertility Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|