1
|
Zou S, Ma Y, Zhao L, Chen X, Gao H, Chen J, Xue Y, Zheng Y. Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse. Bioprocess Biosyst Eng 2024; 47:1803-1814. [PMID: 39080012 DOI: 10.1007/s00449-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024]
Abstract
Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yizhi Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lixiang Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaomin Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hailing Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Juan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
2
|
Kumpakha R, Gordon DM. Occidiofungin inhibition of Candida biofilm formation on silicone elastomer surface. Microbiol Spectr 2023; 11:e0246023. [PMID: 37816202 PMCID: PMC10715079 DOI: 10.1128/spectrum.02460-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023] Open
Abstract
IMPORTANCE Candida are opportunistic fungal pathogens with medical relevance given their association with superficial to life-threatening infections. An important component of Candida virulence is the ability to form a biofilm. These structures are highly resistant to antifungal therapies and are often the cause of treatment failure. In this work, we evaluated the efficacy of the antifungal compound, occidiofungin, against Candida biofilms developed on a silicone surface. We demonstrate that occidiofungin eliminated cells at all stages of biofilm formation in a dose-dependent manner. Consistent with our understanding of occidiofungin bioactivity, we noted alterations to actin organization and cell morphology following antifungal exposure. Given the challenges associated with the treatment of biofilm-associated infections, occidiofungin exhibits potential as a therapeutic antifungal agent in the future.
Collapse
Affiliation(s)
- Rabina Kumpakha
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Donna M. Gordon
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
3
|
Basante-Bedoya MA, Bogliolo S, Garcia-Rodas R, Zaragoza O, Arkowitz RA, Bassilana M. Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans. PLoS Genet 2022; 18:e1010549. [PMID: 36516161 PMCID: PMC9797089 DOI: 10.1371/journal.pgen.1010549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.
Collapse
Affiliation(s)
| | | | - Rocio Garcia-Rodas
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Health Institute Carlos III, Madrid, Spain
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- * E-mail:
| |
Collapse
|
4
|
Quintanilha-Peixoto G, Marone MP, Raya FT, José J, Oliveira A, Fonseca PLC, Tomé LMR, Bortolini DE, Kato RB, Araújo DS, De-Paula RB, Cuesta-Astroz Y, Duarte EAA, Badotti F, de Carvalho Azevedo VA, Brenig B, Soares ACF, Carazzolle MF, Pereira GAG, Aguiar ERGR, Góes-Neto A. Phylogenomics and gene selection in Aspergillus welwitschiae: Possible implications in the pathogenicity in Agave sisalana. Genomics 2022; 114:110517. [PMID: 36306958 DOI: 10.1016/j.ygeno.2022.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
Abstract
Aspergillus welwitschiae causes bole rot disease in sisal (Agave sisalana and related species) which affects the production of natural fibers in Brazil, the main worldwide producer of sisal fibers. This fungus is a saprotroph with a broad host range. Previous research established A. welwitschiae as the only causative agent of bole rot in the field, but little is known about the evolution of this species and its strains. In this work, we performed a comparative genomics analysis of 40 Aspergillus strains. We show the conflicting molecular identity of this species, with one sisal-infecting strain sharing its last common ancestor with Aspergillus niger, having diverged only 833 thousand years ago. Furthermore, our analysis of positive selection reveals sites under selection in genes coding for siderophore transporters, Sodium‑calcium exchangers, and Phosphatidylethanolamine-binding proteins (PEBPs). Herein, we discuss the possible impacts of these gene functions on the pathogenicity in sisal.
Collapse
Affiliation(s)
| | - Marina Püpke Marone
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio Trigo Raya
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Juliana José
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Adriele Oliveira
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Dener Eduardo Bortolini
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Bentes Kato
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel S Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, United States
| | - Ruth B De-Paula
- Department of Neurology, Baylor College of Medicine, Houston, United States
| | - Yesid Cuesta-Astroz
- Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Elizabeth A A Duarte
- Centro Universitário Maria Milza, Cruz das Almas, Brazil; Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Federal Center of Technological Education of Minas Gerais, Belo Horizonte, Brazil
| | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Ana Cristina Fermino Soares
- Center of Agricultural, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | - Marcelo Falsarella Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Eric Roberto Guimarães Rocha Aguiar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Center of Biotechnology and Genetics, Department of Biological Science, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Aristóteles Góes-Neto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Long Terminal Repeat Retrotransposon Afut4 Promotes Azole Resistance of Aspergillus fumigatus by Enhancing the Expression of sac1 Gene. Antimicrob Agents Chemother 2021; 65:e0029121. [PMID: 34516252 DOI: 10.1128/aac.00291-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus causes a series of invasive diseases, including the high-mortality invasive aspergillosis, and has been a serious global health threat because of its increased resistance to the first-line clinical triazoles. We analyzed the whole-genome sequence of 15 A. fumigatus strains from China and found that long terminal repeat retrotransposons (LTR-RTs), including Afut1, Afut2, Afut3, and Afut4, are most common and have the largest total nucleotide length among all transposable elements in A. fumigatus. Deleting one of the most enriched Afut4977-sac1 in azole-resistant strains decreased azole resistance and downregulated its nearby gene, sac1, but it did not significantly affect the expression of genes of the ergosterol synthesis pathway. We then discovered that 5'LTR of Afut4977-sac1 had promoter activity and enhanced the adjacent sac1 gene expression. We found that sac1 is important to A. fumigatus, and the upregulated sac1 caused elevated resistance of A. fumigatus to azoles. Finally, we showed that Afut4977-sac1 has an evolution pattern similar to that of the whole genome of azole-resistant strains due to azoles; phylogenetic analysis of both the whole genome and Afut4977-sac1 suggests that the insertion of Afut4977-sac1 might have preceded the emergence of azole-resistant strains. Taking these data together, we found that the Afut4977-sac1 LTR-RT might be involved in the regulation of azole resistance of A. fumigatus by upregulating its nearby sac1 gene.
Collapse
|
6
|
Mao X, Yang L, Liu Y, Ma C, Ma T, Yu Q, Li M. Vacuole and Mitochondria Patch (vCLAMP) Protein Vam6 Is Involved in Maintenance of Mitochondrial and Vacuolar Functions under Oxidative Stress in Candida albicans. Antioxidants (Basel) 2021; 10:antiox10010136. [PMID: 33478009 PMCID: PMC7835768 DOI: 10.3390/antiox10010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Candida albicans is one of the most common opportunistic fungal pathogens in human beings. When infecting host cells, C. albicans is often exposed to oxidative stress from the host immune defense system. Maintenance of mitochondrial and vacuolar functions is crucial for its resistance to oxidative stress. However, the role of vacuole and mitochondria patchs (vCLAMPs) in cellular oxidative stress resistance and in the maintenance of organelle functions remains to be elucidated. Herein, the function of the vCLAMP protein Vam6 in response to oxidative stress was explored. The results showed that the vam6∆/∆ mutant exhibited obvious mitochondrial swelling, mtDNA damage, reduced activity of antioxidant enzymes, and abnormal vacuolar morphology under H2O2 treatment, indicating its important role in maintaining the structures and functions of both mitochondria and vacuoles under oxidative stress. Further studies showed that deletion of VAM6 attenuated hyphal development under oxidative stress. Moreover, loss of Vam6 obviously affected host tissue invasion and virulence of C. albicans. Taken together, this paper reveals the critical role of vCLAMPs in response to oxidative stress in C. albicans.
Collapse
|
7
|
Zhang B, Peng L, Zhu N, Yu Q, Li M. Novel role of the phosphatidylinositol phosphatase Sac1 in membrane homeostasis and polarized growth in Candida albicans. Int J Med Microbiol 2020; 310:151418. [PMID: 32245626 DOI: 10.1016/j.ijmm.2020.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/16/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022] Open
Abstract
Phosphoinositides (PIPs) are one kind of membrane components functioning in many intracellular processes, especially in signaling transduction and membrane transport. Phosphatidylinositide phosphatases (PIPases) are specifically important for the PIP homeostasis in cell. In our previous study, we have identified the actin-related protein CaSac1 in Candida albicans, while its functional mechanisms in regulating membrane homeostasis has not been identified. Here, we show that the PIPase CaSac1 is a main membrane-related protein and regulates hyphal polarization by governing phosphoinositide dynamic and plasma membrane (PM) electrostatic field. Deletion of CaSAC1 resulted in large-scale abnormal redistribution of phosphatidylinositide 4-phosphate (PI4P) from the endomembrane to the PM. This abnormality further led to disturbance of the PM's negative electrostatic field and abnormally spotted distribution of phosphatidylinositide 4,5-bisphosphate (PI(4,5)P2). These changes led to a severe defect in polarized hyphal growth, which could be diminished with recovery of the PM's negative electrostatic field by the anionic polymer polyacrylic acid (PAA). This study revealed that the PIPase CaSac1 plays an essential role in regulating membrane homeostasis and membrane traffic, contributing to establishment of polarized hyphal growth.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Jia X, Zhang X, Hu Y, Hu M, Han X, Sun Y, Han L. Role of Downregulation and Phosphorylation of Cofilin in Polarized Growth, MpkA Activation and Stress Response of Aspergillus fumigatus. Front Microbiol 2018; 9:2667. [PMID: 30455681 PMCID: PMC6230985 DOI: 10.3389/fmicb.2018.02667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus causes most of aspergillosis in clinic and comprehensive function analysis of its key protein would promote anti-aspergillosis. In a previous study, we speculated actin depolymerizing factor cofilin might be essential for A. fumigatus viability and found its overexpression upregulated oxidative response and cell wall polysaccharide synthesis of this pathogen. Here, we constructed a conditional cofilin mutant to determine the essential role of cofilin. And the role of cofilin downregulation and phosphorylation in A. fumigatus was further analyzed. Cofilin was required for the polarized growth and heat sensitivity of A. fumigatus. Downregulation of cofilin caused hyphal cytoplasmic leakage, increased the sensitivity of A. fumigatus to sodium dodecyl sulfonate but not to calcofluor white and Congo Red and farnesol, and enhanced the basal phosphorylation level of MpkA, suggesting that cofilin affected the cell wall integrity (CWI) signaling. Downregulation of cofilin also increased the sensitivity of A. fumigatus to alkaline pH and H2O2. Repressing cofilin expression in A. fumigatus lead to attenuated virulence, which manifested as lower adherence and internalization rates, weaker host inflammatory response and shorter survival rate in a Galleria mellonella model. Expression of non-phosphorylated cofilin with a mutation of S5A had little impacts on A. fumigatus, whereas expression of a mimic-phosphorylated cofilin with a mutation of S5E resulted in inhibited growth, increased phospho-MpkA level, and decreased pathogenicity. In conclusion, cofilin is crucial to modulating the polarized growth, stress response, CWI and virulence of A. fumigatus.
Collapse
Affiliation(s)
- Xiaodong Jia
- Institute for Disease Control and Prevention of PLA, Beijing, China.,Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing, China
| | - Xi Zhang
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yingsong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Mandong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Xuelin Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yansong Sun
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Li Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|
9
|
Liang C, Zhang B, Cui L, Li J, Yu Q, Li M. Mgm1 is required for maintenance of mitochondrial function and virulence in Candida albicans. Fungal Genet Biol 2018; 120:42-52. [PMID: 30240789 DOI: 10.1016/j.fgb.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023]
Abstract
Mitochondria are dynamic organelles, and their shapes and sizes are regulated by mitochondrial fusion and fission. The proteins essential for mitochondrial fusion in Candida albicans have not been clearly characterized. In this study, Mgm1 was explored for its roles in mitochondrial function, cell cycle, hyphal growth and virulence in this pathogen. The deletion of MGM1 led to mitochondrial fragmentation and mtDNA loss and activated the checkpoint pathway to arrest the cell cycle in G1 phase. Moreover, loss of MGM1 led to defects in hyphal development and attenuation of virulence in a macrophage cell line and a mouse model of disseminated infection. These results reveal that Mgm1 plays an important role in mitochondrial dynamics and function, cell cycle progression, hyphal development and virulence in C. albicans.
Collapse
Affiliation(s)
- Chao Liang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Bing Zhang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Lifang Cui
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jianrong Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Del Bel LM, Brill JA. Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport. Traffic 2018; 19:301-318. [PMID: 29411923 DOI: 10.1111/tra.12554] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Abstract
The lipid phosphatase Sac1 dephosphorylates phosphatidylinositol 4-phosphate (PI4P), thereby holding levels of this crucial membrane signaling molecule in check. Sac1 regulates multiple cellular processes, including cytoskeletal organization, membrane trafficking and cell signaling. Here, we review the structure and regulation of Sac1, its roles in cell signaling and development and its links to health and disease. Remarkably, many of the diverse roles attributed to Sac1 can be explained by the recent discovery of its requirement at membrane contact sites, where its consumption of PI4P is proposed to drive interorganelle transfer of other cellular lipids, thereby promoting normal lipid homeostasis within cells.
Collapse
Affiliation(s)
- Lauren M Del Bel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Xiao C, Yu Q, Zhang B, Li J, Zhang D, Li M. The mRNA export factor Sac3 maintains nuclear homeostasis and regulates cytoskeleton organization in Candida albicans. Future Microbiol 2018; 13:283-296. [PMID: 29436239 DOI: 10.2217/fmb-2017-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In eukaryotes, the nuclear export of mRNAs is essential for gene expression and regulations of numerous cellular processes. This study aimed to identify the mRNA export factor Sac3 in Candida albicans. MATERIALS & METHODS A sac3Δ/Δ mutant was obtained using PCR-mediated homologous recombination. RESULTS Disruption of SAC3 caused abnormal accumulation of mRNA in the nuclei. Further investigations revealed that sac3Δ/Δ mutant exhibited a severely growth defect, which was related to abnormal aggregation of microtubules. Moreover, loss of Sac3 caused a defect in hyphal polarized growth, which was associated with depolarization of actin cytoskeleton. In addition, the virulence of sac3Δ/Δ mutant was seriously attenuated. CONCLUSION Our findings provide new insights into the mRNA export factor Sac3 in C. albicans.
Collapse
Affiliation(s)
- Chenpeng Xiao
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Dan Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
12
|
Xiao C, Yu Q, Zhang B, Li J, Zhang D, Li M. Role of the mRNA export factor Sus1 in oxidative stress tolerance in Candida albicans. Biochem Biophys Res Commun 2018; 496:253-259. [DOI: 10.1016/j.bbrc.2018.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|
13
|
Identification of membrane proteome of Paracoccidioides lutzii and its regulation by zinc. Future Sci OA 2017; 3:FSO232. [PMID: 29134119 PMCID: PMC5676091 DOI: 10.4155/fsoa-2017-0044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Aim: During infection development in the host, Paracoccidioides spp. faces the deprivation of micronutrients, a mechanism called nutritional immunity. This condition induces the remodeling of proteins present in different metabolic pathways. Therefore, we attempted to identify membrane proteins and their regulation by zinc in Paracoccidioides lutzii. Materials & methods: Membranes enriched fraction of yeast cells of P. lutzii were isolated, purified and identified by 2D LC–MS/MS detection and database search. Results & conclusion: Zinc deprivation suppressed the expression of membrane proteins such as glycoproteins, those involved in cell wall synthesis and those related to oxidative phosphorylation. This is the first study describing membrane proteins and the effect of zinc deficiency in their regulation in one member of the genus Paracoccidioides. The methodology of protein identification allows the characterization of biological processes performed by those molecules. Therefore, we performed a membrane proteomic analysis of Paracoccidioides lutzii and further evaluated the responses of the fungus to zinc deprivation. The results obtained in the work allowed the characterization of membrane proteins present in organelles that are related to different cellular functions. Zinc deprivation changes processes related to cellular physiology and metabolism. These results help us to understand the process of pathogen–host interaction, since zinc deprivation is a condition present during infection.
Collapse
|
14
|
Douglas LM, Konopka JB. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans. J Microbiol 2016; 54:178-91. [PMID: 26920878 DOI: 10.1007/s12275-016-5621-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022]
Abstract
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.
Collapse
Affiliation(s)
- Lois M Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
15
|
|
16
|
Chandra J, Mukherjee PK. Candida Biofilms: Development, Architecture, and Resistance. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MB-0020-2015. [PMID: 26350306 PMCID: PMC4566167 DOI: 10.1128/microbiolspec.mb-0020-2015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.
Collapse
Affiliation(s)
- Jyotsna Chandra
- Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106
| | - Pranab K Mukherjee
- Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|