1
|
Bai N, Zhang G, Wang W, Feng H, Yang X, Zheng Y, Yang L, Xie M, Zhang KQ, Yang J. Ric8 acts as a regulator of G-protein signalling required for nematode-trapping lifecycle of Arthrobotrys oligospora. Environ Microbiol 2021; 24:1714-1730. [PMID: 34431203 DOI: 10.1111/1462-2920.15735] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Resistance to inhibitors of cholinesterase 8 (Ric8) is a conserved guanine nucleotide exchange factor that is involved in the regulation of G-protein signalling in filamentous fungi. Here, we characterized an orthologous Ric8 (AoRic8) in Arthrobotrys oligospora by multi-omics analyses. The Aoric8 deletion (ΔAoric8) mutants lost an ability to produce traps essential for nematode predation, accompanied by a marked reduction in cAMP level. Yeast two-hybrid assay revealed that AoRic8 interacted with G-protein subunit Gα1. Moreover, the mutants were compromised in mycelia growth, conidiation, stress resistance, endocytosis, cellular components and intrahyphal hyphae. Revealed by transcriptomic analysis differentially upregulated genes in the absence of Aoric8 were involved in cell cycle, DNA replication and recombination during trap formation while downregulated genes were primarily involved in organelles, carbohydrate metabolism and amino acid metabolism. Metabolomic analysis showed that many compounds were markedly downregulated in ΔAoric8 mutants versus the wild-type strain. Our results demonstrated a crucial role for AoRic8 in the fungal growth, environmental adaption and nematode predation through control of cell cycle, organelle and secondary metabolism by G-protein signalling.
Collapse
Affiliation(s)
- Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Huihua Feng
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Yaqing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
2
|
Lv W, Wang C, Yang N, Que Y, Talbot NJ, Wang Z. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Sci Rep 2017; 7:11062. [PMID: 28894236 PMCID: PMC5594004 DOI: 10.1038/s41598-017-11640-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a conserved cellular recycling and trafficking pathway in eukaryotic cells and has been reported to be important in the virulence of a number of microbial pathogens. Here, we report genome-wide identification and characterization of autophagy-related genes (ATGs) in the wheat pathogenic fungus Fusarium graminearum. We identified twenty-eight genes associated with the regulation and operation of autophagy in F. graminearum. Using targeted gene deletion, we generated a set of 28 isogenic mutants. Autophagy mutants were classified into two groups by differences in their growth patterns. Radial growth of 18 Group 1 ATG mutants was significantly reduced compared to the wild-type strain PH-1, while 10 Group 2 mutants grew normally. Loss of any of the ATG genes, except FgATG17, prevented the fungus from causing Fusarium head blight disease. Moreover, subsets of autophagy genes were necessary for asexual/sexual differentiation and deoxynivalenol (DON) production, respectively. FgATG1 and FgATG5 were investigated in detail and showed severe defects in autophagy. Taken together, we conclude that autophagy plays a critical role in growth, asexual/sexual sporulation, deoxynivalenol production and virulence in F. graminearum.
Collapse
Affiliation(s)
- Wuyun Lv
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Chunyan Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Nan Yang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Yawei Que
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, United Kingdom
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
3
|
Son M, Lee Y, Kim KH. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations. THE PLANT PATHOLOGY JOURNAL 2016; 32:281-289. [PMID: 27493603 PMCID: PMC4968638 DOI: 10.5423/ppj.oa.12.2015.0267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/17/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 06/06/2023]
Abstract
The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1) strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence) of its fungal host. To characterize function(s) of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI) FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s) in FgV1 induced phenotype alteration such as delayed vegetative growth.
Collapse
Affiliation(s)
- Moonil Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Yoonseung Lee
- Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
4
|
Yao SH, Guo Y, Wang YZ, Zhang D, Xu L, Tang WH. A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genet Biol 2016; 91:32-42. [PMID: 27037138 DOI: 10.1016/j.fgb.2016.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2015] [Revised: 02/18/2016] [Accepted: 03/25/2016] [Indexed: 01/02/2023]
Abstract
Superoxide dismutases (SODs) are scavengers of superoxide radicals, one of the main reactive oxygen species (ROS) in the cell. SOD-based ROS scavenging system constitutes the frontline defense against intra- and extracellular ROS, but the roles of SODs in the important cereal pathogen Fusarium graminearum are not very clear. There are five SOD genes in F. graminearum genome, encoding cytoplasmic Cu-Zn SOD1 and MnSOD3, mitochondrial MnSOD2 and FeSOD4, and extracellular CuSOD5. Previous studies reported that the expression of SOD1 increased during infection of wheat coleoptiles and florets. In this work we showed that the recombinant SOD1 protein had the superoxide dismutase activity in vitro, and that the SOD1-mRFP fusion protein localized in the cytoplasm of F. graminearum. The Δsod1 mutants had slightly reduced hyphal growth and markedly increased sensitivity to the intracellular ROS generator menadione. The conidial germination under extracellular oxidative stress was significantly delayed in the mutants. Wheat floret infection assay showed that the Δsod1 mutants had a reduced pathogenicity. Furthermore, the Δsod1 mutants had a significant reduction in production of deoxynivalenol mycotoxin. Our results indicate that the cytoplasmic Cu-Zn SOD1 affects fungal growth probably depending on detoxification of intracellular superoxide radicals, and that SOD1-mediated deoxynivalenol production contributes to the virulence of F. graminearum in wheat head infection.
Collapse
Affiliation(s)
- Sheng-Hua Yao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science, East China Normal University, Shanghai 200062, China
| | - Yan Guo
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Zhang Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Xu
- School of Life Science, East China Normal University, Shanghai 200062, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|