1
|
Mirzadi Gohari A, Mehrabi R, Kilaru S, Schuster M, Steinberg G, de Wit PPJGM, Kema GHJ. Functional characterization of extracellular and intracellular catalase-peroxidases involved in virulence of the fungal wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2024; 25:e70009. [PMID: 39363778 PMCID: PMC11450260 DOI: 10.1111/mpp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024]
Abstract
Understanding how pathogens defend themselves against host defence mechanisms, such as hydrogen peroxide (H2O2) production, is crucial for comprehending fungal infections. H2O2 poses a significant threat to invading fungi due to its potent oxidizing properties. Our research focuses on the hemibiotrophic fungal wheat pathogen Zymoseptoria tritici, enabling us to investigate host-pathogen interactions. We examined two catalase-peroxidase (CP) genes, ZtCpx1 and ZtCpx2, to elucidate how Z. tritici deals with host-generated H2O2 during infection. Our analysis revealed that ZtCpx1 was up-regulated during biotrophic growth and asexual spore formation in vitro, while ZtCpx2 showed increased expression during the transition from biotrophic to necrotrophic growth and in-vitro vegetative growth. Deleting ZtCpx1 increased the mutant's sensitivity to exogenously added H2O2 and significantly reduced virulence, as evidenced by decreased Septoria tritici blotch symptom severity and fungal biomass production. Reintroducing the wild-type ZtCpx1 allele with its native promoter into the mutant strain restored the observed phenotypes. While ZtCpx2 was not essential for full virulence, the ZtCpx2 mutants exhibited reduced fungal biomass development during the transition from biotrophic to necrotrophic growth. Moreover, both CP genes act synergistically, as the double knock-out mutant displayed a more pronounced reduced virulence compared to ΔZtCpx1. Microscopic analysis using fluorescent proteins revealed that ZtCpx1 was localized in the peroxisome, indicating its potential role in managing host-generated reactive oxygen species during infection. In conclusion, our research sheds light on the crucial roles of CP genes ZtCpx1 and ZtCpx2 in the defence mechanism of Z. tritici against host-generated hydrogen peroxide.
Collapse
Affiliation(s)
- Amir Mirzadi Gohari
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| | - Rahim Mehrabi
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| | | | | | | | | | - Gert H. J. Kema
- Department of PhytopathologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
2
|
Groth A, Ahlmann S, Werner A, Pöggeler S. The vacuolar morphology protein VAC14 plays an important role in sexual development in the filamentous ascomycete Sordaria macrospora. Curr Genet 2022; 68:407-427. [PMID: 35776170 PMCID: PMC9279277 DOI: 10.1007/s00294-022-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
The multiprotein Fab1p/PIKfyve-complex regulating the abundance of the phospholipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is highly conserved among eukaryotes. In yeast/mammals, it is composed of the phosphatidylinositol 3-phosphate 5-kinase Fab1p/PIKfyve, the PtdIns(3,5)P2 phosphatase Fig4p/Sac3 and the scaffolding subunit Vac14p/ArPIKfyve. The complex is located to vacuolar membranes in yeast and to endosomal membranes in mammals, where it controls the synthesis and turnover of PtdIns(3,5)P2. In this study, we analyzed the role and function of the Fab1p/PIKfyve-complex scaffold protein SmVAC14 in the filamentous ascomycete Sordaria macrospora (Sm). We generated the Smvac14 deletion strain ∆vac14 and performed phenotypic analysis of the mutant. Furthermore, we conducted fluorescence microscopic localization studies of fluorescently labeled SmVAC14 with vacuolar and late endosomal marker proteins. Our results revealed that SmVAC14 is important for maintaining vacuolar size and appearance as well as proper sexual development in S. macrospora. In addition, SmVAC14 plays an important role in starvation stress response. Accordingly, our results propose that the turnover of PtdIns(3,5)P2 is of great significance for developmental processes in filamentous fungi.
Collapse
Affiliation(s)
- Anika Groth
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Svenja Ahlmann
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Antonia Werner
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Mazheika IS, Kamzolkina OV. Does macrovesicular endocytosis occur in fungal hyphae? FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Fantozzi E, Kilaru S, Cannon S, Schuster M, Gurr SJ, Steinberg G. Conditional promoters to investigate gene function during wheat infection by Zymoseptoria tritici. Fungal Genet Biol 2021; 146:103487. [PMID: 33309991 PMCID: PMC7812376 DOI: 10.1016/j.fgb.2020.103487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
The fungus Zymoseptoria tritici causes Septoria tritici leaf blotch, which poses a serious threat to temperate-grown wheat. Recently, we described a raft of molecular tools to study the biology of this fungus in vitro. Amongst these are 5 conditional promoters (Pnar1, Pex1A, Picl1, Pgal7, PlaraB), which allow controlled over-expression or repression of target genes in cells grown in liquid culture. However, their use in the host-pathogen interaction in planta was not tested. Here, we investigate the behaviour of these promoters by quantitative live cell imaging of green-fluorescent protein-expressing cells during 6 stages of the plant infection process. We show that Pnar1 and Picl1 are repressed in planta and demonstrate their suitability for studying essential gene expression and function in plant colonisation. The promoters Pgal7 and Pex1A are not fully-repressed in planta, but are induced during pycnidiation. This indicates the presence of inducing galactose or xylose and/or arabinose, released from the plant cell wall by the activity of fungal hydrolases. In contrast, the PlaraB promoter, which normally controls expression of an α-l-arabinofuranosidase B, is strongly induced inside the leaf. This suggests that the fungus is exposed to L-arabinose in the mesophyll apoplast. Taken together, this study establishes 2 repressible promoters (Pnar1 and Picl1) and three inducible promoters (Pgal7, Pex1A, PlaraB) for molecular studies in planta. Moreover, we provide circumstantial evidence for plant cell wall degradation during the biotrophic phase of Z. tritici infection.
Collapse
Affiliation(s)
- Elena Fantozzi
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sreedhar Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Stuart Cannon
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Sarah J Gurr
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
5
|
Schuster M, Steinberg G. The fungicide dodine primarily inhibits mitochondrial respiration in Ustilago maydis, but also affects plasma membrane integrity and endocytosis, which is not found in Zymoseptoria tritici. Fungal Genet Biol 2020; 142:103414. [PMID: 32474016 PMCID: PMC7526662 DOI: 10.1016/j.fgb.2020.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/03/2022]
Abstract
Early reports in the fungus Ustilago maydis suggest that the amphipathic fungicide dodine disrupts the fungal plasma membrane (PM), thereby killing this corn smut pathogen. However, a recent study in the wheat pathogen Zymoseptoria tritici does not support such mode of action (MoA). Instead, dodine inhibits mitochondrial ATP-synthesis, both in Z. tritici and U. maydis. This casts doubt on an fungicidal activity of dodine at the PM. Here, we use a cell biological approach and investigate further the effect of dodine on the plasma membrane in both fungi. We show that dodine indeed breaks the integrity of the PM in U. maydis, indicated by a concentration-dependent cell depolarization. In addition, the fungicide reduces PM fluidity and arrests endocytosis by inhibiting the internalization of endocytic vesicles at the PM. This is likely due to impaired recruitment of the actin-crosslinker fimbrin to endocytic actin patches. However, quantitative data reveal that the effect on mitochondria represents the primary MoA in U. maydis. None of these plasma membrane-associated effects were found in dodine-treated Z. tritici cells. Thus, the physiological effect of an anti-fungal chemistry can differ between pathogens. This merits consideration when characterizing a given fungicide.
Collapse
Affiliation(s)
- Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
6
|
Mazheika I, Voronko O, Kamzolkina O. Early endocytosis as a key to understanding mechanisms of plasma membrane tension regulation in filamentous fungi. Biol Cell 2020; 112:409-426. [PMID: 32860722 DOI: 10.1111/boc.202000066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Two main systems regulate plasma membrane tension (PMT) and provide a close connection between the protoplast and the cell wall in fungi: turgor pressure and the actin cytoskeleton. These systems work together with the plasma membrane focal adhesion to the cell wall and their contribution to fungal cell organization and physiology has been partially studied. However, it remains controversial in model filamentous ascomycetes and oomycetes and even less investigated in filamentous basidiomycetes. Early endocytosis can be used to research the mechanisms regulating PMT since the dynamics of early endocytosis is largely dependent on this tension. RESULTS This study examined the effects of actin polymerization inhibitors and hyperosmotic shock on early endocytosis and cell morphology in two filamentous basidiomycetes. The main obtained results are: (i) the depolymerisation of F-actin leads to the fast formation of endocytic pits while inhibiting of their scission from the plasma membrane and (ii) the moderate hyperosmotic shock does not affect the dynamics of early endocytosis. These and our other results have allowed suggesting a curtain model for the regulation of PMT in basidiomycetes. CONCLUSIONS AND SIGNIFICANCE According to the proposed curtain model, the PMT in many non-apical cells of hyphae is more often regulated not by turgor pressure but by a system of actin driver cables that are associated with the proteins of the focal adhesion sites. The change in PMT occurs similar to the movement of a curtain along the curtain rod using the curtain drivers. This model addresses the fundamental properties of the fungal structure and physiology. It requires confirmation including the currently technically unavailable high-quality labelling of the actin cytoskeleton of the basidiomycetes.
Collapse
Affiliation(s)
- Igor Mazheika
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Oksana Voronko
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga Kamzolkina
- Department of mycology and algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Wu H, Zhang W, Schuster M, Moch M, Windoffer R, Steinberg G, Staiger CJ, Panstruga R. Alloxan Disintegrates the Plant Cytoskeleton and Suppresses mlo-Mediated Powdery Mildew Resistance. PLANT & CELL PHYSIOLOGY 2020; 61:505-518. [PMID: 31738423 DOI: 10.1093/pcp/pcz216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Recessively inherited mutant alleles of Mlo genes (mlo) confer broad-spectrum penetration resistance to powdery mildew pathogens in angiosperm plants. Although a few components are known to be required for mlo resistance, the detailed molecular mechanism underlying this type of immunity remains elusive. In this study, we identified alloxan (5,5-dihydroxyl pyrimidine-2,4,6-trione) and some of its structural analogs as chemical suppressors of mlo-mediated resistance in monocotyledonous barley (Hordeum vulgare) and dicotyledonous Arabidopsis thaliana. Apart from mlo resistance, alloxan impairs nonhost resistance in Arabidopsis. Histological analysis revealed that the chemical reduces callose deposition and hydrogen peroxide accumulation at attempted fungal penetration sites. Fluorescence microscopy revealed that alloxan interferes with the motility of cellular organelles (peroxisomes, endosomes and the endoplasmic reticulum) and the pathogen-triggered redistribution of the PEN1/SYP121 t-SNARE protein. These cellular defects are likely the consequence of disassembly of actin filaments and microtubules upon alloxan treatment. Similar to the situation in animal cells, alloxan elicited the temporary accumulation of reactive oxygen species (ROS) in cotyledons and rosette leaves of Arabidopsis plants. Our results suggest that alloxan may destabilize cytoskeletal architecture via induction of an early transient ROS burst, further leading to the failure of molecular and cellular processes that are critical for plant immunity.
Collapse
Affiliation(s)
- Hongpo Wu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, Aachen 52056, Germany
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlinweg 2, Aachen 52056, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlinweg 2, Aachen 52056, Germany
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, Aachen 52056, Germany
| |
Collapse
|
8
|
Hassing B, Eaton CJ, Winter D, Green KA, Brandt U, Savoian MS, Mesarich CH, Fleissner A, Scott B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. Mol Microbiol 2020; 113:1101-1121. [PMID: 32022309 DOI: 10.1111/mmi.14480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Ulrike Brandt
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, Lincoln, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
9
|
Schuster M, Guiu-Aragones C, Steinberg G. Class V chitin synthase and β(1,3)-glucan synthase co-travel in the same vesicle in Zymoseptoria tritici. Fungal Genet Biol 2019; 135:103286. [PMID: 31672687 PMCID: PMC7967022 DOI: 10.1016/j.fgb.2019.103286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/03/2022]
Abstract
Native chitin (Chs5) and glucan synthase (Gsc1) visualised in the pathogen Zymoseptoria tritici. Chs5 and Gsc1 are transported along microtubules. Chs5 and Gsc1 do localise to the apical plasma membrane, but not the Spitzenkörper. Light and electron microscopy how co-travel of Chs5 and Gsc1 in the same secretory vesicle. Enzyme delivery in Z. tritici is different from Neurospora crassa, but similar to Ustilago maydis.
The fungal cell wall consists of proteins and polysaccharides, formed by the co-ordinated activity of enzymes, such as chitin or glucan synthases. These enzymes are delivered via secretory vesicles to the hyphal tip. In the ascomycete Neurospora crassa, chitin synthases and β(1,3)-glucan synthase are transported in different vesicles, whereas they co-travel along microtubules in the basidiomycete Ustilago maydis. This suggests fundamental differences in wall synthesis between taxa. Here, we visualize the class V chitin synthase ZtChs5 and the β(1,3)-glucan synthase ZtGcs1 in the ascomycete Zymoseptoria tritici. Live cell imaging demonstrate that both enzymes co-locate to the apical plasma membrane, but are not concentrated in the Spitzenkörper. Delivery involves co-transport along microtubules of the chitin and glucan synthase. Live cell imaging and electron microscopy suggest that both cell wall synthases locate in the same vesicle. Thus, microtubule-dependent co-delivery of cell wall synthases in the same vesicle is found in asco- and basidiomycetes.
Collapse
Affiliation(s)
- Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | | | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
10
|
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
|
11
|
Kilaru S, Schuster M, Ma W, Steinberg G. Fluorescent markers of various organelles in the wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 2017; 105:16-27. [PMID: 28579390 PMCID: PMC5536155 DOI: 10.1016/j.fgb.2017.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/22/2022]
Abstract
17 vectors are described that allow labelling of 7 subcellular structures. The fluorescent markers target the plasma membrane, endoplasmic reticulum, nucleus. Markers also target the actin cytoskeleton, peroxisomes and autophagosomes. These markers complete are toolkit of fluorescent reporters. Reporters allow cell biological studies in the Septoria tritici blotch fungus.
Development of novel strategies to control fungal plant pathogens requires understanding of their cellular organisation and biology. Live cell imaging of fluorescent organelle markers has provided valuable insight into various aspects of their cell biology, including invasion strategies in plant pathogenic fungi. Here, we introduce a set of 17 vectors that encode fluorescent markers to visualize the plasma membrane, endoplasmic reticulum (ER), chromosomes, the actin cytoskeleton, peroxisomes and autophagosomes in the wheat pathogen Zymoseptoria tritici. We fused either enhanced green-fluorescent protein (eGFP) or a codon-optimised version of GFP (ZtGFP) to homologues of a plasma membrane-located Sso1-like syntaxin, an ER signalling and retention peptide, a histone H1 homologue, the LifeAct actin-binding peptide, a mitochondrial acetyl-CoA dehydrogenase, a peroxisomal import signal and a homologue of the ubiquitin-like autophagosomal protein Atg8. We expressed these markers in wildtype strain IPO323 and confirmed the specificity of these markers by counterstaining or physiological experiments. This new set of molecular tools will help understanding the cell biology of the wheat pathogen Z. tritici.
Collapse
Affiliation(s)
- S Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - W Ma
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK; University of Utrecht, Department of Biology, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
12
|
Yan M, Cai E, Zhou J, Chang C, Xi P, Shen W, Li L, Jiang Z, Deng YZ, Zhang LH. A Dual-Color Imaging System for Sugarcane Smut Fungus Sporisorium scitamineum. PLANT DISEASE 2016; 100:2357-2362. [PMID: 30686163 DOI: 10.1094/pdis-02-16-0257-sr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The life cycle of the sugarcane smut fungus Sporisorium scitamineum is a multistep process. Haploid sporidia of compatible (MAT-1 versus MAT-2) mating types fuse to generate pathogenic dikaryotic hyphae to infect the host. Within the host tissues, diploid teliospores are formed and induce a characteristic sorus that looks like a black whip. The diploid teliospores germinate to form haploid sporidia by meiosis. In order to monitor fungal development throughout the whole life cycle, we expressed the green fluorescent protein (GFP) and red fluorescent protein (RFP) in S. scitamineum MAT-1 and MAT-2 sporidia, respectively. Observation by epifluorescence microscope showed that conjugation tube formation and sporidia fusion occurred at 4 to 8 h, and formation of dikaryotic filaments was detected at 12 h after mating. The resultant teliospores, with diffused GFP and RFP, underwent meiosis as demonstrated by septated hypha with single fluorescent signal. We demonstrated that GFP- and RFP-tagged strains can be used to study the life cycle development of the fungal pathogen S. scitamineum, including the sexual mating and meiosis events. This dual-color imaging system would be a valuable tool for investigation of biotic and abiotic factors that might affect the fungal life cycle development and pathogenesis.
Collapse
Affiliation(s)
- Meixin Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China, and Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, P. R. China
| | - Enping Cai
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Changqing Chang
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, and Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Wankuan Shen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Lingyu Li
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Yi Zhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
13
|
Kilaru S, Schuster M, Studholme D, Soanes D, Lin C, Talbot NJ, Steinberg G. A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:125-31. [PMID: 26092799 PMCID: PMC4502462 DOI: 10.1016/j.fgb.2015.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/24/2022]
Abstract
Fluorescent proteins (FPs) are powerful tools to investigate intracellular dynamics and protein localization. Cytoplasmic expression of FPs in fungal pathogens allows greater insight into invasion strategies and the host-pathogen interaction. Detection of their fluorescent signal depends on the right combination of microscopic setup and signal brightness. Slow rates of photo-bleaching are pivotal for in vivo observation of FPs over longer periods of time. Here, we test green-fluorescent proteins, including Aequorea coerulescens GFP (AcGFP), enhanced GFP (eGFP) from Aequorea victoria and a novel Zymoseptoria tritici codon-optimized eGFP (ZtGFP), for their usage in conventional and laser-enhanced epi-fluorescence, and confocal laser-scanning microscopy. We show that eGFP, expressed cytoplasmically in Z. tritici, is significantly brighter and more photo-stable than AcGFP. The codon-optimized ZtGFP performed even better than eGFP, showing significantly slower bleaching and a 20-30% further increase in signal intensity. Heterologous expression of all GFP variants did not affect pathogenicity of Z. tritici. Our data establish ZtGFP as the GFP of choice to investigate intracellular protein dynamics in Z. tritici, but also infection stages of this wheat pathogen inside host tissue.
Collapse
Affiliation(s)
- S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - D Studholme
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - D Soanes
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - C Lin
- Mathematics, University of Exeter, Exeter EX4 3QF, UK
| | - N J Talbot
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
14
|
Guo M, Kilaru S, Schuster M, Latz M, Steinberg G. Fluorescent markers for the Spitzenkörper and exocytosis in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:158-65. [PMID: 26092802 PMCID: PMC4502456 DOI: 10.1016/j.fgb.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022]
Abstract
We establish Z. tritici polarity markers ZtSec4, ZtMlc1, ZtRab11, ZtExo70 and ZtSpa2. All markers localize correctly, labeling the Spitzenkörper and sites of polar exocytosis. We provide 5 carboxin-resistance conveying vectors for integration of all markers into the sdi1 locus. We provide 5 hygromycin B-resistance conveying vectors for random integration of all markers.
Fungal hyphae are highly polarized cells that invade their substrate by tip growth. In plant pathogenic fungi, hyphal growth is essential for host invasion. This makes polarity factors and secretion regulators potential new targets for novel fungicides. Polarization requires delivery of secretory vesicles to the apical Spitzenkörper, followed by polarized exocytosis at the expanding cell tip. Here, we introduce fluorescent markers to visualize the apical Spitzenkörper and the apical site of exocytosis in hyphae of the wheat pathogen Zymoseptoria tritici. We fused green fluorescent protein to the small GTPase ZtSec4, the myosin light chain ZtMlc1 and the small GTPase ZtRab11 and co-localize the fusion proteins with the dye FM4-64 in the hyphal apex, suggesting that the markers label the hyphal Spitzenkörper in Z. tritici. In addition, we localize GFP-fusions to the exocyst protein ZtExo70, the polarisome protein ZtSpa2. Consistent with results in the ascomycete Neurospora crassa, these markers did localize near the plasma membrane at the hyphal tip and only partially co-localize with FM4-64. Thus, these fluorescent markers are useful molecular tools that allow phenotypic analysis of mutants in Z. tritici. These tools will help develop new avenues of research in our quest to control STB infection in wheat.
Collapse
Affiliation(s)
- M Guo
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
15
|
Kilaru S, Schuster M, Latz M, Das Gupta S, Steinberg N, Fones H, Gurr SJ, Talbot NJ, Steinberg G. A gene locus for targeted ectopic gene integration in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:118-24. [PMID: 26092798 PMCID: PMC4502457 DOI: 10.1016/j.fgb.2015.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/29/2022]
Abstract
We establish the sdi1 of Z. tritici locus for targeted integration of constructs as single copies. Integration of constructs conveys carboxin resistance. We provide a vector for integration of eGFP-expressing construct into the sdi1 locus. Integration into sdi1 locus is not affecting virulence of Z. tritici.
Understanding the cellular organization and biology of fungal pathogens requires accurate methods for genomic integration of mutant alleles or fluorescent fusion-protein constructs. In Zymoseptoria tritici, this can be achieved by integrating of plasmid DNA randomly into the genome of this wheat pathogen. However, untargeted ectopic integration carries the risk of unwanted side effects, such as altered gene expression, due to targeting regulatory elements, or gene disruption following integration into protein-coding regions of the genome. Here, we establish the succinate dehydrogenase (sdi1) locus as a single “soft-landing” site for targeted ectopic integration of genetic constructs by using a carboxin-resistant sdi1R allele, carrying the point-mutation H267L. We use various green and red fluorescent fusion constructs and show that 97% of all transformants integrate correctly into the sdi1 locus as single copies. We also demonstrate that such integration does not affect the pathogenicity of Z. tritici, and thus the sdi1 locus is a useful tool for virulence analysis in genetically modified Z. tritici strains. Furthermore, we have developed a vector which facilitates yeast recombination cloning and thus allows assembly of multiple overlapping DNA fragments in a single cloning step for high throughput vector and strain generation.
Collapse
Affiliation(s)
- S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| | - M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Das Gupta
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - N Steinberg
- Geography, University of Exeter, Exeter EX4 4RJ, UK
| | - H Fones
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S J Gurr
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - N J Talbot
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
16
|
Yao X, Arst HN, Wang X, Xiang X. Discovery of a vezatin-like protein for dynein-mediated early endosome transport. Mol Biol Cell 2015; 26:3816-27. [PMID: 26378255 PMCID: PMC4626066 DOI: 10.1091/mbc.e15-08-0602] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 11/11/2022] Open
Abstract
In filamentous fungi, dynein moves early endosomes away from the hyphal tip. Aspergillus genetics is used to identify a vezatin-like protein, VezA, which is critical for dynein-mediated transport of early endosomes. VezA localizes to the hyphal tip in an actin-dependent manner and regulates the interaction between dynein and early endosomes. Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo.
Collapse
Affiliation(s)
- Xuanli Yao
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814
| | - Herbert N Arst
- Microbiology Section, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiangfeng Wang
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814
| |
Collapse
|
17
|
Schuster M, Kilaru S, Guo M, Sommerauer M, Lin C, Steinberg G. Red fluorescent proteins for imaging Zymoseptoria tritici during invasion of wheat. Fungal Genet Biol 2015; 79:132-40. [PMID: 26092800 PMCID: PMC4502450 DOI: 10.1016/j.fgb.2015.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 10/28/2022]
Abstract
The use of fluorescent proteins (FPs) in plant pathogenic fungi provides valuable insight into their intracellular dynamics, cell organization and invasion mechanisms. Compared with green-fluorescent proteins, their red-fluorescent "cousins" show generally lower fluorescent signal intensity and increased photo-bleaching. However, the combined usage of red and green fluorescent proteins allows powerful insight in co-localization studies. Efficient signal detection requires a bright red-fluorescent protein (RFP), combined with a suitable corresponding filter set. We provide a set of four vectors, suitable for yeast recombination-based cloning that carries mRFP, TagRFP, mCherry and tdTomato. These vectors confer carboxin resistance after targeted single-copy integration into the sdi1 locus of Zymoseptoria tritici. Expression of the RFPs does not affect virulence of this wheat pathogen. We tested all four RFPs in combination with four epi-fluorescence filter sets and in confocal laser scanning microscopy, both in and ex planta. Our data reveal that mCherry is the RFP of choice for investigation in Z. tritici, showing highest signal intensity in epi-fluorescence, when used with a Cy3 filter set, and laser scanning confocal microscopy. However, mCherry bleached significantly faster than mRFP, which favors this red tag in long-term observation experiments. Finally, we used dual-color imaging of eGFP and mCherry expressing wild-type strains in planta and show that pycnidia are formed by single strains. This demonstrates the strength of this method in tracking the course of Z. tritici infection in wheat.
Collapse
Affiliation(s)
- M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Guo
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Sommerauer
- AHF Analysentechnik AG, Kohlplattenweg 18, DE-72074 Tübingen, Germany
| | - C Lin
- Mathematics, University of Exeter, Exeter EX4 3QF, UK
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
18
|
Talbot NJ. Taming a wild beast: Developing molecular tools and new methods to understand the biology of Zymoseptoria tritici. Fungal Genet Biol 2015; 79:193-5. [PMID: 25975217 PMCID: PMC4502451 DOI: 10.1016/j.fgb.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Septoria blotch of wheat is one of the world’s most serious plant diseases, which is difficult to control due to the absence of durable host resistance and the increasing frequency of fungicide-resistance. The ascomycete fungus that causes the disease, Zymoseptoria tritici, has been very challenging to study. This special issue of Fungal Genetics and Biology showcases an integrated approach to method development and the innovation of new molecular tools to study the biology of Z. tritici. When considered together, these new methods will have a rapid and dramatic effect on our ability to combat this significant disease.
Collapse
Affiliation(s)
- Nicholas J Talbot
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom.
| |
Collapse
|
19
|
Schuster M, Kilaru S, Latz M, Steinberg G. Fluorescent markers of the microtubule cytoskeleton in Zymoseptoria tritici. Fungal Genet Biol 2015; 79:141-9. [PMID: 25857261 PMCID: PMC4502552 DOI: 10.1016/j.fgb.2015.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/28/2022]
Abstract
The microtubule cytoskeleton supports vital processes in fungal cells, including hyphal growth and mitosis. Consequently, it is a target for fungicides, such as benomyl. The use of fluorescent fusion proteins to illuminate microtubules and microtubule-associated proteins has led to a break-through in our understanding of their dynamics and function in fungal cells. Here, we introduce fluorescent markers to visualize microtubules and accessory proteins in the wheat pathogen Zymoseptoria tritici. We fused enhanced green-fluorescent protein to α-tubulin (ZtTub2), to ZtPeb1, a homologue of the mammalian plus-end binding protein EB1, and to ZtGrc1, a component of the minus-end located γ-tubulin ring complex, involved in the nucleation of microtubules. In vivo observation confirms the localization and dynamic behaviour of all three markers. These marker proteins are useful tools for understanding the organization and importance of the microtubule cytoskeleton in Z. tritici.
Collapse
Affiliation(s)
- M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|