1
|
Thomas FB, Omnus DJ, Bader JM, Chung GH, Kono N, Stefan CJ. Tricalbin proteins regulate plasma membrane phospholipid homeostasis. Life Sci Alliance 2022; 5:5/8/e202201430. [PMID: 35440494 PMCID: PMC9018018 DOI: 10.26508/lsa.202201430] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.
Collapse
Affiliation(s)
- Ffion B Thomas
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Deike J Omnus
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jakob M Bader
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gary Hc Chung
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Christopher J Stefan
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
2
|
Cevheroğlu O, Murat M, Mingu-Akmete S, Son ÇD. Ste2p Under the Microscope: the Investigation of Oligomeric States of a Yeast G Protein-Coupled Receptor. J Phys Chem B 2021; 125:9526-9536. [PMID: 34433281 DOI: 10.1021/acs.jpcb.1c05872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligomerization of G protein-coupled receptors (GPCRs) may play important roles in maturation, internalization, signaling, and pharmacology of these receptors. However, the nature and extent of their oligomerization is still under debate. In our study, Ste2p, a yeast mating pheromone GPCR, was tagged with enhanced green fluorescent protein (EGFP), mCherry, and with split florescent protein fragments at the receptor C-terminus. The Förster resonance energy transfer (FRET) technique was used to detect receptors' oligomerization by calculating the energy transfer from EGFP to mCherry. Stimulation of Ste2p oligomers with the receptor ligand did not result in any significant change on observed FRET values. The bimolecular fluorescence complementation (BiFC) assay was combined with FRET to further investigate the tetrameric complexes of Ste2p. Our results suggest that in its quiescent (nonligand-activated) state, Ste2p is found at least as a tetrameric complex on the plasma membrane. Intriguingly, receptor tetramers in their active form showed a significant increase in FRET. This study provides a direct in vivo visualization of Ste2p tetramers and the pheromone effect on the extent of the receptor oligomerization.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey
| | - Merve Murat
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| | - Sara Mingu-Akmete
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| |
Collapse
|
3
|
Omnus DJ, Cadou A, Thomas FB, Bader JM, Soh N, Chung GHC, Vaughan AN, Stefan CJ. A heat-sensitive Osh protein controls PI4P polarity. BMC Biol 2020; 18:28. [PMID: 32169085 PMCID: PMC7071650 DOI: 10.1186/s12915-020-0758-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Phosphoinositide lipids provide spatial landmarks during polarized cell growth and migration. Yet how phosphoinositide gradients are oriented in response to extracellular cues and environmental conditions is not well understood. Here, we elucidate an unexpected mode of phosphatidylinositol 4-phosphate (PI4P) regulation in the control of polarized secretion. RESULTS We show that PI4P is highly enriched at the plasma membrane of growing daughter cells in budding yeast where polarized secretion occurs. However, upon heat stress conditions that redirect secretory traffic, PI4P rapidly increases at the plasma membrane in mother cells resulting in a more uniform PI4P distribution. Precise control of PI4P distribution is mediated through the Osh (oxysterol-binding protein homology) proteins that bind and present PI4P to a phosphoinositide phosphatase. Interestingly, Osh3 undergoes a phase transition upon heat stress conditions, resulting in intracellular aggregates and reduced cortical localization. Both the Osh3 GOLD and ORD domains are sufficient to form heat stress-induced aggregates, indicating that Osh3 is highly tuned to heat stress conditions. Upon loss of Osh3 function, the polarized distribution of both PI4P and the exocyst component Exo70 are impaired. Thus, an intrinsically heat stress-sensitive PI4P regulatory protein controls the spatial distribution of phosphoinositide lipid metabolism to direct secretory trafficking as needed. CONCLUSIONS Our results suggest that control of PI4P metabolism by Osh proteins is a key determinant in the control of polarized growth and secretion.
Collapse
Affiliation(s)
- Deike J Omnus
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Present address: Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Angela Cadou
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ffion B Thomas
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jakob M Bader
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Present address: Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nathaniel Soh
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gary H C Chung
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Andrew N Vaughan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
Split intein-mediated selection of cells containing two plasmids using a single antibiotic. Nat Commun 2019; 10:4967. [PMID: 31672972 PMCID: PMC6823396 DOI: 10.1038/s41467-019-12911-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
To build or dissect complex pathways in bacteria and mammalian cells, it is often necessary to recur to at least two plasmids, for instance harboring orthogonal inducible promoters. Here we present SiMPl, a method based on rationally designed split enzymes and intein-mediated protein trans-splicing, allowing the selection of cells carrying two plasmids with a single antibiotic. We show that, compared to the traditional method based on two antibiotics, SiMPl increases the production of the antimicrobial non-ribosomal peptide indigoidine and the non-proteinogenic aromatic amino acid para-amino-L-phenylalanine from bacteria. Using a human T cell line, we employ SiMPl to obtain a highly pure population of cells double positive for the two chains of the T cell receptor, TCRα and TCRβ, using a single antibiotic. SiMPl has profound implications for metabolic engineering and for constructing complex synthetic circuits in bacteria and mammalian cells.
Collapse
|
5
|
Cevheroğlu O, Kumaş G, Hauser M, Becker JM, Son ÇD. The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:698-711. [PMID: 28073700 DOI: 10.1016/j.bbamem.2017.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
Dimerization of G protein-coupled receptors (GPCR) may play an important role in maturation, internalization, signaling and/or pharmacology of these receptors. However, the location where dimerization occurs is still under debate. In our study, variants of Ste2p, a yeast mating pheromone GPCR, were tagged with split EGFP (enhanced green fluorescent protein) fragments inserted between transmembrane domain seven and the C-terminus or appended to the C-terminus. Bimolecular Fluorescence Complementation (BiFC) assay was used to determine where receptor dimerization occurred during protein trafficking by monitoring generation of EGFP fluorescence, which occurred upon GPCR dimerization. Our results suggest that these tagged receptors traffic to the membrane as monomers, undergo dimerization or higher ordered oligomerization predominantly on the plasma membrane, and are internalized as dimers/oligomers. This study is the first to provide direct in vivo visualization of GPCR dimerization/oligomerization, during trafficking to and from the plasma membrane.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Gözde Kumaş
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey
| | - Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Santos-Aberturas J, Dörr M, Waldo GS, Bornscheuer UT. In-Depth High-Throughput Screening of Protein Engineering Libraries by Split-GFP Direct Crude Cell Extract Data Normalization. ACTA ACUST UNITED AC 2015; 22:1406-14. [PMID: 26441043 DOI: 10.1016/j.chembiol.2015.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 12/29/2022]
Abstract
Here, we report a widely and generally applicable strategy to obtain reliable information in high-throughput protein screenings of enzyme mutant libraries. The method is based on the usage of the split-GFP technology for the normalization of the expression level of each individual protein variant combined with activity measurements, thus resolving the important problems associated with the different solubility of each mutant and allowing the detection of previously invisible variants. The small size of the employed protein tag (16 amino acids) required for the reconstitution of the GFP fluorescence reduces possible interferences such as enzyme activity variations or solubility disturbances to a minimum. Specific enzyme activity measurements without purification, in situ soluble protein expression monitoring, and data normalization are the powerful outputs of this methodology, thus enabling the accurate identification of improved protein variants during high-throughput screening by substantially reducing the occurrence of false negatives and false positives.
Collapse
Affiliation(s)
- Javier Santos-Aberturas
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Mark Dörr
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Geoffrey S Waldo
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany
| |
Collapse
|
7
|
Lv Y, Zhao X, Liu L, Du G, Zhou J, Chen J. A simple procedure for protein ubiquitination detection in Saccharomyces cerevisiae: Gap1p as an example. J Microbiol Methods 2013; 94:25-9. [PMID: 23611841 DOI: 10.1016/j.mimet.2013.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/14/2013] [Accepted: 04/14/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yongkun Lv
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
8
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
9
|
Imaging Protein Oligomerization in Neurodegeneration Using Bimolecular Fluorescence Complementation. Methods Enzymol 2012; 506:157-74. [DOI: 10.1016/b978-0-12-391856-7.00033-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Barnard E, Timson DJ. The GAL genetic switch: visualisation of the interacting proteins by split-EGFP bimolecular fluorescence complementation. J Basic Microbiol 2011; 51:312-7. [PMID: 21298679 DOI: 10.1002/jobm.201000198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/09/2010] [Indexed: 11/08/2022]
Abstract
A split-EGFP bimolecular fluorescence complementation assay was used to visualise and locate three interacting pairs of proteins from the GAL genetic switch of the budding yeast, Saccharomyces cerevisiae. Both the Gal4p-Gal80p and Gal80p-Gal3p pairs were found to be located in the nucleus under inducing conditions. However, the Gal80p-Gal1p complex was located throughout the cell. These results support recent work establishing an initial interaction between Gal3p and Gal80p occurring in the nucleus. Labelling of all three protein pairs impaired the growth of the yeast strains and resulted in reduced galactokinase activity in cell extracts. The most likely cause of this impairment is decreased dissociation rates of the complexes, caused by the essentially irreversible reassembly of the EGFP fragments. This suggests that a fully functional GAL genetic switch requires dynamic interactions between the protein components. These results also highlight the need for caution in the interpretation of in vivo split-EGFP experiments.
Collapse
Affiliation(s)
- Emma Barnard
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
11
|
Moore CM, Hoey EM, Trudgett A, Timson DJ. Artemisinins act through at least two targets in a yeast model. FEMS Yeast Res 2010; 11:233-7. [DOI: 10.1111/j.1567-1364.2010.00706.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Kato Y, Kawasaki H, Arakawa N, Hirano H. Subcellular localization of the interaction of bipolar landmarks Bud8p and Bud9p with Rax2p in Saccharomyces cerevisiae diploid cells. Biochem Biophys Res Commun 2010; 399:525-30. [PMID: 20678480 DOI: 10.1016/j.bbrc.2010.07.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 07/24/2010] [Indexed: 10/19/2022]
Abstract
In Saccharomyces cerevisiae, the bud site selection of diploid cells is regulated by at least four persistent landmarks, Bud8p, Bud9p, Rax1p, and Rax2p. Bud8p and Bud9p are essential for the establishment of bipolar budding and localize mainly to the distal and the proximal poles, respectively. Their subcellular localizations are regulated through interaction with Rax1p/Rax2p. We investigated when and where Bud8p and Bud9p physically interact with Rax2p in vivo using a split-GFP method. GFP fluorescence showed that Bud8p physically interacted with Rax2p at the proximal or distal pole in unbudded cells; a physical interaction was also observed at the opposite pole to the growing bud in mother cells with a large-size bud. Bud9p physically interacted with Rax2p at the birth scar in budded mother cells. These observations suggest that the interaction of Rax2p with Bud8p and Bud9p may contribute to the translocation of bipolar landmarks to the correct sites.
Collapse
Affiliation(s)
- Yu Kato
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Suehiro-cho 1-7-29, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
13
|
Barnard E, Timson DJ. Split-EGFP screens for the detection and localisation of protein-protein interactions in living yeast cells. Methods Mol Biol 2010; 638:303-317. [PMID: 20238279 DOI: 10.1007/978-1-60761-611-5_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Proteomics aims to identify and classify the proteins present in a particular cell or tissue. However, we know that proteins rarely function alone and knowledge of which proteins interact with which other proteins is vital if we wish to understand how cells work. The budding yeast, Saccharomyces cerevisiae, is a well-established model for studying protein-protein interactions, and a number of methods have been developed to do this. A method for the in vivo detection and localisation of interacting pairs of proteins in living yeast cells is presented. The method relies on the ability of fragments of enhanced green fluorescent protein (EGFP) to reassemble if brought into close proximity. The reassembled EGFP regains the ability to fluoresce, and this fluorescence can be detected providing evidence of interaction and information about its location. S. cerevisiae is an ideal organism to apply this method to due to the relative ease with which its genome can be manipulated. The method described enables the modification of S. cerevisiae genes at the 3'-end with DNA encoding fragments of EGFP. Consequently, the expression levels of the proteins are unlikely to be affected and thus the method is unlikely to result in false positives. In addition to the protocol for labelling and detection of interacting pairs of yeast proteins, methods for simple tests for the effects of the labelling on the organism's function are presented.
Collapse
Affiliation(s)
- Emma Barnard
- School of Biological Sciences, Queen's University, Belfast, UK
| | | |
Collapse
|
14
|
Lindman S, Johansson I, Thulin E, Linse S. Green fluorescence induced by EF-hand assembly in a split GFP system. Protein Sci 2009; 18:1221-9. [PMID: 19472338 DOI: 10.1002/pro.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The affinity between the 1-157 and 158-238 fragments of green fluorescent protein (GFP) is too low for spontaneous in vivo reassembly of the protein upon co-expression of the two fragments. This prevents chromophore maturation and the cells lack GFP fluorescence. We have utilized the very high affinity between the two EF-hands of calbindin D(9k) to facilitate GFP assembly from its fragments and to introduce a calcium dependent molecular switch. In GFPN-EF1, residues 1-157 of GFP are fused to residues 1-43 of calbindin, and in EF2-GFPC, residues 44-75 of calbindin are fused to residues 158-238 of GFP. When co-expressed, GFPN-EF1 and EF2-GFPC associate spontaneously and rapidly resulting in a folded reconstituted protein with bright GFP fluorescence. The high affinity of GFPN-EF1 for EF2-GFPC leads to brighter fluorescence of the cells compared to cells with a control constructs carrying leucine zippers (Wilson et al., Nature Methods 2004;3:255). The complex of GFPN-EF1 and EF2-GFPC was purified from cells using metal-ion chelate chromatography and the temperature dependence of GFP fluorescence was found to be calcium dependent. The GFPN-EF1 and EF2-GFPC fragments were separated by ion exchange chromatography. The assembly of the fragments was found to be reversible and the complex was regained upon mixing, as evidenced by surface plasmon resonance (SPR) data. The affinity between GFPN-EF1 and EF2-GFPC as well as rates of association and dissociation were found to be Ca(2+)-dependent.
Collapse
Affiliation(s)
- Stina Lindman
- Department of Biophysical Chemistry, Chemical Center, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
15
|
Development and implementation of split-GFP-based bimolecular fluorescence complementation (BiFC) assays in yeast. Biochem Soc Trans 2008; 36:479-82. [PMID: 18481985 DOI: 10.1042/bst0360479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BiFC (bimolecular fluorescence complementation) is a tool for investigating interactions between proteins. Non-fluorescent fragments of, for example, GFP (green fluorescent protein) are fused to the interacting partners. The interaction brings the fragments together, which then fold, reassemble and fluoresce. This process can be carried out in living cells and provides information both on the interaction and its subcellular location. We have developed a split-GFP-based BiFC assay for use in the budding yeast Saccharomyces cerevisiae in which the modifications are carried out at the genomic level, thus resulting in the tagged yeast proteins being expressed at wild-type levels. The system is capable of detecting interactions in all subcellular compartments tested (the cytoplasm, mitochondria and nucleus) and makes a valuable addition to techniques for the investigation of protein-protein interactions in this model organism.
Collapse
|
16
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|