1
|
Liu J, Shamoun SF, Leal I, Kowbel R, Sumampong G, Zamany A. Characterization of Heterobasidion occidentale transcriptomes reveals candidate genes and DNA polymorphisms for virulence variations. Microb Biotechnol 2018; 11:537-550. [PMID: 29611344 PMCID: PMC5954486 DOI: 10.1111/1751-7915.13259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/29/2022] Open
Abstract
Characterization of genes involved in differentiation of pathogen species and isolates with variations of virulence traits provides valuable information to control tree diseases for meeting the challenges of sustainable forest health and phytosanitary trade issues. Lack of genetic knowledge and genomic resources hinders novel gene discovery, molecular mechanism studies and development of diagnostic tools in the management of forest pathogens. Here, we report on transcriptome profiling of Heterobasidion occidentale isolates with contrasting virulence levels. Comparative transcriptomic analysis identified orthologous groups exclusive to H. occidentale and its isolates, revealing biological processes involved in the differentiation of isolates. Further bioinformatics analyses identified an H. occidentale secretome, CYPome and other candidate effectors, from which genes with species- and isolate-specific expression were characterized. A large proportion of differentially expressed genes were revealed to have putative activities as cell wall modification enzymes and transcription factors, suggesting their potential roles in virulence and fungal pathogenesis. Next, large numbers of simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were detected, including more than 14 000 interisolate non-synonymous SNPs. These polymorphic loci and species/isolate-specific genes may contribute to virulence variations and provide ideal DNA markers for development of diagnostic tools and investigation of genetic diversity.
Collapse
Affiliation(s)
- Jun‐Jun Liu
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Simon Francis Shamoun
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Isabel Leal
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Robert Kowbel
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Grace Sumampong
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Arezoo Zamany
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| |
Collapse
|
2
|
Wilson AM, van der Nest MA, Wilken PM, Wingfield MJ, Wingfield BD. Pheromone expression reveals putative mechanism of unisexuality in a saprobic ascomycete fungus. PLoS One 2018; 13:e0192517. [PMID: 29505565 PMCID: PMC5837088 DOI: 10.1371/journal.pone.0192517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Homothallism (self-fertility) describes a wide variety of sexual strategies that enable a fungus to reproduce in the absence of a mating partner. Unisexual reproduction, a form of homothallism, is a process whereby a fungus can progress through sexual reproduction in the absence of mating genes previously considered essential for self-fertility. In this study, we consider the molecular mechanisms that allow for this unique sexual behaviour in the saprotrophic ascomycete; Huntiella moniliformis. These molecular mechanisms are also compared to the underlying mechanisms that control sex in Huntiella omanensis, a closely related, but self-sterile, species. The main finding was that H. omanensis displayed mating-type dependent expression of the a- and α-pheromones. This was in contrast to H. moniliformis where both pheromones were co-expressed during vegetative growth and sexual development. Furthermore, H. moniliformis also expressed the receptors of both pheromones. Consequently, this fungus is likely able to recognize and respond to the endogenously produced pheromones, allowing for self-fertility in the absence of other key mating genes. Overall, these results are concomitant with those reported for other unisexual species, but represent the first detailed study considering the unisexual behaviour of a filamentous fungus.
Collapse
Affiliation(s)
- Andi M. Wilson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- * E-mail:
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Choi J, Lee GW, Kim KT, Jeon J, Détry N, Kuo HC, Sun H, Asiegbu FO, Lee YH. Comparative analysis of genome sequences of the conifer tree pathogen, Heterobasidion annosum s.s. GENOMICS DATA 2017; 14:106-113. [PMID: 29085779 PMCID: PMC5654758 DOI: 10.1016/j.gdata.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 01/09/2023]
Abstract
The causal agent of root and butt rot of conifer trees, Heterobasidion annosum, is widespread in boreal forests and economically responsible for annual loss of approximately 50 million euros to forest industries in Finland alone and much more at European level. In order to further understand the pathobiology of this fungus at the genome level, a Finnish isolate of H. annosum sensu stricto (isolate 03012) was sequenced and analyzed with the genome sequences of 23 white-rot and 13 brown-rot fungi. The draft genome assembly of H. annosum has a size of 31.01 Mb, containing 11,453 predicted genes. Whole genome alignment showed that 84.38% of H. annosum genome sequences were aligned with those of previously sequenced H. irregulare TC 32-1 counterparts. The result is further supported by the protein sequence clustering analysis which revealed that the two genomes share 6719 out of 8647 clusters. When sequencing reads of H. annosum were aligned against the genome sequences of H. irregulare, six single nucleotide polymorphisms were found in every 1 kb, on average. In addition, 98.68% of SNPs were found to be homo-variants, suggesting that the two species have long evolved from different niches. Gene family analysis revealed that most of the white-rot fungi investigated had more gene families involved in lignin degradation or modification, including laccases and peroxidase. Comparative analysis of the two Heterobasidion spp. as well as white-/brown-rot fungi would provide new insights for understanding the pathobiology of the conifer tree pathogen.
Collapse
Affiliation(s)
- Jaeyoung Choi
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Gir-Won Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongbum Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nicolas Détry
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Hsiao-Che Kuo
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Hui Sun
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Yong-Hwan Lee
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland.,Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.,Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Abstract
Background Regulation mechanisms between miRNAs and genes are complicated. To accomplish a biological function, a miRNA may regulate multiple target genes, and similarly a target gene may be regulated by multiple miRNAs. Wet-lab knowledge of co-regulating miRNAs is limited. This work introduces a computational method to group miRNAs of similar functions to identify co-regulating miRNAsfrom a similarity matrix of miRNAs. Results We define a novel information content of gene ontology (GO) to measure similarity between two sets of GO graphs corresponding to the two sets of target genes of two miRNAs. This between-graph similarity is then transferred as a functional similarity between the two miRNAs. Our definition of the information content is based on the size of a GO term’s descendants, but adjusted by a weight derived from its depth level and the GO relationships at its path to the root node or to the most informative common ancestor (MICA). Further, a self-tuning technique and the eigenvalues of the normalized Laplacian matrix are applied to determine the optimal parameters for the spectral clustering of the similarity matrix of the miRNAs. Conclusions Experimental results demonstrate that our method has better clustering performance than the existing edge-based, node-based or hybrid methods. Our method has also demonstrated a novel usefulness for the function annotation of new miRNAs, as reported in the detailed case studies.
Collapse
|
5
|
Mgbeahuruike AC, Kovalchuk A, Ubhayasekera W, Nelson DR, Yadav JS. CYPome of the conifer pathogen Heterobasidion irregulare: Inventory, phylogeny, and transcriptional analysis of the response to biocontrol. Fungal Biol 2016; 121:158-171. [PMID: 28089047 DOI: 10.1016/j.funbio.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/25/2016] [Accepted: 11/26/2016] [Indexed: 01/16/2023]
Abstract
The molecular mechanisms underlying the interaction of the pathogen, Heterobasidion annosum s.l., the conifer tree and the biocontrol fungus, Phlebiopsis gigantea have not been fully elucidated. Members of the cytochrome P450 (CYP) protein family may contribute to the detoxification of components of chemical defence of conifer trees by H. annosum during infection. Additionally, they may also be involved in the interaction between H. annosum and P. gigantea. A genome-wide analysis of CYPs in Heterobasidion irregulare was carried out alongside gene expression studies. According to the Standardized CYP Nomenclature criteria, the H. irregulare genome has 121 CYP genes and 17 CYP pseudogenes classified into 11 clans, 35 families, and 64 subfamilies. Tandem CYP arrays originating from gene duplications and belonging to the same family and subfamily were found. Phylogenetic analysis showed that all the families of H. irregulare CYPs were monophyletic groups except for the family CYP5144. Microarray analysis revealed the transcriptional pattern for 130 transcripts of CYP-encoding genes during growth on culture filtrate produced by P. gigantea. The high level of P450 gene diversity identified in this study could result from extensive gene duplications presumably caused by the high metabolic demands of H. irregulare in its ecological niches.
Collapse
Affiliation(s)
- Anthony C Mgbeahuruike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, PMB, 420001, Enugu State, Nigeria; Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, PMB, 420001, Enugu State, Nigeria.
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
| | - Wimal Ubhayasekera
- Structure and Molecular Biology Program, Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Center, SE-751 24, Uppsala, Sweden
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, USA
| | - Jagjit S Yadav
- Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| |
Collapse
|