1
|
Maciszewski K, Dabbagh N, Preisfeld A, Karnkowska A. Maturyoshka: a maturase inside a maturase, and other peculiarities of the novel chloroplast genomes of marine euglenophytes. Mol Phylogenet Evol 2022; 170:107441. [DOI: 10.1016/j.ympev.2022.107441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
|
2
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
3
|
Megarioti AH, Kouvelis VN. The Coevolution of Fungal Mitochondrial Introns and Their Homing Endonucleases (GIY-YIG and LAGLIDADG). Genome Biol Evol 2021; 12:1337-1354. [PMID: 32585032 PMCID: PMC7487136 DOI: 10.1093/gbe/evaa126] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Fungal mitochondrial (mt) genomes exhibit great diversity in size which is partially attributed to their variable intergenic regions and most importantly to the inclusion of introns within their genes. These introns belong to group I or II, and both of them are self-splicing. The majority of them carry genes encoding homing endonucleases, either LAGLIDADG or GIY-YIG. In this study, it was found that these intronic homing endonucleases genes (HEGs) may originate from mt free-standing open reading frames which can be found nowadays in species belonging to Early Diverging Fungi as “living fossils.” A total of 487 introns carrying HEGs which were located in the publicly available mt genomes of representative species belonging to orders from all fungal phyla was analyzed. Their distribution in the mt genes, their insertion target sequence, and the phylogenetic analyses of the HEGs showed that these introns along with their HEGs form a composite structure in which both selfish elements coevolved. The invasion of the ancestral free-standing HEGs in the introns occurred through a perpetual mechanism, called in this study as “aenaon” hypothesis. It is based on recombination, transpositions, and horizontal gene transfer events throughout evolution. HEGs phylogenetically clustered primarily according to their intron hosts and secondarily to the mt genes carrying the introns and their HEGs. The evolutionary models created revealed an “intron-early” evolution which was enriched by “intron-late” events through many different independent recombinational events which resulted from both vertical and horizontal gene transfers.
Collapse
Affiliation(s)
- Amalia H Megarioti
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
4
|
Zumkeller S, Gerke P, Knoop V. A functional twintron, 'zombie' twintrons and a hypermobile group II intron invading itself in plant mitochondria. Nucleic Acids Res 2020; 48:2661-2675. [PMID: 31915815 PMCID: PMC7049729 DOI: 10.1093/nar/gkz1194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
The occurrence of group II introns in plant mitochondrial genomes is strikingly different between the six major land plant clades, contrasting their highly conserved counterparts in chloroplast DNA. Their present distribution likely reflects numerous ancient intron gains and losses during early plant evolution before the emergence of seed plants. As a novelty for plant organelles, we here report on five cases of twintrons, introns-within-introns, in the mitogenomes of lycophytes and hornworts. An internal group II intron interrupts an intron-borne maturase of an atp9 intron in Lycopodiaceae, whose splicing precedes splicing of the external intron. An invasive, hypermobile group II intron in cox1, has conquered nine further locations including a previously overlooked sdh3 intron and, most surprisingly, also itself. In those cases, splicing of the external introns does not depend on splicing of the internal introns. Similar cases are identified in the mtDNAs of hornworts. Although disrupting a group I intron-encoded protein in one case, we could not detect splicing of the internal group II intron in this ‘mixed’ group I/II twintron. We suggest the name ‘zombie’ twintrons (half-dead, half-alive) for such cases where splicing of external introns does not depend any more on prior splicing of fossilized internal introns.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Philipp Gerke
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
5
|
Guha TK, Wai A, Mullineux ST, Hausner G. The intron landscape of the mtDNA cytb gene among the Ascomycota: introns and intron-encoded open reading frames. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:1015-1024. [DOI: 10.1080/24701394.2017.1404042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tuhin K. Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Bilto IM, Guha TK, Wai A, Hausner G. Three new active members of the I-OnuI family of homing endonucleases. Can J Microbiol 2017; 63:671-681. [PMID: 28414922 DOI: 10.1139/cjm-2017-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vitro characterization of 3 LAGLIDADG-type homing endonucleases (HEs) (I-CcaI, I-CcaII, and I-AstI) that belong to the I-OnuI family showed that they are functional HEs that cleave their respective cognate target sites. These endonucleases are encoded within group ID introns and appear to be orthologues that have inserted into 3 different mitochondrial genes: rns, rnl, and cox3. The endonuclease activity of I-CcaI was tested using various substrates, and its minimum DNA recognition sequence was estimated to be 26 nt. This set of HEs may provide some insight into how these types of mobile elements can migrate into new locations. This study provides additional endonucleases that can be added to the catalog of currently available HEs that may have various biotechnology applications.
Collapse
Affiliation(s)
- Iman M Bilto
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Tuhin K Guha
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Guha TK, Wai A, Hausner G. Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Comput Struct Biotechnol J 2017; 15:146-160. [PMID: 28179977 PMCID: PMC5279741 DOI: 10.1016/j.csbj.2016.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
Abstract
Targeted genome editing has become a powerful genetic tool for studying gene function or for modifying genomes by correcting defective genes or introducing genes. A variety of reagents have been developed in recent years that can generate targeted double-stranded DNA cuts which can be repaired by the error-prone, non-homologous end joining repair system or via the homologous recombination-based double-strand break repair pathway provided a suitable template is available. These genome editing reagents require components for recognizing a specific DNA target site and for DNA-cleavage that generates the double-stranded break. In order to reduce potential toxic effects of genome editing reagents, it might be desirable to control the in vitro or in vivo activity of these reagents by incorporating regulatory switches that can reduce off-target activities and/or allow for these reagents to be turned on or off. This review will outline the various genome editing tools that are currently available and describe the strategies that have so far been employed for regulating these editing reagents. In addition, this review will examine potential regulatory switches/strategies that can be employed in the future in order to provide temporal control for these reagents.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
8
|
Guha TK, Hausner G. Insertion of Group II Intron-Based Ribozyme Switches into Homing Endonuclease Genes. Methods Mol Biol 2017; 1498:135-152. [PMID: 27709573 DOI: 10.1007/978-1-4939-6472-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing, targeted mutagenesis and gene therapy applications. Herein, we present strategies where homing endonuclease open reading frames (HEases ORFs) are interrupted with group II intron sequences. The ultimate goal is to achieve in vivo expression of HEases that can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. That addition of exogenous magnesium chloride (MgCl2) appears to stimulate splicing of nonnative group II introns in Escherichia coli and the addition of cobalt chloride (CoCl2) to the growth medium antagonizes the expression of HEase activity (i.e., splicing). Group II introns are potentially autocatalytic self-splicing elements and thus can be used as molecular switches that allow for temporal regulated HEase expression. This should be useful in precision genome engineering, mutagenesis, and minimizing off-target activities.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, 401 University of Manitoba, Buller Building 213, Winnipeg, MB, Canada, R3T 2N2
| | - Georg Hausner
- Department of Microbiology, 401 University of Manitoba, Buller Building 213, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
9
|
Abstract
Introns inserted within introns are commonly referred to as twintrons, however the original definition for twintron implied that splicing of the external member of the twintron could only proceed upon splicing of the internal member. This review examines the various types of twintron-like arrangements that have been reported and assigns them to either nested or twintron categories that are subdivided further into subtypes based on differences of their mode of splicing. Twintron-like arrangements evolved independently by fortuitous events among different types of introns but once formed they offer opportunities for the evolution of new regulatory strategies and/or novel genetic elements.
Collapse
Affiliation(s)
- Mohamed Hafez
- a Department of Biochemistry ; Faculty of Medicine; University of Montreal ; Montréal , QC Canada.,b Department of Botany and Microbiology ; Faculty of Science; Suez University ; Suez , Egypt
| | - Georg Hausner
- c Department of Microbiology ; University of Manitoba ; Winnipeg , MB Canada
| |
Collapse
|
10
|
Guha TK, Hausner G. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease. PLoS One 2016; 11:e0150097. [PMID: 26909494 PMCID: PMC4801052 DOI: 10.1371/journal.pone.0150097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/09/2016] [Indexed: 01/09/2023] Open
Abstract
In Chaetomium thermophilum (DSM 1495) within the mitochondrial DNA (mtDNA) small ribosomal subunit (rns) gene a group IIA1 intron interrupts an open reading frame (ORF) encoded within a group I intron (mS1247). This arrangement offers the opportunity to examine if the nested group II intron could be utilized as a regulatory element for the expression of the homing endonuclease (HEase). Constructs were generated where the codon-optimized ORF was interrupted with either the native group IIA1 intron or a group IIB type intron. This study showed that the expression of the HEase (in vivo) in Escherichia coli can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. Exogenous magnesium chloride (MgCl2) stimulated the expression of a functional HEase but the addition of cobalt chloride (CoCl2) to growth media antagonized the expression of HEase activity. Ultimately the ability to attenuate HEase activity might be useful in precision genome engineering, minimizing off target activities, or where pathways have to be altered during a specific growth phase.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
11
|
Sequential splicing of a group II twintron in the marine cyanobacterium Trichodesmium. Sci Rep 2015; 5:16829. [PMID: 26577185 PMCID: PMC4649490 DOI: 10.1038/srep16829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/20/2015] [Indexed: 01/05/2023] Open
Abstract
The marine cyanobacterium Trichodesmium is unusual in its genomic architecture as 40% of the genome is occupied by non-coding DNA. Although the majority of it is transcribed into RNA, it is not well understood why such a large non-coding genome fraction is maintained. Mobile genetic elements can contribute to genome expansion. Many bacteria harbor introns whereas twintrons, introns-in-introns, are rare and not known to interrupt protein-coding genes in bacteria. Here we show the sequential in vivo splicing of a 5400 nt long group II twintron interrupting a highly conserved gene that is associated with RNase HI in some cyanobacteria, but free-standing in others, including Trichodesmium erythraeum. We show that twintron splicing results in a putatively functional mRNA. The full genetic arrangement was found conserved in two geospatially distinct metagenomic datasets supporting its functional relevance. We further show that splicing of the inner intron yields the free intron as a true circle. This reaction requires the spliced exon reopening (SER) reaction to provide a free 5′ exon. The fact that Trichodesmium harbors a functional twintron fits in well with the high intron load of these genomes, and suggests peculiarities in its genetic machinery permitting such arrangements.
Collapse
|
12
|
Hafez M, Guha TK, Hausner G. I-OmiI and I-OmiII: two intron-encoded homing endonucleases within the Ophiostoma minus rns gene. Fungal Biol 2014; 118:721-31. [PMID: 25110134 DOI: 10.1016/j.funbio.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
The mitochondrial small subunit ribosomal RNA (rns) gene of the ascomycetous fungus Ophiostoma minus [strain WIN(M)371] was found to contain a group IC2 and a group IIB1 intron at positions mS569 and mS952 respectively. Both introns have open reading frames (ORFs) embedded that encode double motif LAGLIDADG homing endonucleases (I-OmiI and I-OmiII respectively). Codon-optimized versions of I-OmiI and I-OmiII were synthesized for overexpression in Escherichia coli. The in vitro characterization of I-OmiII showed that it is a functional homing endonuclease that cleaves the rns target site two nucleotides upstream (sense strand) of the intron insertion site generating 4 nucleotide 3' overhangs. The endonuclease activity of I-OmiII was tested using linear and circular substrates and cleavage activity was evaluated at various temperatures. The I-OmiI protein was expressed in E. coli, but purification was difficult, thus the endonuclease activity of this protein was tested via in vivo assays. Overall this study showed that there are many native forms of functional homing endonucleases yet to be discovered among fungal mtDNA genomes.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|