1
|
Azanjac N, Milisavljevic M, Stanovcic S, Kojic M. Suppressors of Blm-deficiency identify three novel proteins that facilitate DNA repair in Ustilago maydis. DNA Repair (Amst) 2024; 140:103709. [PMID: 38861762 DOI: 10.1016/j.dnarep.2024.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
To identify new molecular components of the Brh2-governed homologous recombination (HR)-network in the highly radiation-resistant fungus Ustilago maydis, we undertook a genetic screen for suppressors of blm-KR hydroxyurea (HU)-sensitivity. Twenty DNA-damage sensitive mutants were obtained, three of which showing slow-growth phenotypes. Focusing on the "normally" growing candidates we identified five mutations, two in previously well-defined genes (Rec2 and Rad51) and the remaining three in completely uncharacterized genes (named Rec3, Bls9 and Zdr1). A common feature among these novel factors is their prominent role in DNA repair. Rec3 contains the P-loop NTPase domain which is most similar to that found in U. maydis Rec2 protein, and like Rec2, Rec3 plays critical roles in induced allelic recombination, is crucial for completion of meiosis, and with regard to DNA repair Δrec3 and Δrec2 are epistatic to one another. Importantly, overexpression of Brh2 in Δrec3 can effectively restore DNA-damage resistance, indicating a close functional connection between Brh2 and Rec3. The Bls9 does not seem to have any convincing domains that would give a clue as to its function. Nevertheless, we present evidence that, besides being involved in DNA-repair, Bls9 is also necessary for HR between chromosome homologs. Moreover, Δbls9 showed epistasis with Δbrh2 with respect to killing by DNA-damaging agents. Both, Rec3 and Bls9, play an important role in protecting the genome from mutations. Zdr1 is Cys2-His2 zinc finger (C2H2-ZF) protein, whose loss does not cause a detectable change in HR. Also, the functions of both Bls9 and Zdr1 genes are dispensable in meiosis and sporulation. However, Zdr1 appears to have overlapping activities with Blm and Mus81 in protecting the organism from methyl methanesulfonate- and diepoxybutane-induced DNA-damage. Finally, while deletion of Rec3 and Zdr1 can suppress HU-sensitivity of blm-KR, Δgen1, and Δmus81 mutants, interestingly loss of Bls9 does not rescue HU-sensitivity of Δgen1.
Collapse
Affiliation(s)
- Natalija Azanjac
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Republic of Serbia
| | - Mira Milisavljevic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Republic of Serbia
| | - Stefan Stanovcic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Republic of Serbia
| | - Milorad Kojic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Republic of Serbia.
| |
Collapse
|
2
|
Miron S, Legrand P, Dupaigne P, van Rossum-Fikkert SE, Ristic D, Majeed A, Kanaar R, Zinn-Justin S, Zelensky A. DMC1 and RAD51 bind FxxA and FxPP motifs of BRCA2 via two separate interfaces. Nucleic Acids Res 2024; 52:7337-7353. [PMID: 38828772 PMCID: PMC11229353 DOI: 10.1093/nar/gkae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.
Collapse
Affiliation(s)
- Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Atifa Majeed
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Palihati M, Iwasaki H, Tsubouchi H. Analysis of the indispensable RAD51 cofactor BRCA2 in Naganishia liquefaciens, a Basidiomycota yeast. Life Sci Alliance 2024; 7:e202302342. [PMID: 38016757 PMCID: PMC10684384 DOI: 10.26508/lsa.202302342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
The BRCA2 tumor suppressor plays a critical role in homologous recombination by regulating RAD51, the eukaryotic homologous recombinase. We identified the BRCA2 homolog in a Basidiomycota yeast, Naganishia liquefaciens BRCA2 homologs are found in many Basidiomycota species but not in Ascomycota species. Naganishia BRCA2 (Brh2, for BRCA2 homolog) is about one-third the size of human BRCA2. Brh2 carries three potential BRC repeats with two oligonucleotide/oligosaccharide-binding domains. The homolog of DSS1, a small acidic protein serving as an essential partner of BRCA2 was also identified. The yeast two-hybrid assay shows the interaction of Brh2 with both Rad51 and Dss1. Unlike human BRCA2, Brh2 is not required for normal cell growth, whereas loss of Dss1 results in slow growth. The loss of Brh2 caused pronounced sensitivity to UV and ionizing radiation, and their HR ability, as assayed by gene-targeting efficiency, is compromised. These phenotypes are indistinguishable from those of the rad51 mutant, and the rad51 brh2 double mutant. Naganishia Brh2 is likely the BRCA2 ortholog that functions as an indispensable auxiliary factor for Rad51.
Collapse
Affiliation(s)
- Maierdan Palihati
- https://ror.org/0112mx960 Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Iwasaki
- https://ror.org/0112mx960 Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideo Tsubouchi
- https://ror.org/0112mx960 Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Sanpedro-Luna JA, Vega-Alvarado L, Vázquez-Cruz C, Sánchez-Alonso P. Global Gene Expression of Post-Senescent Telomerase-Negative ter1Δ Strain of Ustilago maydis. J Fungi (Basel) 2023; 9:896. [PMID: 37755003 PMCID: PMC10532341 DOI: 10.3390/jof9090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
We analyzed the global expression patterns of telomerase-negative mutants from haploid cells of Ustilago maydis to identify the gene network required for cell survival in the absence of telomerase. Mutations in either of the telomerase core subunits (trt1 and ter1) of the dimorphic fungus U. maydis cause deficiencies in teliospore formation. We report the global transcriptome analysis of two ter1Δ survivor strains of U. maydis, revealing the deregulation of telomerase-deleted responses (TDR) genes, such as DNA-damage response, stress response, cell cycle, subtelomeric, and proximal telomere genes. Other differentially expressed genes (DEGs) found in the ter1Δ survivor strains were related to pathogenic lifestyle factors, plant-pathogen crosstalk, iron uptake, meiosis, and melanin synthesis. The two ter1Δ survivors were phenotypically comparable, yet DEGs were identified when comparing these strains. Our findings suggest that teliospore formation in U. maydis is controlled by key pathogenic lifestyle and meiosis genes.
Collapse
Affiliation(s)
- Juan Antonio Sanpedro-Luna
- Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| |
Collapse
|
5
|
Zahid S, Aloe S, Sutherland JH, Holloman WK, Lue NF. Ustilago maydis telomere protein Pot1 harbors an extra N-terminal OB fold and regulates homology-directed DNA repair factors in a dichotomous and context-dependent manner. PLoS Genet 2022; 18:e1010182. [PMID: 35587917 PMCID: PMC9119445 DOI: 10.1371/journal.pgen.1010182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/02/2022] [Indexed: 01/11/2023] Open
Abstract
The telomere G-strand binding protein Pot1 plays multifaceted roles in telomere maintenance and protection. We examined the structure and activities of Pot1 in Ustilago maydis, a fungal model that recapitulates key features of mammalian telomere regulation. Compared to the well-characterized primate and fission yeast Pot1 orthologs, UmPot1 harbors an extra N-terminal OB-fold domain (OB-N), which was recently shown to be present in most metazoans. UmPot1 binds directly to Rad51 and regulates the latter's strand exchange activity. Deleting the OB-N domain, which is implicated in Rad51-binding, caused telomere shortening, suggesting that Pot1-Rad51 interaction facilitates telomere maintenance. Depleting Pot1 through transcriptional repression triggered growth arrest as well as rampant recombination, leading to multiple telomere aberrations. In addition, telomere repeat RNAs transcribed from both the G- and C-strand were dramatically up-regulated, and this was accompanied by elevated levels of telomere RNA-DNA hybrids. Telomere abnormalities of pot1-deficient cells were suppressed, and cell viability was restored by the deletion of genes encoding Rad51 or Brh2 (the BRCA2 ortholog), indicating that homology-directed repair (HDR) proteins are key mediators of telomere aberrations and cellular toxicity. Together, these observations underscore the complex physical and functional interactions between Pot1 and DNA repair factors, leading to context-dependent and dichotomous effects of HDR proteins on telomere maintenance and protection.
Collapse
Affiliation(s)
- Syed Zahid
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah Aloe
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Jeanette H. Sutherland
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - William K. Holloman
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Neal F. Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Tromer EC, Wemyss TA, Ludzia P, Waller RF, Akiyoshi B. Repurposing of synaptonemal complex proteins for kinetochores in Kinetoplastida. Open Biol 2021; 11:210049. [PMID: 34006126 PMCID: PMC8131943 DOI: 10.1098/rsob.210049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Chromosome segregation in eukaryotes is driven by the kinetochore, a macromolecular complex that connects centromeric DNA to microtubules of the spindle apparatus. Kinetochores in well-studied model eukaryotes consist of a core set of proteins that are broadly conserved among distant eukaryotic phyla. By contrast, unicellular flagellates of the class Kinetoplastida have a unique set of 36 kinetochore components. The evolutionary origin and history of these kinetochores remain unknown. Here, we report evidence of homology between axial element components of the synaptonemal complex and three kinetoplastid kinetochore proteins KKT16-18. The synaptonemal complex is a zipper-like structure that assembles between homologous chromosomes during meiosis to promote recombination. By using sensitive homology detection protocols, we identify divergent orthologues of KKT16-18 in most eukaryotic supergroups, including experimentally established chromosomal axis components, such as Red1 and Rec10 in budding and fission yeast, ASY3-4 in plants and SYCP2-3 in vertebrates. Furthermore, we found 12 recurrent duplications within this ancient eukaryotic SYCP2-3 gene family, providing opportunities for new functional complexes to arise, including KKT16-18 in the kinetoplastid parasite Trypanosoma brucei. We propose the kinetoplastid kinetochore system evolved by repurposing meiotic components of the chromosome synapsis and homologous recombination machinery that were already present in early eukaryotes.
Collapse
Affiliation(s)
- Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Thomas A. Wemyss
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; 65:365-379. [PMID: 33860800 DOI: 10.1042/ebc20200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.
Collapse
|
8
|
Lue NF. Duplex Telomere-Binding Proteins in Fungi With Canonical Telomere Repeats: New Lessons in the Rapid Evolution of Telomere Proteins. Front Genet 2021; 12:638790. [PMID: 33719348 PMCID: PMC7952879 DOI: 10.3389/fgene.2021.638790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
The telomere protein assemblies in different fungal lineages manifest quite profound structural and functional divergence, implying a high degree of flexibility and adaptability. Previous comparative analyses of fungal telomeres have focused on the role of telomere sequence alterations in promoting the evolution of corresponding proteins, particularly in budding and fission yeast. However, emerging evidence suggests that even in fungi with the canonical 6-bp telomere repeat unit, there are significant remodeling of the telomere assembly. Indeed, a new protein family can be recruited to serve dedicated telomere functions, and then experience subsequent loss in sub-branches of the clade. An especially interesting example is the Tay1 family of proteins, which emerged in fungi prior to the divergence of basidiomycetes from ascomycetes. This relatively recent protein family appears to have acquired its telomere DNA-binding activity through the modification of another Myb-containing protein. Members of the Tay1 family evidently underwent rather dramatic functional diversification, serving, e.g., as transcription factors in fission yeast while acting to promote telomere maintenance in basidiomycetes and some hemi-ascomycetes. Remarkably, despite its distinct structural organization and evolutionary origin, a basidiomycete Tay1 appears to promote telomere replication using the same mechanism as mammalian TRF1, i.e., by recruiting and regulating Blm helicase activity. This apparent example of convergent evolution at the molecular level highlight the ability of telomere proteins to acquire new interaction targets. The remarkable evolutionary history of Tay1 illustrates the power of protein modularity and the facile acquisition of nucleic acid/protein-binding activity to promote telomere flexibility.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, New York, NY, United States.,Sandra and Edward Meyer Cancer Center, Weill Medical College of Cornell University, New York, NY, United States
| |
Collapse
|
9
|
Versatile CRISPR/Cas9 Systems for Genome Editing in Ustilago maydis. J Fungi (Basel) 2021; 7:jof7020149. [PMID: 33670568 PMCID: PMC7922307 DOI: 10.3390/jof7020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
The phytopathogenic smut fungus Ustilago maydis is a versatile model organism to study plant pathology, fungal genetics, and molecular cell biology. Here, we report several strategies to manipulate the genome of U. maydis by the CRISPR/Cas9 technology. These include targeted gene deletion via homologous recombination of short double-stranded oligonucleotides, introduction of point mutations, heterologous complementation at the genomic locus, and endogenous N-terminal tagging with the fluorescent protein mCherry. All applications are independent of a permanent selectable marker and only require transient expression of the endonuclease Cas9hf and sgRNA. The techniques presented here are likely to accelerate research in the U. maydis community but can also act as a template for genome editing in other important fungi.
Collapse
|
10
|
Yu EY, Zahid SS, Ganduri S, Sutherland JH, Hsu M, Holloman WK, Lue NF. Structurally distinct telomere-binding proteins in Ustilago maydis execute non-overlapping functions in telomere replication, recombination, and protection. Commun Biol 2020; 3:777. [PMID: 33328546 PMCID: PMC7744550 DOI: 10.1038/s42003-020-01505-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
Duplex telomere binding proteins exhibit considerable structural and functional diversity in fungi. Herein we interrogate the activities and functions of two Myb-containing, duplex telomere repeat-binding factors in Ustilago maydis, a basidiomycete that is evolutionarily distant from the standard fungi. These two telomere-binding proteins, UmTay1 and UmTrf2, despite having distinct domain structures, exhibit comparable affinities and sequence specificity for the canonical telomere repeats. UmTay1 specializes in promoting telomere replication and an ALT-like pathway, most likely by modulating the helicase activity of Blm. UmTrf2, in contrast, is critical for telomere protection; transcriptional repression of Umtrf2 leads to severe growth defects and profound telomere aberrations. Comparative analysis of UmTay1 homologs in different phyla reveals broad functional diversity for this protein family and provides a case study for how DNA-binding proteins can acquire and lose functions at various chromosomal locations. Our findings also point to stimulatory effect of telomere protein on ALT in Ustilago maydis that may be conserved in other systems.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Syed S Zahid
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Swapna Ganduri
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jeanette H Sutherland
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Min Hsu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - William K Holloman
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA. .,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Sex in Symbiodiniaceae dinoflagellates: genomic evidence for independent loss of the canonical synaptonemal complex. Sci Rep 2020; 10:9792. [PMID: 32555361 PMCID: PMC7299967 DOI: 10.1038/s41598-020-66429-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
Dinoflagellates of the Symbiodiniaceae family encompass diverse symbionts that are critical to corals and other species living in coral reefs. It is well known that sexual reproduction enhances adaptive evolution in changing environments. Although genes related to meiotic functions were reported in Symbiodiniaceae, cytological evidence of meiosis and fertilisation are however yet to be observed in these taxa. Using transcriptome and genome data from 21 Symbiodiniaceae isolates, we studied genes that encode proteins associated with distinct stages of meiosis and syngamy. We report the absence of genes that encode main components of the synaptonemal complex (SC), a protein structure that mediates homologous chromosomal pairing and class I crossovers. This result suggests an independent loss of canonical SCs in the alveolates, that also includes the SC-lacking ciliates. We hypothesise that this loss was due in part to permanently condensed chromosomes and repeat-rich sequences in Symbiodiniaceae (and other dinoflagellates) which favoured the SC-independent class II crossover pathway. Our results reveal novel insights into evolution of the meiotic molecular machinery in the ecologically important Symbiodiniaceae and in other eukaryotes.
Collapse
|
12
|
Huck S, Bock J, Girardello J, Gauert M, Pul Ü. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology. RNA Biol 2018; 16:397-403. [PMID: 29996713 DOI: 10.1080/15476286.2018.1493329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In this communication, we report the adaptation of the CRISPR-Cas9 technology in Ustilago trichophora prototrophic wild-type isolate obtained from its natural host Echinochloa crus-galli. The established CRISPR vector and method enable a rapid and marker-free introduction of Cas9-induced non-homologous end-joining (NHEJ) dependent mutation at the targeted gene. Moreover, the method allows a specific modification of the chromosomal DNA sequence by Cas9-induced homologous recombination using short DNA repair templates. The results demonstrate the applicability of the CRISPR-Cas9 technology in U. trichophora for both gene knock-out by the NHEJ pathway and specific gene modification by templated genome editing, paving the way for rapid metabolic engineering of this Ustilago species for industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Ümit Pul
- a B.R.A.I.N AG , Zwingenberg , Germany
| |
Collapse
|
13
|
Milisavljevic M, Petkovic J, Samardzic J, Kojic M. Bioavailability of Nutritional Resources From Cells Killed by Oxidation Supports Expansion of Survivors in Ustilago maydis Populations. Front Microbiol 2018; 9:990. [PMID: 29867888 PMCID: PMC5967202 DOI: 10.3389/fmicb.2018.00990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
After heavy exposure of Ustilago maydis cells to clastogens, a great increase in viability was observed if the treated cells were kept under starvation conditions. This restitution of viability is based on cell multiplication at the expense of the intracellular compounds freed from the damaged cells. Analysis of the effect of the leaked material on the growth of undamaged cells revealed opposing biological activity, indicating that U. maydis must possess cellular mechanisms involved not only in reabsorption of the released compounds from external environment but also in contending with their treatment-induced toxicity. From a screen for mutants defective in the restitution of viability, we identified four genes (adr1, did4, kel1, and tbp1) that contribute to the process. The mutants in did4, kel1, and tbp1 exhibited sensitivity to different genotoxic agents implying that the gene products are in some overlapping fashion involved in the protection of genome integrity. The genetic determinants identified by our analysis have already been known to play roles in growth regulation, protein turnover, cytoskeleton structure, and transcription. We discuss ecological and evolutionary implications of these results.
Collapse
Affiliation(s)
- Mira Milisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Petkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Samardzic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milorad Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Schuster M, Trippel C, Happel P, Lanver D, Reißmann S, Kahmann R. Single and Multiplexed Gene Editing in Ustilago maydis Using CRISPR-Cas9. Bio Protoc 2018; 8:e2928. [DOI: 10.21769/bioprotoc.2928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 11/02/2022] Open
|
15
|
Bösch K, Frantzeskakis L, Vraneš M, Kämper J, Schipper K, Göhre V. Genetic Manipulation of the Plant Pathogen Ustilago maydis to Study Fungal Biology and Plant Microbe Interactions. J Vis Exp 2016. [PMID: 27768088 DOI: 10.3791/54522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene deletion plays an important role in the analysis of gene function. One of the most efficient methods to disrupt genes in a targeted manner is the replacement of the entire gene with a selectable marker via homologous recombination. During homologous recombination, exchange of DNA takes place between sequences with high similarity. Therefore, linear genomic sequences flanking a target gene can be used to specifically direct a selectable marker to the desired integration site. Blunt ends of the deletion construct activate the cell's DNA repair systems and thereby promote integration of the construct either via homologous recombination or by non-homologous-end-joining. In organisms with efficient homologous recombination, the rate of successful gene deletion can reach more than 50% making this strategy a valuable gene disruption system. The smut fungus Ustilago maydis is a eukaryotic model microorganism showing such efficient homologous recombination. Out of its about 6,900 genes, many have been functionally characterized with the help of deletion mutants, and repeated failure of gene replacement attempts points at essential function of the gene. Subsequent characterization of the gene function by tagging with fluorescent markers or mutations of predicted domains also relies on DNA exchange via homologous recombination. Here, we present the U. maydis strain generation strategy in detail using the simplest example, the gene deletion.
Collapse
Affiliation(s)
- Kristin Bösch
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC)
| | | | - Miroslav Vraneš
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology
| | - Jörg Kämper
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC)
| | - Vera Göhre
- Institute for Microbiology, Heinrich-Heine University Düsseldorf; Bioeconomy Science Center (BioSC); Cluster of Excellence in Plant Sciences (CEPLAS), Heinrich-Heine University Düsseldorf;
| |
Collapse
|
16
|
Lue NF, Yu EY. Telomere recombination pathways: tales of several unhappy marriages. Curr Genet 2016; 63:401-409. [PMID: 27666406 DOI: 10.1007/s00294-016-0653-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/29/2023]
Abstract
All happy families are alike; each unhappy family is unhappy in its own way.-Leo Tolstoy, Anna Karenina.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA. .,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - Eun Young Yu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Brych A, Mascarenhas J, Jaeger E, Charkiewicz E, Pokorny R, Bölker M, Doehlemann G, Batschauer A. White collar 1-induced photolyase expression contributes to UV-tolerance of Ustilago maydis. Microbiologyopen 2015; 5:224-43. [PMID: 26687452 PMCID: PMC4831468 DOI: 10.1002/mbo3.322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Ustilago maydis is a phytopathogenic fungus causing corn smut disease. It also is known for its extreme tolerance to UV‐ and ionizing radiation. It has not been elucidated whether light‐sensing proteins, and in particular photolyases play a role in its UV‐tolerance. Based on homology analysis, U. maydis has 10 genes encoding putative light‐responsive proteins. Four amongst these belong to the cryptochrome/photolyase family (CPF) and one represents a white collar 1 ortholog (wco1). Deletion mutants in the predicted cyclobutane pyrimidine dimer CPD‐ and (6–4)‐photolyase were impaired in photoreactivation. In line with this, in vitro studies with recombinant CPF proteins demonstrated binding of the catalytic FAD cofactor, its photoreduction to fully reduced FADH− and repair activity for cyclobutane pyrimidine dimers (CPDs) or (6–4)‐photoproducts, respectively. We also investigated the role of Wco1. Strikingly, transcriptional profiling showed 61 genes differentially expressed upon blue light exposure of wild‐type, but only eight genes in the Δwco1 mutant. These results demonstrate that Wco1 is a functional blue light photoreceptor in U. maydis regulating expression of several genes including both photolyases. Finally, we show that the Δwco1 mutant is less tolerant against UV‐B due to its incapability to induce photolyase expression.
Collapse
Affiliation(s)
- Annika Brych
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Judita Mascarenhas
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Elaine Jaeger
- Faculty of Biology, Department of Genetics, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Elzbieta Charkiewicz
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Richard Pokorny
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Michael Bölker
- Faculty of Biology, Department of Genetics, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| | - Gunther Doehlemann
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Alfred Batschauer
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Str. 8, Marburg, 35032, Germany
| |
Collapse
|
18
|
Schuster M, Schweizer G, Reissmann S, Kahmann R. Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol 2015; 89:3-9. [PMID: 26365384 DOI: 10.1016/j.fgb.2015.09.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022]
Abstract
This communication describes the establishment of the type II bacterial CRISPR-Cas9 system to efficiently disrupt target genes in the fungal maize pathogen Ustilago maydis. A single step transformation of a self-replicating plasmid constitutively expressing the U. maydis codon-optimized cas9 gene and a suitable sgRNA under control of the U. maydis U6 snRNA promoter was sufficient to induce genome editing. On average 70% of the progeny of a single transformant were disrupted within the respective b gene. Without selection the self-replicating plasmid was lost rapidly allowing transient expression of the CRISPR-Cas9 system to minimize potential long-term negative effects of Cas9. This technology will be an important advance for the simultaneous disruption of functionally redundant genes and gene families to investigate their contribution to virulence of U. maydis.
Collapse
Affiliation(s)
- Mariana Schuster
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Gabriel Schweizer
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Stefanie Reissmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany.
| |
Collapse
|
19
|
Zhao W, Vaithiyalingam S, San Filippo J, Maranon DG, Jimenez-Sainz J, Fontenay GV, Kwon Y, Leung SG, Lu L, Jensen RB, Chazin WJ, Wiese C, Sung P. Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry. Mol Cell 2015; 59:176-87. [PMID: 26145171 PMCID: PMC4506714 DOI: 10.1016/j.molcel.2015.05.032] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/21/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
The tumor suppressor BRCA2 is thought to facilitate the handoff of ssDNA from replication protein A (RPA) to the RAD51 recombinase during DNA break and replication fork repair by homologous recombination. However, we find that RPA-RAD51 exchange requires the BRCA2 partner DSS1. Biochemical, structural, and in vivo analyses reveal that DSS1 allows the BRCA2-DSS1 complex to physically and functionally interact with RPA. Mechanistically, DSS1 acts as a DNA mimic to attenuate the affinity of RPA for ssDNA. A mutation in the solvent-exposed acidic domain of DSS1 compromises the efficacy of RPA-RAD51 exchange. Thus, by targeting RPA and mimicking DNA, DSS1 functions with BRCA2 in a two-component homologous recombination mediator complex in genome maintenance and tumor suppression. Our findings may provide a paradigm for understanding the roles of DSS1 in other biological processes.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sivaraja Vaithiyalingam
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Joseph San Filippo
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald V Fontenay
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
20
|
de Sena-Tomás C, Yu EY, Calzada A, Holloman WK, Lue NF, Pérez-Martín J. Fungal Ku prevents permanent cell cycle arrest by suppressing DNA damage signaling at telomeres. Nucleic Acids Res 2015; 43:2138-51. [PMID: 25653166 PMCID: PMC4344518 DOI: 10.1093/nar/gkv082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Ku heterodimer serves in the initial step in repairing DNA double-strand breaks by the non-homologous end-joining pathway. Besides this key function, Ku also plays a role in other cellular processes including telomere maintenance. Inactivation of Ku can lead to DNA repair defects and telomere aberrations. In model organisms where Ku has been studied, inactivation can lead to DNA repair defects and telomere aberrations. In general Ku deficient mutants are viable, but a notable exception to this is human where Ku has been found to be essential. Here we report that similar to the situation in human Ku is required for cell proliferation in the fungus Ustilago maydis. Using conditional strains for Ku expression, we found that cells arrest permanently in G2 phase when Ku expression is turned off. Arrest results from cell cycle checkpoint activation due to persistent signaling via the DNA damage response (DDR). Our results point to the telomeres as the most likely source of the DNA damage signal. Inactivation of the DDR makes the Ku complex dispensable for proliferation in this organism. Our findings suggest that in U. maydis, unprotected telomeres arising from Ku depletion are the source of the signal that activates the DDR leading to cell cycle arrest.
Collapse
Affiliation(s)
- Carmen de Sena-Tomás
- Instituto de Biología Funcional y Genómica (CSIC), Zacarías González 2, 37007 Salamanca, Spain
| | - Eun Young Yu
- Department of Microbiology and Immunology, Weill Cornell Cancer Center, Weill Medical College of Cornell University, New York, 10021 NY, USA
| | - Arturo Calzada
- Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - William K Holloman
- Department of Microbiology and Immunology, Weill Cornell Cancer Center, Weill Medical College of Cornell University, New York, 10021 NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, Weill Cornell Cancer Center, Weill Medical College of Cornell University, New York, 10021 NY, USA
| | - José Pérez-Martín
- Instituto de Biología Funcional y Genómica (CSIC), Zacarías González 2, 37007 Salamanca, Spain
| |
Collapse
|
21
|
Bautista-España D, Anastacio-Marcelino E, Horta-Valerdi G, Celestino-Montes A, Kojic M, Negrete-Abascal E, Reyes-Cervantes H, Vázquez-Cruz C, Guzmán P, Sánchez-Alonso P. The telomerase reverse transcriptase subunit from the dimorphic fungus Ustilago maydis. PLoS One 2014; 9:e109981. [PMID: 25299159 PMCID: PMC4192592 DOI: 10.1371/journal.pone.0109981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/15/2014] [Indexed: 01/11/2023] Open
Abstract
In this study, we investigated the reverse transcriptase subunit of telomerase in the dimorphic fungus Ustilago maydis. This protein (Trt1) contains 1371 amino acids and all of the characteristic TERT motifs. Mutants created by disrupting trt1 had senescent traits, such as delayed growth, low replicative potential, and reduced survival, that were reminiscent of the traits observed in est2 budding yeast mutants. Telomerase activity was observed in wild-type fungus sporidia but not those of the disruption mutant. The introduction of a self-replicating plasmid expressing Trt1 into the mutant strain restored growth proficiency and replicative potential. Analyses of trt1 crosses in planta suggested that Trt1 is necessary for teliospore formation in homozygous disrupted diploids and that telomerase is haploinsufficient in heterozygous diploids. Additionally, terminal restriction fragment analysis in the progeny hinted at alternative survival mechanisms similar to those of budding yeast.
Collapse
Affiliation(s)
- Dolores Bautista-España
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
| | - Estela Anastacio-Marcelino
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
| | - Guillermo Horta-Valerdi
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
| | - Antonio Celestino-Montes
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
| | - Milorad Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Erasmo Negrete-Abascal
- Facultad de Estudios Superiores Iztacala, UNAM, Los Reyes Iztacala, Tlalnepantla, Estado de Mexico, Mexico
| | - Hortensia Reyes-Cervantes
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, Guanajuato, Mexico
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
- * E-mail:
| |
Collapse
|
22
|
Ryzhikov M, Gupta R, Glickman M, Korolev S. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms. J Biol Chem 2014; 289:28846-55. [PMID: 25170075 DOI: 10.1074/jbc.m114.585117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks.
Collapse
Affiliation(s)
- Mikhail Ryzhikov
- From the Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Richa Gupta
- Division of Infectious Diseases and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Michael Glickman
- Division of Infectious Diseases and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Sergey Korolev
- From the Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104 and
| |
Collapse
|
23
|
Genetic evidence suggests that Spata22 is required for the maintenance of Rad51 foci in mammalian meiosis. Sci Rep 2014; 4:6148. [PMID: 25142975 PMCID: PMC4139951 DOI: 10.1038/srep06148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 08/01/2014] [Indexed: 11/08/2022] Open
Abstract
Meiotic nodules are the sites of double-stranded DNA break repair. Rpa is a single-stranded DNA-binding protein, and Rad51 is a protein that assists in the repair of DNA double strand breaks. The localisation of Rad51 to meiotic nodules before the localisation of Rpa in mice introduces the issue of whether Rpa is involved in presynaptic filament formation during mammalian meiosis. Here, we show that a protein with unknown function, Spata22, colocalises with Rpa in meiotic nodules in rat spermatocytes. In spermatocytes of Spata22-deficient mutant rats, meiosis was arrested at the zygotene-like stage, and a normal number of Rpa foci was observed during leptotene- and zygotene-like stages. The number of Rad51 foci was initially normal but declined from the leptotene-like stage. These results suggest that both formation and maintenance of Rpa foci are independent of Spata22, and the maintenance, but not the formation, of Rad51 foci requires Spata22. We propose a possible model of presynaptic filament formation in mammalian meiosis, which involves Rpa and Spata22.
Collapse
|
24
|
DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Microbiol Mol Biol Rev 2014; 78:40-73. [PMID: 24600040 DOI: 10.1128/mmbr.00045-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All living organisms are continuously faced with endogenous or exogenous stress conditions affecting genome stability. DNA repair pathways act as a defense mechanism, which is essential to maintain DNA integrity. There is much to learn about the regulation and functions of these mechanisms, not only in human cells but also equally in divergent organisms. In trypanosomatids, DNA repair pathways protect the genome against mutations but also act as an adaptive mechanism to promote drug resistance. In this review, we scrutinize the molecular mechanisms and DNA repair pathways which are conserved in trypanosomatids. The recent advances made by the genome consortiums reveal the complete genomic sequences of several pathogens. Therefore, using bioinformatics and genomic sequences, we analyze the conservation of DNA repair proteins and their key protein motifs in trypanosomatids. We thus present a comprehensive view of DNA repair processes in trypanosomatids at the crossroads of DNA repair and drug resistance.
Collapse
|
25
|
Abstract
A central feature of meiosis is the pairing and recombination of homologous chromosomes. Ustilago maydis, a biotrophic fungus that parasitizes maize, has long been utilized as an experimental system for studying recombination, but it has not been clear when in the life cycle meiotic recombination initiates. U. maydis forms dormant diploid teliospores as the end product of the infection process. Upon germination, teliospores complete meiosis to produce four haploid basidiospores. Here we asked whether the meiotic process begins when teliospores germinate or at an earlier stage in development. When teliospores homozygous for a cdc45 mutation temperature sensitive for DNA synthesis were germinated at the restrictive temperature, four nuclei became visible. This implies that teliospores have already undergone premeiotic DNA synthesis and suggests that meiotic recombination initiates at a stage of infection before teliospores mature. Determination of homologous recombination in plant tissue infected with U. maydis strains heteroallelic for the nar1 gene revealed that Nar(+) recombinants were produced at a stage before teliospore maturation. Teliospores obtained from a spo11Δ cross were still able to germinate but the process was highly disturbed and the meiotic products were imbalanced in chromosomal complement. These results show that in U. maydis, homologous recombination initiates during the infection process and that meiosis can proceed even in the absence of Spo11, but with loss of genomic integrity.
Collapse
|
26
|
Feretzaki M, Heitman J. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans. PLoS Genet 2013; 9:e1003688. [PMID: 23966871 PMCID: PMC3744442 DOI: 10.1371/journal.pgen.1003688] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 06/18/2013] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen with a defined sexual cycle. Nutrient-limiting conditions and pheromones induce a dimorphic transition from unicellular yeast to multicellular hyphae and the production of infectious spores. Sexual reproduction involves cells of either opposite (bisexual) or one (unisexual) mating type. Bisexual and unisexual reproduction are governed by shared components of the conserved pheromone-sensing Cpk1 MAPK signal transduction cascade and by Mat2, the major transcriptional regulator of the pathway. However, the downstream targets of the pathway are largely unknown, and homology-based approaches have failed to yield downstream transcriptional regulators or other targets. In this study, we applied insertional mutagenesis via Agrobacterium tumefaciens transkingdom DNA delivery to identify mutants with unisexual reproduction defects. In addition to elements known to be involved in sexual development (Crg1, Ste7, Mat2, and Znf2), three key regulators of sexual development were identified by our screen: Znf3, Spo11, and Ubc5. Spo11 and Ubc5 promote sporulation during both bisexual and unisexual reproduction. Genetic and phenotypic analyses provide further evidence implicating both genes in the regulation of meiosis. Phenotypic analysis of sexual development showed that Znf3 is required for hyphal development during unisexual reproduction and also plays a central role during bisexual reproduction. Znf3 promotes cell fusion and pheromone production through a pathway parallel to and independent of the pheromone signaling cascade. Surprisingly, Znf3 participates in transposon silencing during unisexual reproduction and may serve as a link between RNAi silencing and sexual development. Our studies illustrate the power of unbiased genetic screens to reveal both novel and conserved circuits that operate sexual reproduction.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Corrigan MW, Kerwin-Iosue CL, Kuczmarski AS, Amin KB, Wykoff DD. The fate of linear DNA in Saccharomyces cerevisiae and Candida glabrata: the role of homologous and non-homologous end joining. PLoS One 2013; 8:e69628. [PMID: 23894512 PMCID: PMC3722132 DOI: 10.1371/journal.pone.0069628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/12/2013] [Indexed: 01/26/2023] Open
Abstract
In vivo assembly of plasmids has become an increasingly used process, as high throughput studies in molecular biology seek to examine gene function. In this study, we investigated the plasmid construction technique called gap repair cloning (GRC) in two closely related species of yeast – Saccharomyces cerevisiae and Candida glabrata. GRC utilizes homologous recombination (HR) activity to join a linear vector and a linear piece of DNA that contains base pair homology. We demonstrate that a minimum of 20 bp of homology on each side of the linear DNA is required for GRC to occur with at least 10% efficiency. Between the two species, we determine that S. cerevisiae is slightly more efficient at performing GRC. GRC is less efficient in rad52 deletion mutants, which are defective in HR in both species. In dnl4 deletion mutants, which perform less non-homologous end joining (NHEJ), the frequency of GRC increases in C. glabrata, whereas GRC frequency only minimally increases in S. cerevisiae, suggesting that NHEJ is more prevalent in C. glabrata. Our studies allow for a model of the fate of linear DNA when transformed into yeast cells. This model is not the same for both species. Most significantly, during GRC, C. glabrata performs NHEJ activity at a detectable rate (>5%), while S. cerevisiae does not. Our model suggests that S. cerevisiae is more efficient at HR because NHEJ is less prevalent than in C. glabrata. This work demonstrates the determinants for GRC and that while C. glabrata has a lower efficiency of GRC, this species still provides a viable option for GRC.
Collapse
Affiliation(s)
- Mary W. Corrigan
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States
| | | | | | - Kunj B. Amin
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States
| | - Dennis D. Wykoff
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States
- * E-mail:
| |
Collapse
|
28
|
Donaldson ME, Saville BJ. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis. Mol Microbiol 2013; 89:29-51. [PMID: 23650872 PMCID: PMC3739942 DOI: 10.1111/mmi.12254] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 11/29/2022]
Abstract
Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense-antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis.
Collapse
Affiliation(s)
- Michael E Donaldson
- Environmental and Life Sciences Graduate ProgramPeterborough, ON, Canada, K9J 7B8
| | - Barry J Saville
- Environmental and Life Sciences Graduate ProgramPeterborough, ON, Canada, K9J 7B8
- Forensic Science Program, Trent UniversityPeterborough, ON, Canada, K9J 7B8
| |
Collapse
|
29
|
Campos-Góngora E, Andaluz E, Bellido A, Ruiz-Herrera J, Larriba G. The RAD52 ortholog of Yarrowia lipolytica is essential for nuclear integrity and DNA repair. FEMS Yeast Res 2013; 13:441-52. [PMID: 23566019 DOI: 10.1111/1567-1364.12047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 11/27/2022] Open
Abstract
Yarrowia lipolytica (Yl) is a dimorphic fungus that has become a well-established model for a number of biological processes, including secretion of heterologous and chimerical proteins. However, little is known on the recombination machinery responsible for the integration in the genome of the exogenous DNA encoding for those proteins. We have carried out a phenotypic analysis of rad52 deletants of Y. lipolytica. YlRad52 exhibited 20-30% identity with Rad52 homologues of other eukaryotes, including Saccharomyces cerevisiae and Candida albicans. Ylrad52-Δ strains formed colonies on YPD-agar plates which were spinier and smaller than those from wild type, whereas in YPD liquid cultures they exhibited a decreased grow rate and contained cells with aberrant morphology and fragmented chromatin, supporting a role for homologous recombination (HR) in genome stability under nondamaging conditions. In addition, Ylrad52 mutants showed moderate to high sensitivity to UV light, oxidizing agents and compounds that cause single- (SSB) and double-strand breaks (DSB), indicating an important role for Rad52 in DNA repair. These findings extend to Yl previous observations indicating that RAD52 is a crucial gene for DNA repair in other fungi, including S. cerevisiae, C. albicans and Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Eduardo Campos-Góngora
- Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | | | | | | | | |
Collapse
|
30
|
Abstract
UNLABELLED Malassezia commensal yeasts are associated with a number of skin disorders, such as atopic eczema/dermatitis and dandruff, and they also can cause systemic infections. Here we describe the 7.67-Mbp genome of Malassezia sympodialis, a species associated with atopic eczema, and contrast its genome repertoire with that of Malassezia globosa, associated with dandruff, as well as those of other closely related fungi. Ninety percent of the predicted M. sympodialis protein coding genes were experimentally verified by mass spectrometry at the protein level. We identified a relatively limited number of genes related to lipid biosynthesis, and both species lack the fatty acid synthase gene, in line with the known requirement of these yeasts to assimilate lipids from the host. Malassezia species do not appear to have many cell wall-localized glycosylphosphatidylinositol (GPI) proteins and lack other cell wall proteins previously identified in other fungi. This is surprising given that in other fungi these proteins have been shown to mediate interactions (e.g., adhesion and biofilm formation) with the host. The genome revealed a complex evolutionary history for an allergen of unknown function, Mala s 7, shown to be encoded by a member of an amplified gene family of secreted proteins. Based on genetic and biochemical studies with the basidiomycete human fungal pathogen Cryptococcus neoformans, we characterized the allergen Mala s 6 as the cytoplasmic cyclophilin A. We further present evidence that M. sympodialis may have the capacity to undergo sexual reproduction and present a model for a pseudobipolar mating system that allows limited recombination between two linked MAT loci. IMPORTANCE Malassezia commensal yeasts are associated with a number of skin disorders. The previously published genome of M. globosa provided some of the first insights into Malassezia biology and its involvement in dandruff. Here, we present the genome of M. sympodialis, frequently isolated from patients with atopic eczema and healthy individuals. We combined comparative genomics with sequencing and functional characterization of specific genes in a population of clinical isolates and in closely related model systems. Our analyses provide insights into the evolution of allergens related to atopic eczema and the evolutionary trajectory of the machinery for sexual reproduction and meiosis. We hypothesize that M. sympodialis may undergo sexual reproduction, which has important implications for the understanding of the life cycle and virulence potential of this medically important yeast. Our findings provide a foundation for the development of genetic and genomic tools to elucidate host-microbe interactions that occur on the skin and to identify potential therapeutic targets.
Collapse
|
31
|
Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Güldener U, Münsterkötter M, Moore R, Kahmann R, Bakkeren G, Schirawski J. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. THE PLANT CELL 2012; 24:1733-45. [PMID: 22623492 PMCID: PMC3442566 DOI: 10.1105/tpc.112.097261] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/13/2012] [Accepted: 04/25/2012] [Indexed: 05/19/2023]
Abstract
Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts.
Collapse
Affiliation(s)
- John D. Laurie
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Rob Linning
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Gertrud Mannhaupt
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, 35043 Marburg, Germany
| | - Philip Wong
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Ulrich Güldener
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Martin Münsterkötter
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Richard Moore
- Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, 35043 Marburg, Germany
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
- Address correspondence to
| | - Jan Schirawski
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, 35043 Marburg, Germany
- Rheinisch-Westfälische Technische Hochschule Aachen University, Institute of Applied Microbiology, 52074 Aachen, Germany
| |
Collapse
|
32
|
Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40:5795-818. [PMID: 22467216 PMCID: PMC3401455 DOI: 10.1093/nar/gks270] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
33
|
Kojic M, Holloman WK. Brh2 domain function distinguished by differential cellular responses to DNA damage and replication stress. Mol Microbiol 2011; 83:351-61. [PMID: 22171788 DOI: 10.1111/j.1365-2958.2011.07935.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutants of the fungus Ustilago maydis defective in the RecQ helicase Blm are highly sensitive to killing by the DNA replication stressor hydroxyurea. This sensitivity or toxicity is dependent on the homologous recombination (HR) system and apparently results from formation of dead-end HR DNA intermediates. HU toxicity can be suppressed by deletion of the gene encoding Brh2, the BRCA2 orthologue that serves to regulate HR by mediating Rad51 filament formation on single-stranded DNA. Brh2 harbours two different DNA-binding domains that contribute to HR function. DNA-binding activity from a single domain is sufficient to provide Brh2 functional activity in HR, but to enable HU-induced killing two functional DNA-binding domains must be present. Despite this stringent requirement for dual functioning domains, the source of DNA-binding domains is less critical in that heterologous domains can substitute for the native endogenous ones. The results suggest a model in which the nature of the DNA lesion is an important determinant in the functional response of Brh2 action.
Collapse
Affiliation(s)
- Milorad Kojic
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
34
|
Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol 2011; 115:1225-33. [DOI: 10.1016/j.funbio.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/31/2011] [Indexed: 11/25/2022]
|
35
|
Pérez-Martín J, de Sena-Tomás C. Dikaryotic cell cycle in the phytopathogenic fungus Ustilago maydis is controlled by the DNA damage response cascade. PLANT SIGNALING & BEHAVIOR 2011; 6:1574-7. [PMID: 21918381 PMCID: PMC3256387 DOI: 10.4161/psb.6.10.17055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 05/24/2023]
Abstract
In a large group of fungi, mating results in a dikaryon, a cell in which the two nuclei--one from each parent cell--share a single cytoplasm for a period of time without undergoing nuclear fusion. The dikaryon stage is typical in the life cycles of many fungal species primarily in the Basidiomycota, a large group that includes mushrooms, bracket fungi and many phytopathogenic fungi, such as the corn pathogen Ustilago maydis. Recently, we described that in U. maydis two conserved DNA-damage checkpoint kinases, Chk1 and Atr1, work together to control the dikaryon formation. However, how this pathway is activated during the dikaryon formation and how its activation/deactivation is coordinated with the different cell cycle phases is unknown. Here we propose and discuss several hypothesis to address these questions.
Collapse
Affiliation(s)
- Jose Pérez-Martín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CSIC, Madrid, Spain.
| | | |
Collapse
|
36
|
Anju V, Kapros T, Waterborg JH. Identification of a replication-independent replacement histone H3 in the basidiomycete Ustilago maydis. J Biol Chem 2011; 286:25790-800. [PMID: 21646347 DOI: 10.1074/jbc.m111.254383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ustilago maydis is a haploid basidiomycete with single genes for two distinct histone H3 variants. The solitary U1 gene codes for H3.1, predicted to be a replication-independent replacement histone. The U2 gene is paired with histone H4 and produces a putative replication-coupled H3.2 variant. These predictions were evaluated experimentally. U2 was confirmed to be highly expressed in the S phase and had reduced expression in hydroxyurea, and H3.2 protein was not incorporated into transcribed chromatin of stationary phase cells. Constitutive expression of U1 during growth produced ~25% of H3 as H3.1 protein, more highly acetylated than H3.2. The level of H3.1 increased when cell proliferation slowed, a hallmark of replacement histones. Half of new H3.1 incorporated into highly acetylated chromatin was lost with a half-life of 2.5 h, the fastest rate of replacement H3 turnover reported to date. This response reflects the characteristic incorporation of replacement H3 into transcribed chromatin, subject to continued nucleosome displacement and a loss of H3 as in animals and plants. Although the two H3 variants are functionally distinct, neither appears to be essential for vegetative growth. KO gene disruption transformants of the U1 and U2 loci produced viable cell lines. The structural and functional similarities of the Ustilago replication-coupled and replication-independent H3 variants with those in animals, in plants, and in ciliates are remarkable because these distinct histone H3 pairs of variants arose independently in each of these clades and in basidiomycetes.
Collapse
Affiliation(s)
- Verma Anju
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
37
|
Tsai YC, Wang Y, Urena DE, Kumar S, Chen J. Heterology tolerance and recognition of mismatched base pairs by human Rad51 protein. DNA Repair (Amst) 2011; 10:363-72. [PMID: 21239234 DOI: 10.1016/j.dnarep.2010.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 12/15/2022]
Abstract
Human Rad51 (hRad51) promoted homology recognition and subsequent strand exchange are the key steps in human homologous recombination mediated repair of DNA double-strand breaks. However, it is still not clear how hRad51 deals with sequence heterology between the two homologous chromosomes in eukaryotic cells, which would lead to mismatched base pairs after strand exchange. Excessive tolerance of sequence heterology may compromise the fidelity of repair of DNA double-strand breaks. In this study, fluorescence resonance energy transfer (FRET) was used to monitor the heterology tolerance of human Rad51 mediated strand exchange reactions, in real time, by introducing either G-T or I-C mismatched base pairs between the two homologous DNA strands. The strand exchange reactions were much more sensitive to G-T than to I-C base pairs. These results imply that the recognition of homology and the tolerance of heterology by hRad51 may depend on the local structural motif adopted by the base pairs participating in strand exchange. AnhRad51 mutant protein (hRad51K133R), deficient in ATP hydrolysis, showed greater heterology tolerance to both types of mismatch base pairing, suggesting that ATPase activity may be important for maintenance of high fidelity homologous recombination DNA repair.
Collapse
Affiliation(s)
- Yu-Cheng Tsai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
38
|
Kojic M, Zhou Q, Fan J, Holloman WK. Mutational analysis of Brh2 reveals requirements for compensating mediator functions. Mol Microbiol 2010; 79:180-91. [PMID: 21166902 DOI: 10.1111/j.1365-2958.2010.07440.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Brh2, a member of the BRCA2 family of proteins, governs homologous recombination in the fungus Ustilago maydis through interaction with Rad51. Brh2 serves at an early step in homologous recombination to mediate Rad51 nucleoprotein filament formation and also has the capability to function at a later step in recombination through its inherent DNA annealing activity. Rec2, a Rad51 paralogue, and Rad52 are additional components of the homologous recombination system, but the absence of either is less critical than Brh2 for operational activity. Here we tested a variety of mutant forms of Brh2 for activity in recombinational repair as measured by DNA repair proficiency. We found that a mutant of Brh2 deleted of the non-canonical DNA-binding domain within the N-terminal region is dependent upon the presence of Rad52 for DNA repair activity. We also determined that a motif first identified in human BRCA2 as important in binding DMC1 also contributes to DNA repair proficiency and cooperates with the BRC element in Rad51 binding.
Collapse
Affiliation(s)
- Milorad Kojic
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | |
Collapse
|
39
|
Chen H, Ma Z, Vanderwaal RP, Feng Z, Gonzalez-Suarez I, Wang S, Zhang J, Roti Roti JL, Gonzalo S, Zhang J. The mTOR inhibitor rapamycin suppresses DNA double-strand break repair. Radiat Res 2010; 175:214-24. [PMID: 21268715 DOI: 10.1667/rr2323.1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
mTOR (mammalian target of rapamycin) signaling plays a key role in the development of many tumor types. Therefore, mTOR is an attractive target for cancer therapeutics. Although mTOR inhibitors are thought to have radiosensitization activity, the molecular bases remain largely unknown. Here we show that treating MCF7 breast cancer cells with rapamycin (an mTOR inhibitor) results in significant suppression of homologous recombination (HR) and nonhomologous end joining (NHEJ), two major mechanisms required for repairing ionizing radiation-induced DNA DSBs. We observed that rapamycin impaired recruitment of BRCA1 and Rad51 to DNA repair foci, both essential for HR. Moreover, consistent with the suppressive role of rapamycin on both HR and NHEJ, persistent radiation-induced DSBs were detected in cells pretreated with rapamycin. Furthermore, the frequency of chromosome and chromatid breaks was increased in cells treated with rapamycin before and after irradiation. Thus our results show that radiosensitization by mTOR inhibitors occurs via disruption of the major two DNA DSB repair pathways.
Collapse
Affiliation(s)
- Honghong Chen
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Blvd., St. Louis, MO 63108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ji L, Jiang ZD, Liu Y, Koh CMJ, Zhang LH. A Simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells. Fungal Genet Biol 2010; 47:279-87. [DOI: 10.1016/j.fgb.2010.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 01/08/2010] [Accepted: 01/09/2010] [Indexed: 11/30/2022]
|
41
|
Reedy JL, Floyd AM, Heitman J. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 2009; 19:891-9. [PMID: 19446455 PMCID: PMC2788334 DOI: 10.1016/j.cub.2009.04.058] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Candida species are microbial pathogens originally thought to be asexual, but several are now recognized as sexual or parasexual. Candida albicans, the most common fungus infecting humans, is an obligate diploid with a parasexual cycle involving mating, recombination, and genome reduction but no recognized meiosis. Others (C. lusitaniae, C. guilliermondii) are haploid, and their mating produces spores, suggestive of complete meiotic sexual cycles. However, comparative genomic analysis reveals that these species lack key meiotic components, including the recombinase Dmc1 and cofactors (Mei5/Sae3), synaptonemal-complex proteins (Zip1-Zip4/Hop1), and the crossover interference pathway (Msh4/5). RESULTS Here we elucidate the structure and functions of the mating-type (MAT) locus and establish that C. lusitaniae undergoes meiosis during its sexual cycle. The MAT-encoded a2 (high-mobility group) and alpha1 (alpha domain) factors specify a and alpha cell identity, whereas the a1 homeodomain protein drives meiosis and sporulation and functions without its canonical heterodimeric partner, alpha2. Despite the apparent loss of meiotic genes, C. lusitaniae undergoes meiosis during sexual reproduction involving diploid intermediates, frequent SPO11-dependent recombination, and whole-genome reduction generating haploid progeny. The majority of meiotic progeny are euploid, but approximately one-third are diploid/aneuploid. CONCLUSIONS The cell identity and meiotic pathways have been substantially rewired, and meiotic generation of both recombinant and aneuploid progeny may expand genetic diversity. These findings inform our understanding of sexual reproduction in pathogenic microbes and the evolutionary plasticity of the meiotic machinery, with implications for the sexual nature of C. albicans and the generation and consequences of aneuploidy in biology and medicine.
Collapse
Affiliation(s)
- Jennifer L Reedy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
42
|
Role of Blm and collaborating factors in recombination and survival following replication stress in Ustilago maydis. DNA Repair (Amst) 2009; 8:752-9. [PMID: 19349216 DOI: 10.1016/j.dnarep.2009.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/16/2009] [Accepted: 02/06/2009] [Indexed: 11/20/2022]
Abstract
Inactivation of the structural gene for the RecQ family member, BLM in human, Sgs1 in budding yeast, or Rqh1 in fission yeast leads to inappropriate recombination, chromosome abnormalities, and disturbed replication fork progression. Studies with yeasts have demonstrated that auxiliary gene functions can contribute in overlapping ways with Sgs1 or Rqh1 to circumvent or overcome lesions in DNA caused by certain genotoxic agents. In the combined absence of these functions, recombination-mediated processes lead to severe loss of fitness. Here we performed a genetic study to determine the role of the Ustilago maydis Blm homolog in DNA repair and in alleviating replication stress. We characterized the single mutant as well as double mutants additionally deleted of genes encoding Srs2, Fbh1, Mus81, or Exo1. Unlike yeasts, neither the blm srs2, blm exo1, nor blm mus81 double mutant exhibited extreme loss of fitness. Inactivation of Brh2, the BRCA2 homolog, suppressed toxicity to hydroxyurea caused by loss of Blm function. However, differential suppression by Brh2 derivatives lacking the canonical DNA-binding region suggests that the particular domain structure comprising this DNA-binding region may be instrumental in promoting the observed hydroxyurea toxicity.
Collapse
|
43
|
DNA-damage response in the basidiomycete fungus Ustilago maydis relies in a sole Chk1-like kinase. DNA Repair (Amst) 2009; 8:720-31. [PMID: 19269260 DOI: 10.1016/j.dnarep.2009.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/31/2009] [Indexed: 11/23/2022]
Abstract
Chk1 is a protein kinase that acts as a key signal transducer within the complex network responsible of the cellular response to different DNA damages. It is a conserved element along the eukaryotic kingdom, together with a second checkpoint kinase, called Chk2/Rad53. In fact, all organisms studied so far carried at least one copy of each kind of checkpoint kinase. Since the relative contribution to the DNA-damage response of each type of kinase varies from one organism to other, the current view about the roles of Chk1 and Chk2/Rad53 during DNA-damage response is one of mutual complementation and intimate cooperation. However, in this work it is reported that Ustilago maydis - a phytopathogenic fungus exhibiting extreme resistance to UV and ionizing radiation - have a single kinase belonging to the Chk1 family but strikingly no kinases related to Chk2/Rad53 family are apparent. The U. maydis Chk1 kinase is able to respond to different classes of DNA damages and its activity is required for the cellular adaptation to such damages. As other described components of the Chk1 family of kinases, U. maydis Chk1 is phosphorylated and translocated to nucleus in response to DNA-damage signals. Interestingly subtle differences in this response depending on the kind of DNA damage are apparent, suggesting that in U. maydis the sole Chk1 kinase recapitulates the roles that in other organisms are shared by Chk1 and the Chk2/Rad53 family of protein kinases.
Collapse
|