1
|
Usmani M, Coudray N, Riggi M, Raghu R, Ramchandani H, Bobe D, Kopylov M, Zhong ED, Iwasa JH, Ekiert DC, Bhabha G. Cryo-ET reveals the in situ architecture of the polar tube invasion apparatus from microsporidian parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603322. [PMID: 39026755 PMCID: PMC11257570 DOI: 10.1101/2024.07.13.603322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microsporidia are divergent fungal pathogens that employ a harpoon-like apparatus called the polar tube (PT) to invade host cells. The PT architecture and its association with neighboring organelles remain poorly understood. Here, we use cryo-electron tomography to investigate the structural cell biology of the PT in dormant spores from the human-infecting microsporidian species, Encephalitozoon intestinalis . Segmentation and subtomogram averaging of the PT reveal at least four layers: two protein-based layers surrounded by a membrane, and filled with a dense core. Regularly spaced protein filaments form the structural skeleton of the PT. Combining cryo-electron tomography with cellular modeling, we propose a model for the 3-dimensional organization of the polaroplast, an organelle that is continuous with the membrane layer that envelops the PT. Our results reveal the ultrastructure of the microsporidian invasion apparatus in situ , laying the foundation for understanding infection mechanisms.
Collapse
|
2
|
Chang R, Davydov A, Jaroenlak P, Budaitis B, Ekiert DC, Bhabha G, Prakash M. Energetics of the microsporidian polar tube invasion machinery. eLife 2024; 12:RP86638. [PMID: 38381133 PMCID: PMC10942582 DOI: 10.7554/elife.86638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3-4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60-140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.
Collapse
Affiliation(s)
- Ray Chang
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ari Davydov
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Pattana Jaroenlak
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Breane Budaitis
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
| | - Gira Bhabha
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Manu Prakash
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Woods Institute for the Environment, Stanford UniversityStanfordUnited States
| |
Collapse
|
3
|
Sharma H, Jespersen N, Ehrenbolger K, Carlson LA, Barandun J. Ultrastructural insights into the microsporidian infection apparatus reveal the kinetics and morphological transitions of polar tube and cargo during host cell invasion. PLoS Biol 2024; 22:e3002533. [PMID: 38422169 DOI: 10.1371/journal.pbio.3002533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
During host cell invasion, microsporidian spores translocate their entire cytoplasmic content through a thin, hollow superstructure known as the polar tube. To achieve this, the polar tube transitions from a compact spring-like state inside the environmental spore to a long needle-like tube capable of long-range sporoplasm delivery. The unique mechanical properties of the building blocks of the polar tube allow for an explosive transition from compact to extended state and support the rapid cargo translocation process. The molecular and structural factors enabling this ultrafast process and the structural changes during cargo delivery are unknown. Here, we employ light microscopy and in situ cryo-electron tomography to visualize multiple ultrastructural states of the Vairimorpha necatrix polar tube, allowing us to evaluate the kinetics of its germination and characterize the underlying morphological transitions. We describe a cargo-filled state with a unique ordered arrangement of microsporidian ribosomes, which cluster along the thin tube wall, and an empty post-translocation state with a reduced diameter but a thicker wall. Together with a proteomic analysis of endogenously affinity-purified polar tubes, our work provides comprehensive data on the infection apparatus of microsporidia and uncovers new aspects of ribosome regulation and transport.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Nathan Jespersen
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Kai Ehrenbolger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Chen Y, Lv Q, Liao H, Xie Z, Hong L, Qi L, Pan G, Long M, Zhou Z. The microsporidian polar tube: origin, structure, composition, function, and application. Parasit Vectors 2023; 16:305. [PMID: 37649053 PMCID: PMC10468886 DOI: 10.1186/s13071-023-05908-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023] Open
Abstract
Microsporidia are a class of obligate intracellular parasitic unicellular eukaryotes that infect a variety of hosts, even including humans. Although different species of microsporidia differ in host range and specificity, they all share a similar infection organelle, the polar tube, which is also defined as the polar filament in mature spores. In response to the appropriate environmental stimulation, the spore germinates with the polar filament everted, forming a hollow polar tube, and then the infectious cargo is transported into host cells via the polar tube. Hence, the polar tube plays a key role in microsporidian infection. Here, we review the origin, structure, composition, function, and application of the microsporidian polar tube, focusing on the origin of the polar filament, the structural differences between the polar filament and polar tube, and the characteristics of polar tube proteins. Comparing the three-dimensional structure of PTP6 homologous proteins provides new insight for the screening of additional novel polar tube proteins with low sequence similarity in microsporidia. In addition, the interaction of the polar tube with the spore wall and the host are summarized to better understand the infection mechanism of microsporidia. Due to the specificity of polar tube proteins, they are also used as the target in the diagnosis and prevention of microsporidiosis. With the present findings, we propose a future study on the polar tube of microsporidia.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Hongjie Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Zhengkai Xie
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Liuyi Hong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Lei Qi
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan, 250012, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
5
|
Chang R, Davydov A, Jaroenlak P, Budaitis B, Ekiert DC, Bhabha G, Prakash M. Energetics of the Microsporidian Polar Tube Invasion Machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524456. [PMID: 36711805 PMCID: PMC9884504 DOI: 10.1101/2023.01.17.524456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3-4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/sec, creating a shear rate of 3000 sec-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ~60-140 μm (Jaroenlak et al., 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.
Collapse
Affiliation(s)
- Ray Chang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Ari Davydov
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Pattana Jaroenlak
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Breane Budaitis
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| |
Collapse
|
6
|
Huang Q, Chen J, Lv Q, Long M, Pan G, Zhou Z. Germination of Microsporidian Spores: The Known and Unknown. J Fungi (Basel) 2023; 9:774. [PMID: 37504762 PMCID: PMC10381864 DOI: 10.3390/jof9070774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Microsporidia are a large group of mysterious obligate intracellular eukaryotic parasites. The microsporidian spore can survive in the absence of nutrients for years under harsh conditions and germinate within seconds under the stimulation of environmental changes like pH and ions. During germination, microsporidia experience an increase in intrasporal osmotic pressure, which leads to an influx of water into the spore, followed by swelling of the polaroplasts and posterior vacuole, which eventually fires the polar filament (PF). Infectious sporoplasm was transported through the extruded polar tube (PT) and delivered into the host cell. Despite much that has been learned about the germination of microsporidia, there are still several major questions that remain unanswered, including: (i) There is still a lack of knowledge about the signaling pathways involved in spore germination. (ii) The germination of spores is not well understood in terms of its specific energetics. (iii) Limited understanding of how spores germinate and how the nucleus and membranes are rearranged during germination. (iv) Only a few proteins in the invasion organelles have been identified; many more are likely undiscovered. This review summarizes the major resolved and unresolved issues concerning the process of microsporidian spore germination.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
7
|
Jaroenlak P, Usmani M, Ekiert DC, Bhabha G. Mechanics of Microsporidian Polar Tube Firing. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:215-245. [PMID: 35544005 DOI: 10.1007/978-3-030-93306-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As obligate intracellular parasites with reduced genomes, microsporidia must infect host cells in order to replicate and cause disease. They can initiate infection by utilizing a harpoon-like invasion organelle called the polar tube (PT). The PT is both visually and functionally a striking organelle and is a characteristic feature of the microsporidian phylum. Outside the host, microsporidia exist as transmissible, single-celled spores. Inside each spore, the PT is arranged as a tight coil. Upon germination, the PT undergoes a large conformational change into a long, linear tube and acts as a tunnel for the delivery of infectious cargo from the spore to a host cell. The firing process is extremely rapid, occurring on a millisecond timescale, and the emergent tube may be as long as 20 times the size of the spore body. In this chapter, we discuss what is known about the structure of the PT, the mechanics of the PT firing process, and how it enables movement of material from the spore body.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mahrukh Usmani
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Williams BAP, Williams TA, Trew J. Comparative Genomics of Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:43-69. [PMID: 35543998 DOI: 10.1007/978-3-030-93306-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.
Collapse
Affiliation(s)
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jahcub Trew
- School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Jaroenlak P, Cammer M, Davydov A, Sall J, Usmani M, Liang FX, Ekiert DC, Bhabha G. 3-Dimensional organization and dynamics of the microsporidian polar tube invasion machinery. PLoS Pathog 2020; 16:e1008738. [PMID: 32946515 PMCID: PMC7526891 DOI: 10.1371/journal.ppat.1008738] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/30/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023] Open
Abstract
Microsporidia, a divergent group of single-celled eukaryotic parasites, harness a specialized harpoon-like invasion apparatus called the polar tube (PT) to gain entry into host cells. The PT is tightly coiled within the transmissible extracellular spore, and is about 20 times the length of the spore. Once triggered, the PT is rapidly ejected and is thought to penetrate the host cell, acting as a conduit for the transfer of infectious cargo into the host. The organization of this specialized infection apparatus in the spore, how it is deployed, and how the nucleus and other large cargo are transported through the narrow PT are not well understood. Here we use serial block-face scanning electron microscopy to reveal the 3-dimensional architecture of the PT and its relative spatial orientation to other organelles within the spore. Using high-speed optical microscopy, we also capture and quantify the entire PT germination process of three human-infecting microsporidian species in vitro: Anncaliia algerae, Encephalitozoon hellem and E. intestinalis. Our results show that the emerging PT experiences very high accelerating forces to reach velocities exceeding 300 μm⋅s-1, and that firing kinetics differ markedly between species. Live-cell imaging reveals that the nucleus, which is at least 7 times larger than the diameter of the PT, undergoes extreme deformation to fit through the narrow tube, and moves at speeds comparable to PT extension. Our study sheds new light on the 3-dimensional organization, dynamics, and mechanism of PT extrusion, and shows how infectious cargo moves through the tube to initiate infection.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Alina Davydov
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Joseph Sall
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Mahrukh Usmani
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Gira Bhabha
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
10
|
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
|
11
|
Liu H, Chen B, Hu S, Liang X, Lu X, Shao Y. Quantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions. Front Microbiol 2016; 7:1459. [PMID: 27708628 PMCID: PMC5030232 DOI: 10.3389/fmicb.2016.01459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022] Open
Abstract
The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH > 10.5), which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for microsporidia. Here we show, using an in vitro spore germination model, how the proteome of N. bombycis changes during germination, analyse specific metabolic pathways employed in detail, and validate key functional proteins in vivo in silkworms. By a label-free quantitative proteomics approach that is directly based on high-resolution mass spectrometry (MS) data, a total of 1136 proteins were identified with high confidence, with 127 proteins being significantly changed in comparison to non-germinated spores. Among them, structural proteins including polar tube protein 1 and 3 and spore wall protein (SWP) 4 and 30 were found to be significantly down-regulated, but SWP9 significantly up-regulated. Some nucleases like polynucleotide kinase/phosphatase and flap endonucleases 1, together with a panel of hydrolases involved in protein degradation and RNA cleavage were overrepresented too upon germination, which implied that they might play important roles during spore germination. The differentially regulated trends of these genes were validated, respectively, by quantitative RT-PCR and 3 proteins of interest were confirmed by Western blotting analyses in vitro and in vivo. Furthermore, the pathway analysis showed that abundant up- and down-regulations appear involved in the glycolysis, pentose phosphate pathway, purine, and pyrimidine metabolism, suggesting preparations of energy generation and substance synthesis for the following invasion and proliferation inside the host. This report, to our knowledge, provides the first proteomic landscape of N. bombycis spores, and also a stepping stone on the way to further study of the unique infection mode of this economically important pathogen and other microsporidia in general.
Collapse
Affiliation(s)
- Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Bosheng Chen
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Sirui Hu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Xili Liang
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| | - Yongqi Shao
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|