1
|
Cai E, Jia H, Feng R, Zheng W, Li L, Zhang L, Jiang Z, Chang C. Cytochrome c-peroxidase modulates ROS homeostasis to regulate the sexual mating of Sporisorium scitamineum. Microbiol Spectr 2023; 11:e0205723. [PMID: 37819114 PMCID: PMC10714796 DOI: 10.1128/spectrum.02057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Reactive oxygen species play an important role in pathogen-plant interactions. In fungi, cytochrome c-peroxidase maintains intracellular ROS homeostasis by utilizing H2O2 as an electron acceptor to oxidize ferrocytochrome c, thereby contributing to disease pathogenesis. In this study, our investigation reveals that the cytochrome c-peroxidase encoding gene, SsCCP1, not only plays a key role in resisting H2O2 toxicity but is also essential for the mating/filamentation and pathogenicity of S. scitamineum. We further uncover that SsCcp1 mediates the expression of SsPrf1 by maintaining intracellular ROS homeostasis to regulate S. scitamineum mating/filamentation. Our findings provide novel insights into how cytochrome c-peroxidase regulates sexual reproduction in phytopathogenic fungi, presenting a theoretical foundation for designing new disease control strategies.
Collapse
Affiliation(s)
- Enping Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
- Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huan Jia
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
- Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ruqing Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
- Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wenqiang Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
- Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lei Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
- Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Li Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
- Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Changqing Chang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
- Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Srikant S, Gaudet R, Murray AW. Extending the reach of homology by using successive computational filters to find yeast pheromone genes. Curr Biol 2023; 33:4098-4110.e3. [PMID: 37699395 PMCID: PMC10592104 DOI: 10.1016/j.cub.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
The mating of fungi depends on pheromones that mediate communication between two mating types. Most species use short peptides as pheromones, which are either unmodified (e.g., α-factor in Saccharomyces cerevisiae) or C-terminally farnesylated (e.g., a-factor in S. cerevisiae). Peptide pheromones have been found by genetics or biochemistry in a small number of fungi, but their short sequences and modest conservation make it impossible to detect homologous sequences in most species. To overcome this problem, we used a four-step computational pipeline to identify candidate a-factor genes in sequenced genomes of the Saccharomycotina, the fungal clade that contains most of the yeasts: we require that candidate genes have a C-terminal prenylation motif, are shorter than 100 amino acids long, and contain a proteolytic-processing motif upstream of the potential mature pheromone sequence and that closely related species contain highly conserved homologs of the potential mature pheromone sequence. Additional manual curation exploits the observation that many species carry more than one a-factor gene, encoding identical or nearly identical pheromones. From 332 Saccharomycotina genomes, we identified strong candidate pheromone genes in 241 genomes, covering 13 clades that are each separated from each other by at least 100 million years, the time required for evolution to remove detectable sequence homology among small pheromone genes. For one small clade, the Yarrowia, we demonstrated that our algorithm found the a-factor genes: deleting all four related genes in the a-mating type of Yarrowia lipolytica prevents mating.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Bai N, Xie M, Liu Q, Zhu Y, Yang X, Zhang KQ, Yang J. AoMedA has a complex regulatory relationship with AoBrlA, AoAbaA, and AoWetA in conidiation, trap formation, and secondary metabolism in the nematode-trapping fungus Arthrobotrys oligospora. Appl Environ Microbiol 2023; 89:e0098323. [PMID: 37655869 PMCID: PMC10537773 DOI: 10.1128/aem.00983-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
The asexual sporulation of filamentous fungi is an important mechanism for their reproduction, survival, and pathogenicity. In Aspergillus and several filamentous fungi, BrlA, AbaA, and WetA are the key elements of a central regulatory pathway controlling conidiation, and MedA is a developmental modifier that regulates temporal expression of central regulatory genes; however, their roles are largely unknown in nematode-trapping (NT) fungi. Arthrobotrys oligospora is a representative NT fungus, which can capture nematodes by producing adhesive networks (traps). Here, we characterized the function of AoMedA and three central developmental regulators (AoBrlA, AoAbaA, and AoWetA) in A. oligospora by gene disruption, phenotypic comparison, and multi-omics analyses, as these regulators are required for conidiation and play divergent roles in mycelial development, trap formation, lipid droplet accumulation, vacuole assembly, and secondary metabolism. A combined analysis of phenotypic traits and transcriptome showed that AoMedA and AoWetA are involved in the regulation of peroxisome, endocytosis, and autophagy. Moreover, yeast one-hybrid analysis showed that AoBrlA can regulate AoMedA, AoAbaA, and AoWetA, whereas AoMedA and AoAbaA can regulate AoWetA. Our results highlight the important roles of AoMedA, AoBrlA, AoAbaA, and AoWetA in conidiation, mycelia development, trap formation, and pathogenicity of A. oligospora and provide a basis for elucidating the relationship between conidiation and trap formation of NT fungi. IMPORTANCE Conidiation is the most common reproductive mode for many filamentous fungi and plays an essential role in the pathogenicity of fungal pathogens. Nematode-trapping (NT) fungi are a special group of filamentous fungi owing to their innate abilities to capture and digest nematodes by producing traps (trapping devices). Sporulation plays an important role in the growth and reproduction of NT fungi, and conidia are the basic components of biocontrol reagents for controlling diseases caused by plant-parasitic nematodes. Arthrobotrys oligospora is a well-known NT fungus and is a routinely used model fungus for probing the interaction between fungi and nematodes. In this study, the functions of four key regulators (AoMedA, AoBrlA, AoAbaA, and AoWetA) involved in conidiation were characterized in A. oligospora. A complex interaction between AoMedA and three central regulators was noted; these regulators are required for conidiation and trap formation and play a pleiotropic role in multiple intracellular activities. Our study first revealed the role of AoMedA and three central regulators in conidiation, trap formation, and pathogenicity of A. oligospora, which contributed to elucidating the regulatory mechanism of conidiation in NT fungi and helped in developing effective reagents for biocontrol of nematodes.
Collapse
Affiliation(s)
- Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Meihua Xie
- School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yingmei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Navarrete B, Ibeas JI, Barrales RR. Systematic characterization of Ustilago maydis sirtuins shows Sir2 as a modulator of pathogenic gene expression. Front Microbiol 2023; 14:1157990. [PMID: 37113216 PMCID: PMC10126416 DOI: 10.3389/fmicb.2023.1157990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phytopathogenic fungi must adapt to the different environmental conditions found during infection and avoid the immune response of the plant. For these adaptations, fungi must tightly control gene expression, allowing sequential changes in transcriptional programs. In addition to transcription factors, chromatin modification is used by eukaryotic cells as a different layer of transcriptional control. Specifically, the acetylation of histones is one of the chromatin modifications with a strong impact on gene expression. Hyperacetylated regions usually correlate with high transcription and hypoacetylated areas with low transcription. Thus, histone deacetylases (HDACs) commonly act as repressors of transcription. One member of the family of HDACs is represented by sirtuins, which are deacetylases dependent on NAD+, and, thus, their activity is considered to be related to the physiological stage of the cells. This property makes sirtuins good regulators during environmental changes. However, only a few examples exist, and with differences in the extent of the implication of the role of sirtuins during fungal phytopathogenesis. In this work, we have performed a systematic study of sirtuins in the maize pathogen Ustilago maydis, finding Sir2 to be involved in the dimorphic switch from yeast cell to filament and pathogenic development. Specifically, the deletion of sir2 promotes filamentation, whereas its overexpression highly reduces tumor formation in the plant. Moreover, transcriptomic analysis revealed that Sir2 represses genes that are expressed during biotrophism development. Interestingly, our results suggest that this repressive effect is not through histone deacetylation, indicating a different target of Sir2 in this fungus.
Collapse
|
5
|
Kijpornyongpan T, Aime MC. Investigating the Smuts: Common Cues, Signaling Pathways, and the Role of MAT in Dimorphic Switching and Pathogenesis. J Fungi (Basel) 2020; 6:jof6040368. [PMID: 33339287 PMCID: PMC7766764 DOI: 10.3390/jof6040368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The corn smut fungus Ustilago maydis serves as a model species for studying fungal dimorphism and its role in phytopathogenic development. The pathogen has two growth phases: a saprobic yeast phase and a pathogenic filamentous phase. Dimorphic transition of U. maydis involves complex processes of signal perception, mating, and cellular reprogramming. Recent advances in improvement of reference genomes, high-throughput sequencing and molecular genetics studies have been expanding research in this field. However, the biology of other non-model species is frequently overlooked. This leads to uncertainty regarding how much of what is known in U. maydis is applicable to other dimorphic fungi. In this review, we will discuss dimorphic fungi in the aspects of physiology, reproductive biology, genomics, and molecular genetics. We also perform comparative analyses between U. maydis and other fungi in Ustilaginomycotina, the subphylum to which U. maydis belongs. We find that lipid/hydrophobicity is a potential common cue for dimorphic transition in plant-associated dimorphic fungi. However, genomic profiles alone are not adequate to explain dimorphism across different fungi.
Collapse
|
6
|
Frawley D, Bayram Ö. The pheromone response module, a mitogen-activated protein kinase pathway implicated in the regulation of fungal development, secondary metabolism and pathogenicity. Fungal Genet Biol 2020; 144:103469. [PMID: 32950720 DOI: 10.1016/j.fgb.2020.103469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are highly conserved from yeast to human and are required for the regulation of a multitude of biological processes in eukaryotes. A pentameric MAPK pathway known as the Fus3 pheromone module was initially characterised in Saccharomyces cerevisiae and was shown to regulate cell fusion and sexual development. Individual orthologous pheromone module genes have since been found to be highly conserved in fungal genomes and have been shown to regulate a diverse array of cellular responses, such as cell growth, asexual and sexual development, secondary metabolite production and pathogenicity. However, information regarding the assembly and structure of orthologous pheromone modules, as well as the mechanisms of signalling and their biological significance is limited, specifically in filamentous fungal species. Recent studies have provided insight on the utilization of the pheromone module as a central signalling hub for the co-ordinated regulation of fungal development and secondary metabolite production. Various proteins of this pathway are also known to regulate reproduction and virulence in a range of plant pathogenic fungi. In this review, we discuss recent findings that help elucidate the structure of the pheromone module pathway in a myriad of fungal species and its implications in the control of fungal growth, development, secondary metabolism and pathogenicity.
Collapse
Affiliation(s)
- Dean Frawley
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Özgür Bayram
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
7
|
rmtA-Dependent Transcriptome and Its Role in Secondary Metabolism, Environmental Stress, and Virulence in Aspergillus flavus. G3-GENES GENOMES GENETICS 2019; 9:4087-4096. [PMID: 31601618 PMCID: PMC6893206 DOI: 10.1534/g3.119.400777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aspergillus flavus colonizes numerous oil seed crops such as maize, peanuts, treenuts and cottonseed worldwide, contaminating them with aflatoxins and other harmful toxins. Previously our lab characterized the gene rmtA, which encodes an arginine methyltransferase in A. flavus, and demonstrated its role governing the expression of regulators in the aflatoxin gene cluster and subsequent synthesis of toxin. Furthermore, our studies revealed that rmtA also controls conidial and sclerotial development implicating it as an epigenetic regulator in A. flavus. To confirm this, we performed a RNA sequencing analysis to ascertain the extent of rmtA’s influence on the transcriptome of A. flavus. In this analysis we identified over 2000 genes that were rmtA-dependent, including over 200 transcription factor genes, as well as an uncharacterized secondary metabolite gene cluster possibly responsible for the synthesis of an epidithiodiketopiperazine-like compound. Our results also revealed rmtA-dependent genes involved in multiple types of abiotic stress response in A. flavus. Importantly, hundreds of genes active during maize infection were also regulated by rmtA. In addition, in the animal infection model, rmtA was dispensable for virulence, however forced overexpression of rmtA increased mortality with respect to the wild type.
Collapse
|
8
|
Zhang Y, Liu H, Cao Q, Ge Q, Cui H, Yu X, Ye Z. Cloning and characterization of the UePrf1 gene in Ustilago esculenta. FEMS Microbiol Lett 2019; 365:4956762. [PMID: 29617942 DOI: 10.1093/femsle/fny081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/29/2018] [Indexed: 11/12/2022] Open
Abstract
Ustilago esculenta, an obligate parasite of Zizania latifolia, is a typical dimorphic fungus which induces host stem swelling and inhibits host inflorescence development, but is not found in host leaves. Previous studies have shown that dimorphic switching is essential for fungal pathogenicity and is regulated by protein kinase A and mitogen-activated protein kinase (MAPK) signaling pathways that are integrated by Prf1 in Ustilago maydis. In this study we identified a Prf1 homolog in U. esculenta, designated UePrf1, encoding 830 amino acids with a conserved high mobility group domain located between amino acids 124 and 195. UePrf1 was upregulated during the mating process, which induces dimorphism in U. esculenta. In vitro, UePrf1 mutants showed defects in the mating process, including cell fusion and hyphal growth. UePrf1 mutants also show reduced expression of a genes, even during the cell fusion process. Additionally, the defect in hyphal growth of the UeKpp2 and UeKpp6 mutants (MAPK signaling pathway mutants) was partially counteracted by UePrf1 overexpression, along with induced b gene expression. These results provide evidence that UePrf1 is a key factor coordinating dimorphism in U. esculenta and suggest a conserved role for UePrf1 in the regulation of the a and b genes.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Honglei Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qianwen Ge
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
9
|
Zhu G, Deng Y, Cai E, Yan M, Cui G, Wang Z, Zou C, Zhang B, Xi P, Chang C, Chen B, Jiang Z. Identification and Functional Analysis of the Pheromone Response Factor Gene of Sporisorium scitamineum. Front Microbiol 2019; 10:2115. [PMID: 31552011 PMCID: PMC6747018 DOI: 10.3389/fmicb.2019.02115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022] Open
Abstract
The sugarcane smut fungus Sporisorium scitamineum is bipolar and produces sporidia of two different mating types. During infection, haploid cells of opposite mating types can fuse to form dikaryotic hyphae that can colonize plant tissue. Mating and filamentation are therefore essential for S. scitamineum pathogenesis. In this study, we obtained one T-DNA insertion mutant disrupted in the gene encoding the pheromone response factor (Prf1), hereinafter named SsPRF1, of S. scitamineum, via Agrobacterium tumefaciens-mediated transformation (ATMT) mutagenesis. Targeted deletion of SsPRF1 resulted in mutants with phenotypes similar to the T-DNA insertion mutant, including failure to mate with a compatible wild-type partner strain and being non-pathogenic on its host sugarcane. qRT-PCR analyses showed that SsPRF1 was essential for the transcription of pheromone-responsive mating type genes of the a1 locus. These results show that SsPRF1 is involved in mating and pathogenicity and plays a key role in pheromone signaling and filamentous growth in S. scitamineum.
Collapse
Affiliation(s)
- Guining Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Enping Cai
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Meixin Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guobing Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Changqing Chang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Fan G, Zhang K, Zhang J, Yang J, Yang X, Hu Y, Huang J, Zhu Y, Yu W, Hu H, Wang B, Shim W, Lu GD. The transcription factor FgMed1 is involved in early conidiogenesis and DON biosynthesis in the plant pathogenic fungus Fusarium graminearum. Appl Microbiol Biotechnol 2019; 103:5851-5865. [PMID: 31115634 DOI: 10.1007/s00253-019-09872-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Fusarium graminearum is a prominent fungal pathogen that causes economically important losses by infesting a wide variety of cereal crops. F. graminearum produces both asexual and sexual spores which disseminate and inoculate hosts. Therefore, to better understand the disease cycle and to develop strategies to improve disease management, it is important to further clarify molecular mechanisms of F. graminearum conidiogenesis. In this study, we functionally characterized the FgMed1, a gene encoding an ortholog of a conserved MedA transcription factor known to be a key conidiogenesis regulator in Aspergillus nidulans. The gene deletion mutants ΔFgMed1 produced significantly less conidia, and these were generated from abnormal conidiophores devoid of phialides. Additionally, we observed defective sexual development along with reduced virulence and deoxynivalenol (DON) production in ΔFgMed1. The GFP-tagged FgMed1 protein localized to the nuclei of conidiophores and phialides during early conidiogenesis. Significantly, RNA-Seq analyses showed that a number of the conidiation- and toxin-related genes are differentially expressed in the ΔFgMed1 mutant in early conidiogenesis. These data strongly suggest that FgMed1 involved in regulation of genes associated with early conidiogenesis, DON production, and virulence in F. graminearum.
Collapse
Affiliation(s)
- Gaili Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Xiamen Greening Administration Center, Xiamen, 361004, Fujian, China
| | - Kai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaoshuang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yanpei Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiawei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yangyan Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenying Yu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongli Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Baohua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - WonBo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
11
|
Abstract
Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG, NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Heterologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. Investigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. Investigations were made using A. clavatus as a representative 'asexual' species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.
Collapse
|
12
|
van der Does HC, Rep M. Adaptation to the Host Environment by Plant-Pathogenic Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:427-450. [PMID: 28645233 DOI: 10.1146/annurev-phyto-080516-035551] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
Collapse
Affiliation(s)
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, 1098XH Amsterdam, The Netherlands;
| |
Collapse
|
13
|
|
14
|
Islamovic E, García-Pedrajas MD, Chacko N, Andrews DL, Covert SF, Gold SE. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:42-54. [PMID: 25226432 DOI: 10.1094/mpmi-05-14-0133-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, producing melanized sexual teliospores. Previously we identified Ust1, an APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor, whose deletion led to filamentous haploid growth and the production of highly pigmented teliospore-like structures in culture. In this study, we analyzed the transcriptome of a ust1 deletion mutant and functionally characterized two highly upregulated genes with potential roles in melanin biosynthesis: um05361, encoding a putative laccase (lac1), and um06414, encoding a polyketide synthase (pks1). The Δlac1 mutant strains showed dramatically reduced virulence on maize seedlings and fewer, less-pigmented teliospores in adult plants. The Δpks1 mutant was unaffected in seedling virulence but adult plant tumors generated hyaline, nonmelanized teliospores. Thus, whereas pks1 appeared to be restricted to the synthesis of melanin, lac1 showed a broader role in virulence. In conclusion, the ust1 deletion mutant provided an in vitro model for sporulation in U. maydis, and functional analysis supports the efficacy of this in vitro mutant analysis for identification of genes involved in in planta teliosporogenesis.
Collapse
|
15
|
Dolezal AL, Obrian GR, Nielsen DM, Woloshuk CP, Boston RS, Payne GA. Localization, morphology and transcriptional profile of Aspergillus flavus during seed colonization. MOLECULAR PLANT PATHOLOGY 2013; 14:898-909. [PMID: 23834374 PMCID: PMC6638638 DOI: 10.1111/mpp.12056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aspergillus flavus is an opportunistic fungal pathogen that infects maize kernels pre-harvest, creating major human health concerns and causing substantial agricultural losses. Improved control strategies are needed, yet progress is hampered by the limited understanding of the mechanisms of infection. A series of studies were designed to investigate the localization, morphology and transcriptional profile of A. flavus during internal seed colonization. Results from these studies indicate that A. flavus is capable of infecting all tissues of the immature kernel by 96 h after infection. Mycelia were observed in and around the point of inoculation in the endosperm and were found growing down to the germ. At the endosperm-germ interface, hyphae appeared to differentiate and form a biofilm-like structure that surrounded the germ. The exact nature of this structure remains unclear, but is discussed. A custom-designed A. flavus Affymetrix GeneChip® microarray was used to monitor genome-wide transcription during pathogenicity. A total of 5061 genes were designated as being differentially expressed. Genes encoding secreted enzymes, transcription factors and secondary metabolite gene clusters were up-regulated and considered to be potential effector molecules responsible for disease in the kernel. Information gained from this study will aid in the development of strategies aimed at preventing or slowing down A. flavus colonization of the maize kernel.
Collapse
Affiliation(s)
- Andrea L Dolezal
- Department of Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | | | | | |
Collapse
|