1
|
Mayers CG, Harrington TC, Wai A, Hausner G. Recent and Ongoing Horizontal Transfer of Mitochondrial Introns Between Two Fungal Tree Pathogens. Front Microbiol 2021; 12:656609. [PMID: 34149643 PMCID: PMC8208691 DOI: 10.3389/fmicb.2021.656609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Two recently introduced fungal plant pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) are responsible for Rapid ‘ōhi‘a Death (ROD) in Hawai‘i. Despite being sexually incompatible, the two pathogens often co-occur in diseased ‘ōhi‘a sapwood, where genetic interaction is possible. We sequenced and annotated 33 mitochondrial genomes of the two pathogens and related species, and investigated 35 total Ceratocystis mitogenomes. Ten mtDNA regions [one group I intron, seven group II introns, and two autonomous homing endonuclease (HE) genes] were heterogeneously present in C. lukuohia mitogenomes, which were otherwise identical. Molecular surveys with specific primers showed that the 10 regions had uneven geographic distribution amongst populations of C. lukuohia. Conversely, identical orthologs of each region were present in every studied isolate of C. huliohia regardless of geographical origin. Close relatives of C. lukuohia lacked or, rarely, had few and dissimilar orthologs of the 10 regions, whereas most relatives of C. huliohia had identical or nearly identical orthologs. Each region included or worked in tandem with HE genes or reverse transcriptase/maturases that could facilitate interspecific horizontal transfers from intron-minus to intron-plus alleles. These results suggest that the 10 regions originated in C. huliohia and are actively moving to populations of C. lukuohia, perhaps through transient cytoplasmic contact of hyphal tips (anastomosis) in the wound surface of ‘ōhi‘a trees. Such contact would allow for the transfer of mitochondria followed by mitochondrial fusion or cytoplasmic exchange of intron intermediaries, which suggests that further genomic interaction may also exist between the two pathogens.
Collapse
Affiliation(s)
- Chase G Mayers
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Thomas C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Yin YN, Kim YK, Xiao CL. Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. PHYTOPATHOLOGY 2012; 102:315-322. [PMID: 22085296 DOI: 10.1094/phyto-08-11-0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Botrytis cinerea isolates obtained from apple orchards were screened for resistance to the quinone outside inhibitor (QoI) pyraclostrobin. Of the 220 isolates tested, 43 (19.5%) were resistant to pyraclostrobin. Analysis of partial sequences of the cytochrome b gene (cyt b) in five pyraclostrobin-resistant (PR) and five pyraclostrobin-sensitive (PS) isolates showed that PR isolates harbored the point mutation leading to the substitution of glycine by alanine at codon position 143 in cyt b (G143A). Two pairs of allele-specific primers were designed based on this point mutation, and allele-specific polymerase chain reaction analysis with these primers showed that all 73 PR isolates (including 30 collected from decayed apple fruit) harbored the G143A mutation but PS isolates did not. Six pairs of primers were designed to analyze the presence of various introns in cyt b. There were six types (I to VI) of cyt b present in 247 isolates of B. cinerea collected from various apple-production areas in Washington State. Of the 247 isolates, 23 had type I cyt b containing all four introns (Bcbi-67/68, Bcbi-131/132, Bcbi-143/144, and Bcbi-164), 176 had type II cyt b containing three introns (Bcbi-67/68, Bcbi-131/132, and Bcbi-164), six had type III cyt b containing two introns (Bcbi-67/68 and Bcbi-131/132), one had type IV cyt b containing two introns (Bcbi-131/132 and Bcbi-164), one had type V cyt b containing only the Bcbi-131/132 intron, and 40 had type VI cyt b containing no introns. This is the first report of types III to VI cyt b present in B. cinerea. All 73 PR isolates did not carry the Bcbi-143/144 intron in cyt b. Of the 247 isolates tested, >90% did not carry the Bcbi-143/144 intron in cyt b, suggesting that B. cinerea populations from apple pose a high inherent risk for the development of resistance to QoIs because the presence of this intron in cyt b prevents the occurrence of G143A-mediated resistance. Analysis of genetic background based on three microsatellite primers showed that PR isolates originated from different lineages, and there was no correlation between cyt b types (I, II, and III) and the genetic background of the isolates; however, isolates carrying type VI cyt b might originate from the same lineage.
Collapse
Affiliation(s)
- Y N Yin
- Department of Plant Pathology, Washington State University, Tree Fruit Research and Extension Center, Wenatchee, WA 98801, USA
| | | | | |
Collapse
|
3
|
Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl Environ Microbiol 2010; 76:6615-30. [PMID: 20693447 DOI: 10.1128/aem.00931-10] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory inhibitors are among the fungicides most widely used for disease control on crops. Most are strobilurins and carboxamides, inhibiting the cytochrome b of mitochondrial complex III and the succinate dehydrogenase of mitochondrial complex II, respectively. A few years after the approval of these inhibitors for use on grapevines, field isolates of Botrytis cinerea, the causal agent of gray mold, resistant to one or both of these classes of fungicide were recovered in France and Germany. However, little was known about the mechanisms underlying this resistance in field populations of this fungus. Such knowledge could facilitate resistance risk assessment. The aim of this study was to investigate the mechanisms of resistance occurring in B. cinerea populations. Highly specific resistance to strobilurins was correlated with a single mutation of the cytb target gene. Changes in its intronic structure may also have occurred due to an evolutionary process controlling selection for resistance. Specific resistance to carboxamides was identified for six phenotypes, with various patterns of resistance levels and cross-resistance. Several mutations specific to B. cinerea were identified within the sdhB and sdhD genes encoding the iron-sulfur protein and an anchor protein of the succinate dehydrogenase complex. Another as-yet-uncharacterized mechanism of resistance was also recorded. In addition to target site resistance mechanisms, multidrug resistance, linked to the overexpression of membrane transporters, was identified in strains with low to moderate resistance to several respiratory inhibitors. This diversity of resistance mechanisms makes resistance management difficult and must be taken into account when developing strategies for Botrytis control.
Collapse
|
4
|
Molitor C, Inthavong B, Sage L, Geremia RA, Mouhamadou B. Potentiality of thecox1â gene in the taxonomic resolution of soil fungi. FEMS Microbiol Lett 2010; 302:76-84. [DOI: 10.1111/j.1574-6968.2009.01839.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Walker AS, Auclair C, Gredt M, Leroux P. First occurrence of resistance to strobilurin fungicides in Microdochium nivale and Microdochium majus from French naturally infected wheat grains. PEST MANAGEMENT SCIENCE 2009; 65:906-915. [PMID: 19431150 DOI: 10.1002/ps.1772] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Microdochium nivale (Fr.) Samuels & Hallet and Microdochium majus (Wollenweber) belong to the Fusarium ear blight (FEB) fungal complex affecting cereals. In 2007 and 2008, major Microdochium sp. infestations were observed in France, and the efficacy of strobilurins was found to be altered in some field trials. The aim of this study was to determine the sensitivity to strobilurins of French isolates of Microdochium and to characterise the possible mechanisms of resistance. RESULTS Half of the strains collected in 2007 were resistant to strobilurins, and most also displayed strong resistance to benzimidazoles. Strobilurin resistance was found mostly in M. majus isolates. Positive cross-resistance was observed between all strobilurins tested, but not with the phenylpyrrole derivative fludioxonil and the various classes of sterol biosynthesis inhibitors (SBIs). In most strains, resistance was correlated with the G143A substitution in cytochrome b, the molecular target of strobilurins. Two other mechanisms were also detected at lower frequencies. CONCLUSION This is the first report of strobilurin resistance in Microdochium. Several resistance mechanisms have evolved independently in populations and may have different impacts on field efficacy. This makes the accurate detection and quantification of QoI resistance difficult. The management of field resistance and efficacy must be adapted to take these findings into account.
Collapse
|
6
|
Mouhamadou B, Carriconde F, Gryta H, Jargeat P, Manzi S, Gardes M. Molecular evolution of mitochondrial ribosomal DNA in the fungal genus Tricholoma: barcoding implications. Fungal Genet Biol 2008; 45:1219-26. [PMID: 18647655 DOI: 10.1016/j.fgb.2008.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
The molecular evolution of the V6 and V9 domains of the mitochondrial SSU-rDNA was investigated to evaluate the use of these sequences for DNA barcodes in the Basidiomycota division. The PCR products from 27 isolates belonging to 11 Tricholoma species were sequenced. Both domains in the isolates belonging to the same species had identical sequences. All the species possess distinctive V9 sequences due to point mutations and insertion/deletion events. Secondary structures revealed that the insertion-deletion events occurred in regions not directly involved in the maintenance of the standard SSU-rRNA structure. The inserted sequences possess conserved motifs that enable their alignment among phylogenetically distant species. Hence, the V9 domain by displaying identical sequences within species, an adequate divergence level, easy amplification, and alignment represents an alternative molecular marker for the Basidiomycota division and opens the way for this sequence to be used as specific molecular markers of the fungal kingdom.
Collapse
Affiliation(s)
- Bello Mouhamadou
- Laboratoire Evolution et Diversité Biologique, UMR 5174 CNRS-UPS-ENFA, Université Paul Sabatier-Toulouse III, Toulouse Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
7
|
Scalley-Kim M, McConnell-Smith A, Stoddard BL. Coevolution of a homing endonuclease and its host target sequence. J Mol Biol 2007; 372:1305-19. [PMID: 17720189 PMCID: PMC2040299 DOI: 10.1016/j.jmb.2007.07.052] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 12/22/2022]
Abstract
We have determined the specificity profile of the homing endonuclease I-AniI and compared it to the conservation of its host gene. Homing endonucleases are encoded within intervening sequences such as group I introns. They initiate the transfer of such elements by cleaving cognate alleles lacking the intron, leading to their transfer via homologous recombination. Each structural homing endonuclease family has arrived at an appropriate balance of specificity and fidelity that avoids toxicity while maximizing target recognition and invasiveness. I-AniI recognizes a strongly conserved target sequence in a host gene encoding apocytochrome B and has fine-tuned its specificity to correlate with wobble versus nonwobble positions across that sequence and to the amount of degeneracy inherent in individual codons. The physiological target site in the host gene is not the optimal substrate for recognition and cleavage: at least one target variant identified during a screen is bound more tightly and cleaved more rapidly. This is a result of the periodic cycle of intron homing, which at any time can present nonoptimal combinations of endonuclease specificity and insertion site sequences in a biological host.
Collapse
Affiliation(s)
- Michelle Scalley-Kim
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-023, Seattle WA 98109
| | - Audrey McConnell-Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-023, Seattle WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington Seattle, WA 98105
| | - Barry L. Stoddard
- * To whom correspondence should be addressed 1-206-667-4031 (ph) -6877 (fax),
| |
Collapse
|
8
|
Mouhamadou B, Férandon C, Chazoule S, Barroso G. Unusual accumulation of polymorphic microsatellite loci in a specific region of the mitochondrial genome of two mushroom-forming Agrocybe species. FEMS Microbiol Lett 2007; 272:276-81. [PMID: 17559401 DOI: 10.1111/j.1574-6968.2007.00771.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cob/tRNA(Tyr) mitochondrial regions of Agrocybe aegerita and of the related species Agrocybe chaxingu display an unusual clustering of four microsatellite loci constituted by motifs of one to six nucleotides whose number of repeats varied from three to 18. In A. chaxingu, these microsatellite loci are followed by a small region bearing one additional microsatelite and one minisatellite locus constituted by an octanucleotide motif repeated 13-18 times. In A. aegerita, this latter region is deleted. This is the first evidence of such an accumulation of microsatellites in mitochondrial genomes. The analyses of the microsatellite loci in 11 A. aegerita and in four A. chaxingu wild strains have shown extensive intraspecific and interspecific variations in the number of tandem repeats (VNTRs), suggesting that these loci could represent powerful molecular markers for strain fingerprinting. Up to 23 different alleles were present in the 15 Agrocybe studied strains, allowing the definition of 12 different haplotypes.
Collapse
Affiliation(s)
- Bello Mouhamadou
- UMR 5234 CNRS--Université Victor Segalen Bordeaux 2, Département 1 Réplication et Expression Génétique des Génomes Eucaryotes, Bactériens et Viraux, Bordeaux, France
| | | | | | | |
Collapse
|
9
|
Sierotzki H, Frey R, Wullschleger J, Palermo S, Karlin S, Godwin J, Gisi U. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis and implications for QoI resistance. PEST MANAGEMENT SCIENCE 2007; 63:225-33. [PMID: 17212344 DOI: 10.1002/ps.1330] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Resistance to QoI fungicides in Pyrenophora teres (Dreschsler) and P. tritici-repentis (Died.) Dreschsler was detected in 2003 in France and in Sweden and Denmark respectively. Molecular analysis revealed the presence of the F129L mutation in resistant isolates of both pathogens. In 2004, the frequency of the F129L mutation in populations of both pathogens further increased. The G143A mutation was also detected in a few isolates of P. tritici-repentis from Denmark and Germany. In 2005, the F129L mutation in P. teres increased in frequency and geographical distribution in France and the UK but remained below 2% in Germany, Switzerland, Belgium and Ireland. In P. tritici-repentis, both mutations were found in a significant proportion of the isolates from Sweden, Denmark and Germany. The G143A mutation conferred a significantly higher level of resistance (higher EC50 values) to Qo inhibitors (QoIs) than did the F129L mutation. In greenhouse trials, resistant isolates with G143A were not well controlled on plants sprayed with recommended field rates, whereas satisfactory control of isolates with F129L was achieved. For the F129L mutation, three different single nucleotide polymorphisms (SNPs), TTA, TTG and CTC, can code for L (leucine) in P. teres, whereas only the CTC codon was detected in P. tritici-repentis isolates. In two out of 250 isolates of P. tritici-repentis from 2005, a mutation at position 137 (G137R) was detected at very low frequency. This mutation conferred similar resistance levels to F129L. The structure of the cytochrome b gene of P. tritici-repentis is significantly different from that of P. teres: an intron directly after amino acid position 143 was detected in P. teres which is not present in P. tritici-repentis. This gene structure suggests that resistance based on the G143A mutation may not occur in P. teres because it is lethal. No G143A isolates were found in any P. teres populations. Although different mutations may evolve in P. tritici-repentis, the G143A mutation will have the strongest impact on field performance of QoI fungicides.
Collapse
Affiliation(s)
- Helge Sierotzki
- Syngenta Crop Protection, Research Biology, 4332 Stein, Switzerland.
| | | | | | | | | | | | | |
Collapse
|