1
|
Ou PP, He QL, Zhao Q. Structural diversification of natural substrates modified by the O-methyltransferase AurJ from Fusarium Graminearum. Biochem Biophys Res Commun 2023; 678:158-164. [PMID: 37640001 DOI: 10.1016/j.bbrc.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Aromatic polyketide and phenylpropanoid derivatives are a large class of natural products produced by bacteria, fungi, and plants. The O-methylation is a unique decoration that can increase structural diversity of aromatic compounds and improve their pharmacological properties, but the substrate specificity of O-methyltransferase hinders the discovery of more natural products with O-methylation through biosynthesis. Here, we reported that the O-methyltransferase AurJ from plant pathogenic fungus Fusarium graminearum could methylate a broad range of natural substrates of monocyclic, bicyclic, and tricyclic aromatic precursors, exhibiting excellent substrate tolerance. This finding will partly change our stereotype about the specificity of traditional methyltransferases, and urge us to mine more O-methyltransferases with good substrate tolerance and discover more methylated natural products for drug discovery and development through directed evolution and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Pei-Pei Ou
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Lin C, Feng XL, Liu Y, Li ZC, Li XZ, Qi J. Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic Fusarium. J Fungi (Basel) 2023; 9:850. [PMID: 37623621 PMCID: PMC10455296 DOI: 10.3390/jof9080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium species are among the filamentous fungi with the most pronounced impact on agricultural production and human health. The mycotoxins produced by pathogenic Fusarium not only attack various plants including crops, causing various plant diseases that lead to reduced yields and even death, but also penetrate into the food chain of humans and animals to cause food poisoning and consequent health hazards. Although sporadic studies have revealed some of the biosynthetic pathways of Fusarium toxins, they are insufficient to satisfy the need for a comprehensive understanding of Fusarium toxin production. In this study, we focused on 35 serious pathogenic Fusarium species with available genomes and systematically analyzed the ubiquity of the distribution of identified Fusarium- and non-Fusarium-derived fungal toxin biosynthesis gene clusters (BGCs) in these species through the mining of core genes and the comparative analysis of corresponding BGCs. Additionally, novel sesterterpene synthases and PKS_NRPS clusters were discovered and analyzed. This work is the first to systematically analyze the distribution of related mycotoxin biosynthesis in pathogenic Fusarium species. These findings enhance the knowledge of mycotoxin production and provide a theoretical grounding for the prevention of fungal toxin production using biotechnological approaches.
Collapse
Affiliation(s)
- Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhao-chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
3
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
4
|
Bright Side of Fusarium oxysporum: Secondary Metabolites Bioactivities and Industrial Relevance in Biotechnology and Nanotechnology. J Fungi (Basel) 2021; 7:jof7110943. [PMID: 34829230 PMCID: PMC8625159 DOI: 10.3390/jof7110943] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
Fungi have been assured to be one of the wealthiest pools of bio-metabolites with remarkable potential for discovering new drugs. The pathogenic fungi, Fusarium oxysporum affects many valuable trees and crops all over the world, producing wilt. This fungus is a source of different enzymes that have variable industrial and biotechnological applications. Additionally, it is widely employed for the synthesis of different types of metal nanoparticles with various biotechnological, pharmaceutical, industrial, and medicinal applications. Moreover, it possesses a mysterious capacity to produce a wide array of metabolites with a broad spectrum of bioactivities such as alkaloids, jasmonates, anthranilates, cyclic peptides, cyclic depsipeptides, xanthones, quinones, and terpenoids. Therefore, this review will cover the previously reported data on F. oxysporum, especially its metabolites and their bioactivities, as well as industrial relevance in biotechnology and nanotechnology in the period from 1967 to 2021. In this work, 180 metabolites have been listed and 203 references have been cited.
Collapse
|
5
|
Zhao M, Zhao Y, Yao M, Iqbal H, Hu Q, Liu H, Qiao B, Li C, Skovbjerg CAS, Nielsen JC, Nielsen J, Frandsen RJN, Yuan Y, Boeke JD. Pathway engineering in yeast for synthesizing the complex polyketide bikaverin. Nat Commun 2020; 11:6197. [PMID: 33273470 PMCID: PMC7713123 DOI: 10.1038/s41467-020-19984-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Fungal polyketides display remarkable structural diversity and bioactivity, and therefore the biosynthesis and engineering of this large class of molecules is therapeutically significant. Here, we successfully recode, construct and characterize the biosynthetic pathway of bikaverin, a tetracyclic polyketide with antibiotic, antifungal and anticancer properties, in S. cerevisiae. We use a green fluorescent protein (GFP) mapping strategy to identify the low expression of Bik1 (polyketide synthase) as a major bottleneck step in the pathway, and a promoter exchange strategy is used to increase expression of Bik1 and bikaverin titer. Then, we use an enzyme-fusion strategy to directly couple the monooxygenase (Bik2) and methyltransferase (Bik3) to efficiently channel intermediates between modifying enzymes, leading to an improved titer of bikaverin at 202.75 mg/L with flask fermentation (273-fold higher than the initial titer). This study demonstrates that the biosynthesis of complex fungal polyketides can be established and efficiently engineered in S. cerevisiae, highlighting the potential for natural product synthesis and large-scale fermentation in yeast. Bikaverin is a fungal-derived tetracyclic polyketide with antibiotic, antifungal and anticancer properties. Here, the authors employ various pathway engineering strategies to achieve high level production of bikaverin in baker’s yeast.
Collapse
Affiliation(s)
- Meng Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, PR China.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, PR China
| | - Hala Iqbal
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Qi Hu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, PR China
| | - Hong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, PR China
| | - Bin Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, PR China
| | - Chun Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, PR China
| | - Christine A S Skovbjerg
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, Kongens Lyngby, Denmark
| | - Jens Christian Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rasmus J N Frandsen
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, Kongens Lyngby, Denmark
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, PR China
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA. .,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
6
|
Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res 2020; 244:126653. [PMID: 33302226 DOI: 10.1016/j.micres.2020.126653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Collapse
|
7
|
Lin X, Xu H, Liu L, Li H, Gao Z. Draft genome sequence of Neonectria sp. DH2 isolated from Meconopsis grandis Prain in Tibet. 3 Biotech 2020; 10:346. [PMID: 32728513 DOI: 10.1007/s13205-020-02345-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/17/2020] [Indexed: 11/26/2022] Open
Abstract
In the current study, we report the high-quality draft genome sequence of Neonectria sp. DH2, an endophytic fungus isolated from Meconopsis grandis Prain in Tibet. The whole genome is about 45.8 Mbp, with a GC content of 53%. A total of 14,163 genes are predicted to encode proteins, and 557 of them are considered as unique, as no matches are found in five gene databases. A neighbor-joining phylogenetic tree based on internal transcribed spacer (ITS) region sequences shows that Neonectria sp. DH2 was most closely related to Neonectria ramulariae. 47 biosynthetic gene clusters (BGC) were identified in Neonectria sp. DH2 genome, and only 5 BGCs shows significant similarities to previously reported BGCs. The presence of 42 unique BGCs in Neonectria sp. DH2 suggests that it has great potential to produce novel secondary metabolites.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006 China
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Huixian Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| |
Collapse
|
8
|
Fusarium Secondary Metabolism Biosynthetic Pathways: So Close but So Far Away. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Lebeau J, Petit T, Dufossé L, Caro Y. Putative metabolic pathway for the bioproduction of bikaverin and intermediates thereof in the wild Fusarium oxysporum LCP531 strain. AMB Express 2019; 9:186. [PMID: 31748828 PMCID: PMC6868082 DOI: 10.1186/s13568-019-0912-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Fungal naphthoquinones, like red bikaverin, are of interest due to their growing applications in designing pharmaceutical products. Though considerable work has been done on the elucidation of bikaverin biosynthesis pathway in Fusarium fujikuroi, very few reports are available regarding its bioproduction in F. oxysporum. We are hereby proposing a putative metabolic pathway for bikaverin bioproduction in a wild F. oxysporum strain by cross-linking the pigment profiles we obtained under two different fermentation conditions with literature. Naphthoquinone pigments were extracted with a pressurized liquid extraction method, and characterized by HPLC–DAD and UHPLC-HRMS. The results led to the conclusions that the F. oxysporum LCP531 strain was able to produce bikaverin and its various intermediates, e.g., pre-bikaverin, oxo-pre-bikaverin, dinor-bikaverin, me-oxo-pre-bikaverin, and nor-bikaverin, in submerged cultures in various proportions. To our knowledge, this is the first report of the isolation of these five bikaverin intermediates from F. oxysporum cultures, providing us with steady clues for confirming a bikaverin metabolic pathway as well as some of its regulatory patterns in the F. oxysporum LCP531 strain, based on the previously reported model in F. fujikuroi. Interestingly, norbikaverin accumulated along with bikaverin in mycelial cells when the strain grew on simple carbon and nitrogen sources and additional cofactors. Along bikaverin production, we were able to describe the excretion of the toxin beauvericin as main extrolite exclusively in liquid medium containing complex nitrogen and carbon sources, as well as the isolation of ergosterol derivate in mycelial extracts, which have potential for pharmaceutical uses. Therefore, culture conditions were also concluded to trigger some specific biosynthetic route favoring various metabolites of interest. Such observation is of great significance for selective production of pigments and/or prevention of occurrence of others (aka mycotoxins).
Collapse
|
10
|
Reus E, Nielsen MR, Frandsen RJN. Metabolic and regulatory insights from the experimental horizontal gene transfer of the aurofusarin and bikaverin gene clusters to
Aspergillus nidulans. Mol Microbiol 2019; 112:1684-1700. [DOI: 10.1111/mmi.14376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Elise Reus
- Department of Biotechnology and Bioengineering Technical University of Denmark Kongens Lyngby Denmark
| | | | | |
Collapse
|
11
|
In Vitro and in Silico Evaluation of Bikaverin as a Potent Inhibitor of Human Protein Kinase CK2. Molecules 2019; 24:molecules24071380. [PMID: 30965682 PMCID: PMC6479664 DOI: 10.3390/molecules24071380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Protein kinase CK2 is an emerging target for therapeutic intervention in human diseases, particularly in cancer. Inhibitors of this enzyme are currently in clinical trials, indicating the druggability of human CK2. By virtual screening of the ZINC database, we found that the natural compound bikaverin can fit well in the ATP binding site of the target enzyme CK2. By further in vitro evaluation using CK2 holoenzyme, bikaverin turned to be a potent inhibitor with an IC50 value of 1.24 µM. In this work, the cell permeability of bikaverin was determined using a Caco-2 cell permeability assay as a prerequisite for cellular evaluation and the compound turned out to be cell permeable with a Papp- value of 4.46 × 10-6 cm/s. Bikaverin was tested for its effect on cell viability using a MTT assay and cell proliferation using an EdU assay in different cancer cell lines (MCF7, A427 and A431 cells). Cell viability and cell proliferation were reduced dramatically after treatment with 10 µM bikaverin for 24 h. Additionally the IncuCyte® live-cell imaging system was applied for monitoring the cytotoxicity of bikaverin in the three tested cancer cell lines. Finally, molecular dynamic studies were performed to clarify the ligand binding mode of bikaverin at the ATP binding site of CK2 and to identify the amino acids involved.
Collapse
|
12
|
Lebeau J, Petit T, Clerc P, Dufossé L, Caro Y. Isolation of two novel purple naphthoquinone pigments concomitant with the bioactive red bikaverin and derivates thereof produced by Fusarium oxysporum. Biotechnol Prog 2018; 35:e2738. [DOI: 10.1002/btpr.2738] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Juliana Lebeau
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments; Université de La Réunion; Saint-Denis France
| | - Thomas Petit
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments; Université de La Réunion; Saint-Denis France
- Département Hygiène Sécurité Environnement (HSE); IUT La Réunion, Université de La Réunion; Saint-Pierre France
| | - Patricia Clerc
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments; Université de La Réunion; Saint-Denis France
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments; Université de La Réunion; Saint-Denis France
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments; Université de La Réunion; Saint-Denis France
- Département Hygiène Sécurité Environnement (HSE); IUT La Réunion, Université de La Réunion; Saint-Pierre France
| |
Collapse
|
13
|
Hoogendoorn K, Barra L, Waalwijk C, Dickschat JS, van der Lee TAJ, Medema MH. Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium. Front Microbiol 2018; 9:1158. [PMID: 29922257 PMCID: PMC5996196 DOI: 10.3389/fmicb.2018.01158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Plant pathogenic fungi in the Fusarium genus cause severe damage to crops, resulting in great financial losses and health hazards. Specialized metabolites synthesized by these fungi are known to play key roles in the infection process, and to provide survival advantages inside and outside the host. However, systematic studies of the evolution of specialized metabolite-coding potential across Fusarium have been scarce. Here, we apply a combination of bioinformatic approaches to identify biosynthetic gene clusters (BGCs) across publicly available genomes from Fusarium, to group them into annotated families and to study gain/loss events of BGC families throughout the history of the genus. Comparison with MIBiG reference BGCs allowed assignment of 29 gene cluster families (GCFs) to pathways responsible for the production of known compounds, while for 57 GCFs, the molecular products remain unknown. Comparative analysis of BGC repertoires using ancestral state reconstruction raised several new hypotheses on how BGCs contribute to Fusarium pathogenicity or host specificity, sometimes surprisingly so: for example, a gene cluster for the biosynthesis of hexadehydro-astechrome was identified in the genome of the biocontrol strain Fusarium oxysporum Fo47, while being absent in that of the tomato pathogen F. oxysporum f.sp. lycopersici. Several BGCs were also identified on supernumerary chromosomes; heterologous expression of genes for three terpene synthases encoded on the Fusarium poae supernumerary chromosome and subsequent GC/MS analysis showed that these genes are functional and encode enzymes that each are able to synthesize koraiol; this observed functional redundancy supports the hypothesis that localization of copies of BGCs on supernumerary chromosomes provides freedom for evolutionary innovations to occur, while the original function remains conserved. Altogether, this systematic overview of biosynthetic diversity in Fusarium paves the way for targeted natural product discovery based on automated identification of species-specific pathways as well as for connecting species ecology to the taxonomic distributions of BGCs.
Collapse
Affiliation(s)
- Koen Hoogendoorn
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands.,Biointeractions and Plant Health, Plant Research International, Wageningen University and Research, Wageningen, Netherlands
| | - Lena Barra
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Cees Waalwijk
- Biointeractions and Plant Health, Plant Research International, Wageningen University and Research, Wageningen, Netherlands
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Theo A J van der Lee
- Biointeractions and Plant Health, Plant Research International, Wageningen University and Research, Wageningen, Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
14
|
Abstract
Metabolic gene clusters (MGCs) have provided some of the earliest glimpses at the biochemical machinery of yeast and filamentous fungi. MGCs encode diverse genetic mechanisms for nutrient acquisition and the synthesis/degradation of essential and adaptive metabolites. Beyond encoding the enzymes performing these discrete anabolic or catabolic processes, MGCs may encode a range of mechanisms that enable their persistence as genetic consortia; these include enzymatic mechanisms to protect their host fungi from their inherent toxicities, and integrated regulatory machinery. This modular, self-contained nature of MGCs contributes to the metabolic and ecological adaptability of fungi. The phylogenetic and ecological patterns of MGC distribution reflect the broad diversity of fungal life cycles and nutritional modes. While the origins of most gene clusters are enigmatic, MGCs are thought to be born into a genome through gene duplication, relocation, or horizontal transfer, and analyzing the death and decay of gene clusters provides clues about the mechanisms selecting for their assembly. Gene clustering may provide inherent fitness advantages through metabolic efficiency and specialization, but experimental evidence for this is currently limited. The identification and characterization of gene clusters will continue to be powerful tools for elucidating fungal metabolism as well as understanding the physiology and ecology of fungi.
Collapse
Affiliation(s)
- Jason C Slot
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
15
|
Janevska S, Arndt B, Baumann L, Apken LH, Mauriz Marques LM, Humpf HU, Tudzynski B. Establishment of the Inducible Tet-On System for the Activation of the Silent Trichosetin Gene Cluster in Fusarium fujikuroi. Toxins (Basel) 2017; 9:toxins9040126. [PMID: 28379186 PMCID: PMC5408200 DOI: 10.3390/toxins9040126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/05/2022] Open
Abstract
The PKS-NRPS-derived tetramic acid equisetin and its N-desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus. The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum, a species distantly related to the notorious rice pathogen Fusarium fujikuroi. Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi. Bioinformatic analysis revealed that this cluster does not contain the equisetin N-methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi. Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22, led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23, encoding a second Zn(II)2Cys6 TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T. TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus.
Collapse
Affiliation(s)
- Slavica Janevska
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany.
| | - Leonie Baumann
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Lisa Helene Apken
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Lucas Maciel Mauriz Marques
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany.
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
16
|
Fusarium species—a promising tool box for industrial biotechnology. Appl Microbiol Biotechnol 2017; 101:3493-3511. [DOI: 10.1007/s00253-017-8255-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
|
17
|
Janevska S, Arndt B, Niehaus EM, Burkhardt I, Rösler SM, Brock NL, Humpf HU, Dickschat JS, Tudzynski B. Gibepyrone Biosynthesis in the Rice Pathogen Fusarium fujikuroi Is Facilitated by a Small Polyketide Synthase Gene Cluster. J Biol Chem 2016; 291:27403-27420. [PMID: 27856636 PMCID: PMC5207165 DOI: 10.1074/jbc.m116.753053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/14/2016] [Indexed: 11/06/2022] Open
Abstract
The 2H-pyran-2-one gibepyrone A and its oxidized derivatives gibepyrones B-F have been isolated from the rice pathogenic fungus Fusarium fujikuroi already more than 20 years ago. However, these products have not been linked to the respective biosynthetic genes, and therefore, their biosynthesis has not yet been analyzed on a molecular level. Feeding experiments with isotopically labeled precursors clearly supported a polyketide origin for the formal monoterpenoid gibepyrone A, whereas the terpenoid pathway could be excluded. Targeted gene deletion verified that the F. fujikuroi polyketide synthase PKS13, designated Gpy1, is responsible for gibepyrone A biosynthesis. Next to Gpy1, the ATP-binding cassette transporter Gpy2 is encoded by the gibepyrone gene cluster. Gpy2 was shown to have only a minor impact on the actual efflux of gibepyrone A out of the cell. Instead, we obtained evidence that Gpy2 is involved in gene regulation as it represses GPY1 gene expression. Thus, GPY1 was up-regulated and gibepyrone A production was enhanced both extra- and intracellularly in Δgpy2 mutants. Furthermore, expression of GPY genes is strictly repressed by members of the fungus-specific velvet complex, Vel1, Vel2, and Lae1, whereas Sge1, a major regulator of secondary metabolism in F. fujikuroi, affects gibepyrone biosynthesis in a positive manner. The gibepyrone A derivatives gibepyrones B and D were shown to be produced by cluster-independent P450 monooxygenases, probably to protect the fungus from the toxic product. In contrast, the formation of gibepyrones E and F from gibepyrone A is a spontaneous process and independent of enzymatic activity.
Collapse
Affiliation(s)
- Slavica Janevska
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
| | - Birgit Arndt
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Eva-Maria Niehaus
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
| | - Immo Burkhardt
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Sarah M Rösler
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Nelson L Brock
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Hans-Ulrich Humpf
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Jeroen S Dickschat
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Bettina Tudzynski
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster,
| |
Collapse
|
18
|
Studt L, Janevska S, Niehaus EM, Burkhardt I, Arndt B, Sieber CMK, Humpf HU, Dickschat JS, Tudzynski B. Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi. Environ Microbiol 2016; 18:936-56. [PMID: 26662839 DOI: 10.1111/1462-2920.13150] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 01/03/2023]
Abstract
Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety.
Collapse
Affiliation(s)
- Lena Studt
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Slavica Janevska
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Eva-Maria Niehaus
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Immo Burkhardt
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, 48149, Münster, Germany
| | - Christian M K Sieber
- Lawrence Berkeley National Lab, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, 48149, Münster, Germany
| | - Jeroen S Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|