1
|
Tsuji K, Kitade Y, Yoshimi A, Tanaka C. Meiotic Silencing in Dothideomycetous Bipolaris maydis. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:931888. [PMID: 37746229 PMCID: PMC10512333 DOI: 10.3389/ffunb.2022.931888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 09/26/2023]
Abstract
The filamentous ascomycete Bipolaris maydis is a plant pathogen that causes corn leaf blight and has been used in cytological studies of sexual reproduction. In this fungus, when null mutants of each septin are crossed with the wild-type strain, all ascospores derived from the same asci show abnormal morphology. The phenomenon was remarkably similar to the event known as "ascus dominance" in Neurospora crassa, which is known to be caused by MSUD (meiotic silencing by unpaired DNA). However, it is not clear whether B. maydis possesses functional MSUD. The object of this study is to elucidate whether this fungus carries a functional MSUD system that causes ascus dominance in the crosses of septin mutants and the wild-type strain. The results of homozygous and heterozygous crossing tests with mutants, having the insertional CDC10-septin gene sequence into the genome, suggested that the ascus dominance in B. maydis is triggered by the unpaired DNA as in N. crassa. To investigate whether MSUD is caused by the same mechanism as in N. crassa, an RNA-dependent RNA polymerase, one of the essential factors in MSUD, was identified and disrupted (Δrdr1) in B. maydis. When the Δrdr1 strain was crossed with each mutant of the septins, ascus dominance did not occur in all crosses. These results suggest that this ascus dominance is caused by RNA silencing triggered by an unpaired gene, as in N. crassa, and septin genes were affected by this silencing. To date, although MSUD has been found only in Fusarium graminearum and N. crassa, which are classified as Sordariomycetes, this study showed that MSUD is also functional in B. maydis, which is classified as a Dothideomycete. These results showed the possibility that this posttranscriptional regulation is extensively conserved among filamentous ascomycetes.
Collapse
Affiliation(s)
- Kenya Tsuji
- Laboratory of Terrestrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Kitade
- Laboratory of Terrestrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akira Yoshimi
- Laboratory of Terrestrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chihiro Tanaka
- Laboratory of Terrestrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Terrestrial Microbiology and Systematics, Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Tsuji K, Kitade Y, Sumita T, Tanaka C. An exocyst component, Sec5, is essential for ascospore formation in Bipolaris maydis. MYCOSCIENCE 2021; 62:289-296. [PMID: 37089464 PMCID: PMC9721515 DOI: 10.47371/mycosci.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
In this study, we identified Sec5 in Bipolaris maydis, a homologue of Sec5 in Saccharomyces cerevisiae and a possible exocyst component of the fungus. To examine how Sec5 affects the life cycle of B. maydis, we generated null mutant strains of the gene (Δsec5). The Δsec5 strains showed a strong reduction in hyphal growth and a slight reduction in pathogenicity. In sexual reproduction, they possessed the ability to develop pseudothecia. However, all ascospores were aborted in any of the asci obtained from crosses between Δsec5 and the wild-type. Our cytological study revealed that the abortion was caused by impairments of the post-meiotic stages in ascospore development, where ascospore delimitation and young spore elongation occur.
Collapse
Affiliation(s)
- Kenya Tsuji
- Graduate School of Agriculture, Kyoto University
| | - Yuki Kitade
- Graduate School of Agriculture, Kyoto University
| | | | | |
Collapse
|
3
|
Zhang X, González JB, Turgeon BG. Septins are required for reproductive propagule development and virulence of the maize pathogen Cochliobolus heterostrophus. Fungal Genet Biol 2019; 135:103291. [PMID: 31698077 DOI: 10.1016/j.fgb.2019.103291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Abstract
Septins are highly conserved GTP-binding proteins that function in cell cytokinesis, polarity and morphogenesis. To evaluate the roles of these proteins in inoculum health and disease, mutants deleted for each of five septin proteins (Cdc3, Cdc10, Cdc11, Cdc12, and Cdc100) were characterized in the ascomycete Cochliobolus heterostrophus for ability to develop asexual and sexual spores and for virulence to the host maize. Strains deleted for CDC3, CDC10, CDC11, and CDC12 genes showed significant changes in hyphal growth, and in development of conidia and ascospores compared to the wild-type strain. Conidia had dramatically reduced numbers of septa and rates of germination, while ascospore development was blocked in the meiotic process. Although asci were produced, wild-type ascospores were not. When equal numbers of conidia from wild type and mutants were used to inoculate maize, cdc10 mutants showed reduced virulence compared to the wild-type strain and other mutants. This reduced virulence was demonstrated to be correlated with lower germination rate of cdc10 mutant conidia. When adjusted for germination rate, virulence was equivalent to the wild-type strain. Double mutants (cdc3cdc10, cdc3cdc11) showed augmented reduced growth phenotypes. cdc100 mutants were wild type in all assays. Taken together, these findings indicate that all four conserved septin proteins play a major role in reproductive propagule formation and that mutants with deletions of CDC10 are reduced in virulence to the host maize.
Collapse
Affiliation(s)
- Xianghui Zhang
- College of Plant Science, Jilin University, Changchun, Jilin, China; Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.
| | - Jonathan B González
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - B Gillian Turgeon
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
4
|
He P, Wang K, Cai Y, Liu W. Live cell confocal laser imaging studies on the nuclear behavior during meiosis and ascosporogenesis in Morchella importuna under artificial cultivation. Micron 2017; 101:108-113. [DOI: 10.1016/j.micron.2017.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/24/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
|
5
|
Sumita T, Izumitsu K, Tanaka C. Characterization of the autophagy-related gene BmATG8 in Bipolaris maydis. Fungal Biol 2017; 121:785-797. [PMID: 28800850 DOI: 10.1016/j.funbio.2017.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
Autophagy is involved in cellular development and the maintenance of viability under nutrient deprivation in a wide range of eukaryotes. A filamentous ascomycete Bipolaris maydis, responsible for southern corn leaf blight, is also studied as a model fungus for sexual reproduction in filamentous ascomycetes that form filiform ascospores. In order to clarify the roles of autophagy in various stages of the life cycle of B. maydis, we constructed null mutants of BmATG8, an orthologue of the Saccharomyces cerevisiae autophagy gene ATG8 in B. maydis. Deletion of BmATG8 impaired localization of cytosolic components to the vacuole under nitrogen starvation, suggesting that autophagy was deficient in the null mutants. Additionally, fluorescent microscopic observations on a eGFP-fused BmATG8 expressing strain showed that BmATG8 is associated with autophagy-related structures. In vegetative growth, ΔBmATG8 strains showed a reduction in conidiation and aerial mycelial growth. Interestingly, the mutant conidia indicated loss of the germination rate under starvation conditions and affected longevity. However, germinated mutant conidia were still capable of infecting the host plant via appressoria. In sexual reproduction, ascospores with ΔBmATG8 genetic background were aborted. Our results revealed that autophagy plays a crucial role in the function of conidia, not in host infection via appressoria in B. maydis. In addition, conservation of the importance of autophagy in ascospore development is suggested among ascomycetes including species that form bitunicate ascus.
Collapse
Affiliation(s)
- Takuya Sumita
- Laboratory of Environmental Mycoscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kosuke Izumitsu
- Laboratory of Environmental Mycoscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Chihiro Tanaka
- Laboratory of Environmental Mycoscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
6
|
Son H, Lee J, Lee YW. A novel gene, GEA1, is required for ascus cell-wall development in the ascomycete fungus Fusarium graminearum. Microbiology (Reading) 2013; 159:1077-1085. [DOI: 10.1099/mic.0.064287-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 604-714, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
7
|
Son H, Min K, Lee J, Raju NB, Lee YW. Meiotic silencing in the homothallic fungus Gibberella zeae. Fungal Biol 2011; 115:1290-302. [PMID: 22115448 DOI: 10.1016/j.funbio.2011.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 08/25/2011] [Accepted: 09/23/2011] [Indexed: 11/26/2022]
Abstract
The homothallic ascomycete fungus Gibberella zeae is an important pathogen on major cereal crops. The objective of this study was to determine whether meiotic silencing occurs in G. zeae. Cytological studies demonstrated that GFP and RFP-fusion proteins were not detected during meiosis, both in heterozygous outcrosses and homozygous selfings. The deletion of rsp-1, a homologue used for studies on meiotic silencing of Neurospora crassa, triggered abnormal ascospores from selfing, but outcrosses between the mutant and wild-type strain resulted in some ascospores with mutant phenotype (low occurrence of ascus dominance). When the ectopic mutants that carried an additional copy of rsp-1 were selfed, they primarily produced ascospores with normal shape but a few ascospores (0.23 %) were abnormal, in which both endogenous and ectopically integrated genes contained numerous point mutations. The ectopic mutants showed low occurrence of ascus dominance in outcrosses with strains that carried the wild-type allele. Approximately 10 % of ascospores were abnormal but all of the single-ascospore isolates produced normal-shaped ascospores from selfing. However, no ascus dominance was observed when the mutants were outcrossed with a sad-1 deletion mutant, which lacks the putative RNA-dependent RNA polymerase essential for meiotic silencing in N. crassa. All results were consistent with those generated from an additional gene, roa, required for ascospore morphogenesis. This study demonstrated that G. zeae possesses a functional meiotic silencing mechanism which is triggered by unpaired DNA, as in N. crassa.
Collapse
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Abstract
Dodge's early work (1927-1940) on Neurospora genetics and sexual biology inspired Beadle and Tatum at Stanford to use N.crassa for their landmark discovery that genes specify enzymes. Neurospora has since become a model organism for numerous genetic, cytogenetic, biochemical, molecular and population biology studies. Neurospora is haploid in the vegetative phase with a transient diploid sexual phase. Its meiotic cells (asci) are large, allowing easy examination of dividing nuclei and chromosomes under a light microscope. The haploid meiotic products are themselves the sexual progeny that grow into vegetative cultures, thus avoiding the cumbersome testcrosses and complex dominance -recessive relationships, as in diploid organisms.The Perkins'laboratory at Stanford (1949-2007) played a pivotal role in advancing our knowledge of Neurospora genetics, sexual biology, cytogenetics and population biology. Since 1974, I have taken advantage of various chromosome-staining methods to examine ascus and ascospore development in wild type and in numerous mutant strains. In addition,I have used GFP-tagged genes to visualize the expression or silencing of unpaired genes in a post-transcriptional gene silencing process (meiotic silencing by unpaired DNA) that operates specifically during meiosis. The genome of N. crassa contains over 10 000 protein- coding genes. Gene knockouts or mutations in specific sequences may now be readily correlated with the observed cytological defects in the sexual stage, thus advancing our molecular understanding of complex processes during ascus and ascospore development.
Collapse
Affiliation(s)
- Namboori B Raju
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
|