1
|
Chen S, Li P, Abubakar YS, Lü P, Li Y, Mao X, Zhang C, Zheng W, Wang Z, Lu GD, Zheng H. A feedback regulation of FgHtf1-FgCon7 loop in conidiogenesis and development of Fusarium graminearum. Int J Biol Macromol 2024; 261:129841. [PMID: 38309401 DOI: 10.1016/j.ijbiomac.2024.129841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The transcription factor FgHtf1 is important for conidiogenesis in Fusarium graminearum and it positively regulates the expression of the sporulation-related gene FgCON7. However, the regulatory mechanism underlying its functions is still unclear. The present study intends to uncover the functional mechanism of FgHtf1 in relation to FgCon7 in F. graminearum. We demonstrated that FgCON7 serves as a target gene for FgHtf1. Interestingly, FgCon7 also binds the promoter region of FgHTF1 to negatively regulate its expression, thus forming a negative-feedback loop. We demonstrated that FgHtf1 and FgCon7 have functional redundancy in fungal development. FgCon7 localizes in the nucleus and has transcriptional activation activity. Deletion of FgCON7 significantly reduces conidia production. 4444 genes were regulated by FgCon7 in ChIP-Seq, and RNA-Seq revealed 4430 differentially expressed genes in FgCON7 deletion mutant, with CCAAT serving as a consensus binding motif of FgCon7 to the target genes. FgCon7 directly binds the promoter regions of FgMSN2, FgABAA, FgVEA and FgSMT3 genes and regulates their expression. These genes were found to be important for conidiogenesis. To our knowledge, this is the first study that unveiled the mutual regulatory functions of FgCON7 and FgHTF1 to form a negative-feedback loop, and how the loop mediates sporulation in F. graminearum.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Pengfang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810281, Nigeria
| | - Peitao Lü
- College of Horticulture, Center for Plant Metabolomics, Haixia lnstitute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yulong Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xuzhao Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Chengkang Zhang
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Huawei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Carreras-Villaseñor N, Martínez-Rodríguez LA, Ibarra-Laclette E, Monribot-Villanueva JL, Rodríguez-Haas B, Guerrero-Analco JA, Sánchez-Rangel D. The biological relevance of the FspTF transcription factor, homologous of Bqt4, in Fusarium sp. associated with the ambrosia beetle Xylosandrus morigerus. Front Microbiol 2023; 14:1224096. [PMID: 37520351 PMCID: PMC10375492 DOI: 10.3389/fmicb.2023.1224096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in Fusarium sp. isolated from the ambrosia beetle Xylosandrus morigerus through the characterization of a CRISPR/Cas9 edited strain in Fsptf. The phenotypic analysis revealed that TF65-6, the edited strain, modified its mycelia growth and conidia production, exhibited affectation in mycelia and culture pigmentation, and in the response to certain stress conditions. In addition, the plant infection process was compromised. Untargeted metabolomic and transcriptomic analysis, clearly showed that FspTF may regulate secondary metabolism, transmembrane transport, virulence, and diverse metabolic pathways such as lipid metabolism, and signal transduction. These data highlight for the first time the biological relevance of an orthologue of Bqt4 in Fusarium sp. associated with an ambrosia beetle.
Collapse
Affiliation(s)
- Nohemí Carreras-Villaseñor
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Luis A. Martínez-Rodríguez
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio de Genómica y Transcriptómica, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Juan L. Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - José A. Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Diana Sánchez-Rangel
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigadora Por Mexico-CONAHCyT, Xalapa, Mexico
| |
Collapse
|
3
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
4
|
Xu X, Zhu F, Zhu Y, Li Y, Zhou H, Chen S, Ruan J. Transcriptome profiling of transcription factors in Ganoderma lucidum in response to methyl jasmonate. Front Microbiol 2022; 13:1052377. [PMID: 36504766 PMCID: PMC9730249 DOI: 10.3389/fmicb.2022.1052377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ganoderma lucidum is a traditional Chinese medicine and its major active ingredients are ganoderma triterpenoids (GTs). To screen for transcription factors (TFs) that involved in the biosynthetic pathway of GTs in G. lucidum, the chemical composition in mycelia, primordium and fruiting body were analyzed, and the transcriptomes of mycelia induced by methyl jasmonate (MeJA) were analyzed. In addition, the expression level data of MeJA-responsive TFs in mycelia, primordia and fruiting body were downloaded from the database, and the correlation analysis was carried out between their expression profiles and the content of total triterpenoids. The results showed that a total of 89 components were identified, and the content of total triterpenoids was the highest in primordium, followed by fruiting body and mycelia. There were 103 differentially expressed TFs that response to MeJA-induction including 95 upregulated and 8 downregulated genes. These TFs were classified into 22 families including C2H2 (15), TFII-related (12), HTH (9), fungal (8), bZIP (6), HMG (5), DADS (2), etc. Correlation analysis showed that the expression level of GL23559 (MADS), GL26472 (HTH), and GL31187 (HMG) showed a positive correlation with the GTs content, respectively. While the expression level of GL25628 (fungal) and GL26980 (PHD) showed a negative correlation with the GTs content, respectively. Furthermore, the over expression of the Glmhr1 gene (GL25628) in Pichia pastoris GS115 indicated that it might be a negative regulator of GT biosynthesis through decreasing the production of lanosterol. This study provided useful information for a better understanding of the regulation of TFs involved in GT biosynthesis and fungal growth in G. lucidum.
Collapse
Affiliation(s)
- Xiaolan Xu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengli Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuxuan Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
5
|
Chen JF, Liu Y, Tang GR, Jin D, Chen X, Pei Y, Fan YH. The secondary metabolite regulator, BbSmr1, is a central regulator of conidiation via the BrlA-AbaA-WetA pathway in Beauveria bassiana. Environ Microbiol 2020; 23:810-825. [PMID: 32691932 DOI: 10.1111/1462-2920.15155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 01/21/2023]
Abstract
The filamentous fungus Beauveria bassiana, an insect fungal pathogen, is widely used for pest biocontrol. Aerial conidia are infectious propagules, and their yield and viability greatly affect the field application of this fungus; however, little is known about the molecular regulatory mechanism of the triggered conidiation. In the present study, we find that the secondary metabolite regulator BbSmr1 is involved in the regulation of asexual conidiation development and stress response in B. bassiana. A deficiency in Bbsmr1 results in a prominent fluffy-like phenotype on solid medium, decreased conidial yield, accelerated conidial germination, as well as increased tolerance to H2 O2 stress and cell wall inhibitors. The deletion of Bbsmr1 also leads to thickened conidial cell walls and changed cell epitopes. Overexpressing either BbbrlA or BbabaA in the ∆Bbsmr1 strain can rescue the phenotypes of conidial development and stress response. BbSmr1 activates BbbrlA transcription by directly binding to the A4GA3 sequence of the BbbrlA promoter. BbBrlA in turn binds to the promoter of Bbsmr1 and negatively regulates the expression of Bbsmr1. These results indicate that BbSmr1 positively regulates conidial development in B. bassiana by activating the central development pathway BrlA-AbaA-WetA and provides insights into the developmental regulatory mechanism of entomopathogenic fungi.
Collapse
Affiliation(s)
- Jin-Feng Chen
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Chongqing, 400716, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, China
| | - Yu Liu
- College of Biotechnology, Southwest University, Beibei, Chongqing, 400716, China
| | - Gui-Rong Tang
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Dan Jin
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Xi Chen
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Yan Pei
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Yan-Hua Fan
- State Key Laboratory of Silkworm Genome Biology, Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| |
Collapse
|
6
|
Rath M, Crenshaw NJ, Lofton LW, Glenn AE, Gold SE. FvSTUA is a Key Regulator of Sporulation, Toxin Synthesis, and Virulence in Fusarium verticillioides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:958-971. [PMID: 32293993 DOI: 10.1094/mpmi-09-19-0271-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium verticillioides is one of the most important pathogens of maize, causing rot and producing fumonisin mycotoxins during infection. Ingestion of fumonisin-contaminated corn causes underperformance and even fatal toxicity in livestock and is associated with neural tube birth defects, growth stunting in children, and some cancers. StuA, an APSES-class transcription factor, is a major developmental transcriptional regulator in fungi. It has been shown to regulate crucial developmental processes, such as sporulation, virulence, and mycotoxin synthesis among others. In this study, the role of FvSTUA in F. verticillioides was examined by characterizing ∆FvstuA deletion mutants functionally and transcriptomally. The deletion mutants exhibited reduced vegetative growth, stunted aerial hyphae, and significant reductions in microconidiation. Macroconidiation and hydrophobicity of the deletion strains were reduced as well. Additionally, fumonisin production and virulence of the deletion mutants were greatly reduced. Transcriptomic analysis revealed downregulation of expression of several genes in the fumonisin and fusarin C biosynthetic clusters and differential expression of genes involved in conidiation and virulence. Nuclear localization of FvSTUA supported its likely function as a transcription factor. Together, our results indicate that FvSTUA plays a global role in transcriptional regulation in F. verticillioides influencing morphogenesis, toxin production, and virulence.
Collapse
Affiliation(s)
- M Rath
- Department of Plant Pathology, University of Georgia, Athens, GA, U.S.A
| | - N J Crenshaw
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - L W Lofton
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - A E Glenn
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| | - S E Gold
- USDA, ARS, US National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, U.S.A
| |
Collapse
|
7
|
Fan CL, Han LT, Jiang ST, Chang AN, Zhou ZY, Liu TB. The Cys 2His 2 zinc finger protein Zfp1 regulates sexual reproduction and virulence in Cryptococcus neoformans. Fungal Genet Biol 2019; 124:59-72. [PMID: 30630094 DOI: 10.1016/j.fgb.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is a ubiquitous yeast pathogen that often infects the human central nervous system (CNS) to cause meningitis in immunocompromised individuals. Although numerous signaling pathways and factors important for fungal sexual reproduction and virulence have been investigated, their precise mechanism of action remains to be further elucidated. In this study, we identified and characterized a novel zinc finger protein Zfp1 that regulates fungal sexual reproduction and virulence in C. neoformans. qRT-PCR and ZFP1 promoter regulatory activity assays revealed a ubiquitous expression pattern of ZFP1 in all stages during mating. Subcellular localization analysis indicates that Zfp1 is targeted to the cytoplasm of C. neoformans. In vitro assays of stress responses showed that zfp1Δ mutants and the ZFP1 overexpressed strains ZFP1OE are hypersensitive to SDS, but not Congo red, indicating that Zfp1 may regulate cell membrane integrity. Zfp1 is also essential for fungal sexual reproduction because basidiospore production was blocked in bilateral mating between zfp1Δ mutants or ZFP1 overexpressed strains. Fungal nuclei development assay showed that nuclei in the bilateral mating of zfp1Δ mutants or ZFP1 overexpressed strains failed to undergo meiosis after fusion, indicating Zfp1 is important for regulating meiosis during mating. Although zfp1Δ mutants showed normal growth and produced normal major virulence factors, virulence was attenuated in a murine model. Interestingly, we found that the ZFP1 overexpressed strains were avirulent in a murine systemic-infection model. Overall, our study showed that the zinc finger protein Zfp1 is essential for fungal sporulation and virulence in C. neoformans.
Collapse
Affiliation(s)
- Cheng-Li Fan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Lian-Tao Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Su-Ting Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - An-Ni Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Abstract
Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG, NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Heterologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. Investigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. Investigations were made using A. clavatus as a representative 'asexual' species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.
Collapse
|
9
|
Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Blacutt AA, Gold SE, Voss KA, Gao M, Glenn AE. Fusarium verticillioides: Advancements in Understanding the Toxicity, Virulence, and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize. PHYTOPATHOLOGY 2018; 108:312-326. [PMID: 28971734 DOI: 10.1094/phyto-06-17-0203-rvw] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of understanding the biology of the mycotoxigenic fungus Fusarium verticillioides and its various microbial and plant host interactions is critical given its threat to maize, one of the world's most valuable food crops. Disease outbreaks and mycotoxin contamination of grain threaten economic returns and have grave implications for human and animal health and food security. Furthermore, F. verticillioides is a member of a genus of significant phytopathogens and, thus, data regarding its host association, biosynthesis of secondary metabolites, and other metabolic (degradative) capabilities are consequential to both basic and applied research efforts across multiple pathosystems. Notorious among its secondary metabolites are the fumonisin mycotoxins, which cause severe animal diseases and are implicated in human disease. Additionally, studies of these mycotoxins have led to new understandings of F. verticillioides plant pathogenicity and provide tools for research into cellular processes and host-pathogen interaction strategies. This review presents current knowledge regarding several significant lines of F. verticillioides research, including facets of toxin production, virulence, and novel fitness strategies exhibited by this fungus across rhizosphere and plant environments.
Collapse
Affiliation(s)
- Alex A Blacutt
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| | - Scott E Gold
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| | - Kenneth A Voss
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| | - Minglu Gao
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| | - Anthony E Glenn
- First and fourth authors: Department of Plant Pathology, University of Georgia, Athens 30602; and second, third, and fifth authors: United States Department of Agriculture-Agricultural Research Service, U.S. National Poultry Research Center, Toxicology and Mycotoxin Research Unit, Athens, GA 30605-2720
| |
Collapse
|
11
|
Boni AC, Ambrósio DL, Cupertino FB, Montenegro-Montero A, Virgilio S, Freitas FZ, Corrocher FA, Gonçalves RD, Yang A, Weirauch MT, Hughes TR, Larrondo LF, Bertolini MC. Neurospora crassa developmental control mediated by the FLB-3 transcription factor. Fungal Biol 2018; 122:570-582. [PMID: 29801802 DOI: 10.1016/j.funbio.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 10/17/2022]
Abstract
Here, we report that the Neurospora crassa FLB-3 protein, the ortholog of the Aspergillus nidulans FlbC transcription factor, is required for developmental control. Deletion of flb-3 leads to changes in hyphae morphology and affects sexual and asexual development. We identified, as putative FLB-3 targets, the N. crassa aba-1, wet-1 and vos-1 genes, orthologs of the ones involved in A. nidulans asexual development and that work downstream of FlbC (abaA, wetA and vosA). In N. crassa, these three genes require FLB-3 for proper expression; however, they appear not to be required for normal development, as demonstrated by gene expression analyses during vegetative growth and asexual development. Moreover, mutant strains in the three genes conidiate well and produce viable conidia. We also determined FLB-3 DNA-binding preferences via protein-binding microarrays (PBMs) and demonstrated by chromatin immunoprecipitation (ChIP) that FLB-3 binds the aba-1, wet-1 and vos-1 promoters. Our data support an important role for FLB-3 in N. crassa development and highlight differences between the regulatory pathways controlled by this transcription factor in different fungal species.
Collapse
Affiliation(s)
- Ana Carolina Boni
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Daniela Luz Ambrósio
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Fernanda Barbosa Cupertino
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Alejandro Montenegro-Montero
- Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Stela Virgilio
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Flávia Adolfo Corrocher
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Rodrigo Duarte Gonçalves
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Ally Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Canadian Institutes for Advanced Research, Toronto, ON, Canada
| | - Luis F Larrondo
- Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Ridenour JB, Bluhm BH. The novel fungal-specific gene FUG1 has a role in pathogenicity and fumonisin biosynthesis in Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2017; 18:513-528. [PMID: 27071505 PMCID: PMC6638258 DOI: 10.1111/mpp.12414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 05/05/2023]
Abstract
Fusarium verticillioides is a globally important pathogen of maize, capable of causing severe yield reductions and economic losses. In addition, F. verticillioides produces toxic secondary metabolites during kernel colonization that pose significant threats to human and animal health. Fusarium verticillioides and other plant-pathogenic fungi possess a large number of genes with no known or predicted function, some of which could encode novel virulence factors or antifungal targets. In this study, we identified and characterized the novel gene FUG1 (Fungal Unknown Gene 1) in F. verticillioides through functional genetics. Deletion of FUG1 impaired maize kernel colonization and fumonisin biosynthesis. In addition, deletion of FUG1 increased sensitivity to the antimicrobial compound 2-benzoxazolinone and to hydrogen peroxide, which indicates that FUG1 may play a role in mitigating stresses associated with host defence. Transcriptional profiling via RNA-sequencing (RNA-seq) identified numerous fungal genes that were differentially expressed in the kernel environment following the deletion of FUG1, including genes involved in secondary metabolism and mycelial development. Sequence analysis of the Fug1 protein provided evidence for nuclear localization, DNA binding and a domain of unknown function associated with previously characterized transcriptional regulators. This information, combined with the observed transcriptional reprogramming in the deletion mutant, suggests that FUG1 represents a novel class of fungal transcription factors or genes otherwise involved in signal transduction.
Collapse
Affiliation(s)
- John B. Ridenour
- Department of Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleAR 72701USA
| | - Burton H. Bluhm
- Department of Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleAR 72701USA
| |
Collapse
|
13
|
Rösler SM, Kramer K, Finkemeier I, Humpf HU, Tudzynski B. The SAGA complex in the rice pathogenFusarium fujikuroi: structure and functional characterization. Mol Microbiol 2016; 102:951-974. [DOI: 10.1111/mmi.13528] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah M. Rösler
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster; Corrensstraße 45 Münster 48149 Germany
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster; Schlossplatz 7/8 Münster 48143 Germany
| | - Katharina Kramer
- Max Planck Institute for Plant Breeding Research, Plant Proteomics Group; Carl-von-Linne-Weg 10 Cologne 50829 Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster; Schlossplatz 7/8 Münster 48143 Germany
- Max Planck Institute for Plant Breeding Research, Plant Proteomics Group; Carl-von-Linne-Weg 10 Cologne 50829 Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster; Corrensstraße 45 Münster 48149 Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster; Schlossplatz 7/8 Münster 48143 Germany
| |
Collapse
|