1
|
Liu R, Li X, Liu Y, Du L, Zhu Y, Wu L, Hu B. A high-speed microscopy system based on deep learning to detect yeast-like fungi cells in blood. Bioanalysis 2024; 16:289-303. [PMID: 38334080 DOI: 10.4155/bio-2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Background: Blood-invasive fungal infections can cause the death of patients, while diagnosis of fungal infections is challenging. Methods: A high-speed microscopy detection system was constructed that included a microfluidic system, a microscope connected to a high-speed camera and a deep learning analysis section. Results: For training data, the sensitivity and specificity of the convolutional neural network model were 93.5% (92.7-94.2%) and 99.5% (99.1-99.5%), respectively. For validating data, the sensitivity and specificity were 81.3% (80.0-82.5%) and 99.4% (99.2-99.6%), respectively. Cryptococcal cells were found in 22.07% of blood samples. Conclusion: This high-speed microscopy system can analyze fungal pathogens in blood samples rapidly with high sensitivity and specificity and can help dramatically accelerate the diagnosis of fungal infectious diseases.
Collapse
Affiliation(s)
- Ruiqi Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Xiaojie Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yingyi Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Lijun Du
- Department of Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangdong, China
| | - Yingzhu Zhu
- Guangzhou Waterrock Gene Technology, Guangdong, China
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
2
|
Kelliher JM, Robinson AJ, Longley R, Johnson LYD, Hanson BT, Morales DP, Cailleau G, Junier P, Bonito G, Chain PSG. The endohyphal microbiome: current progress and challenges for scaling down integrative multi-omic microbiome research. MICROBIOME 2023; 11:192. [PMID: 37626434 PMCID: PMC10463477 DOI: 10.1186/s40168-023-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
As microbiome research has progressed, it has become clear that most, if not all, eukaryotic organisms are hosts to microbiomes composed of prokaryotes, other eukaryotes, and viruses. Fungi have only recently been considered holobionts with their own microbiomes, as filamentous fungi have been found to harbor bacteria (including cyanobacteria), mycoviruses, other fungi, and whole algal cells within their hyphae. Constituents of this complex endohyphal microbiome have been interrogated using multi-omic approaches. However, a lack of tools, techniques, and standardization for integrative multi-omics for small-scale microbiomes (e.g., intracellular microbiomes) has limited progress towards investigating and understanding the total diversity of the endohyphal microbiome and its functional impacts on fungal hosts. Understanding microbiome impacts on fungal hosts will advance explorations of how "microbiomes within microbiomes" affect broader microbial community dynamics and ecological functions. Progress to date as well as ongoing challenges of performing integrative multi-omics on the endohyphal microbiome is discussed herein. Addressing the challenges associated with the sample extraction, sample preparation, multi-omic data generation, and multi-omic data analysis and integration will help advance current knowledge of the endohyphal microbiome and provide a road map for shrinking microbiome investigations to smaller scales. Video Abstract.
Collapse
Affiliation(s)
| | | | - Reid Longley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Unraveling the Gene Regulatory Networks of the Global Regulators VeA and LaeA in Aspergillus nidulans. Microbiol Spectr 2023:e0016623. [PMID: 36920196 PMCID: PMC10101098 DOI: 10.1128/spectrum.00166-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
In the filamentous fungus Aspergillus nidulans, the velvet family protein VeA and the global regulator of secondary metabolism LaeA govern development and secondary metabolism mostly by acting as the VelB/VeA/LaeA heterotrimeric complex. While functions of these highly conserved controllers have been well studied, the genome-wide regulatory networks governing cellular and chemical development remain to be uncovered. Here, by integrating transcriptomic analyses, protein-DNA interactions, and the known A. nidulans gene/protein interaction data, we have unraveled the gene regulatory networks governed by VeA and LaeA. Within the networks, VeA and LaeA directly control the expression of numerous genes involved in asexual/sexual development and primary/secondary metabolism in A. nidulans. Totals of 3,190 and 1,834 potential direct target genes of VeA and LaeA were identified, respectively, including several important developmental and metabolic regulators such as flbA·B·C, velB·C, areA, mpkB, and hogA. Moreover, by analyzing over 8,800 ChIP-seq peaks, we have revealed the predicted common consensus sequences 5'-TGATTGGCTG-3' and 5'-TCACGTGAC-3' that VeA and LaeA might bind to interchangeably. These findings further expand the biochemical and genomic studies of the VelB/VeA/LaeA complex functionality in the gene regulation. In summary, this study unveils genes that are under the regulation of VeA and LaeA, proposes the VeA- and LaeA-mediated gene regulatory networks, and demonstrates their genome-wide developmental and metabolic regulations in A. nidulans. IMPORTANCE Fungal development and metabolism are genetically programmed events involving specialized cellular differentiation, cellular communication, and temporal and spatial regulation of gene expression. In genus Aspergillus, the global regulators VeA and LaeA govern developmental and metabolic processes by affecting the expression of downstream genes, including multiple transcription factors and signaling elements. Due to their vital roles in overall biology, functions of VeA and LaeA have been extensively studied, but there still has been a lack of knowledge about their genome-wide regulatory networks. In this study, employing the model fungus A. nidulans, we have identified direct targets of VeA and LaeA and their gene regulatory networks by integrating transcriptome, protein-DNA interaction, and protein-protein interaction analyses. Our results demonstrate the genome-wide regulatory mechanisms of these global regulators, thereby advancing the knowledge of fungal biology and genetics.
Collapse
|
4
|
The Putative C 2H 2 Transcription Factor VadH Governs Development, Osmotic Stress Response, and Sterigmatocystin Production in Aspergillus nidulans. Cells 2022; 11:cells11243998. [PMID: 36552763 PMCID: PMC9776899 DOI: 10.3390/cells11243998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The VosA-VelB hetero-dimeric complex plays a pivotal role in regulating development and secondary metabolism in Aspergillus nidulans. In this work, we characterize a new VosA/VelB-activated gene called vadH, which is predicted to encode a 457-amino acid length protein containing four adjacent C2H2 zinc-finger domains. Mutational inactivation of vosA or velB led to reduced mRNA levels of vadH throughout the lifecycle, suggesting that VosA and VelB have a positive regulatory effect on the expression of vadH. The deletion of vadH resulted in decreased asexual development (conidiation) but elevated production of sexual fruiting bodies (cleistothecia), indicating that VadH balances asexual and sexual development in A. nidulans. Moreover, the vadH deletion mutant exhibited elevated susceptibility to hyperosmotic stress compared to wild type and showed elevated production of the mycotoxin sterigmatocystin (ST). Genome-wide expression analyses employing RNA-Seq have revealed that VadH is likely involved in regulating more genes and biological pathways in the developmental stages than those in the vegetative growth stage. The brlA, abaA, and wetA genes of the central regulatory pathway for conidiation are downregulated significantly in the vadH null mutant during asexual development. VadH also participates in regulating the genes, mat2, ppgA and lsdA, etc., related to sexual development, and some of the genes in the ST biosynthetic gene cluster. In summary, VadH is a putative transcription factor with four C2H2 finger domains and is involved in regulating asexual/sexual development, osmotic stress response, and ST production in A. nidulans.
Collapse
|
5
|
Ajmal M, Alshannaq AF, Moon H, Choi D, Akram A, Nayyar BG, Gibbons JG, Yu JH. Characterization of 260 Isolates of Aspergillus Section Flavi Obtained from Sesame Seeds in Punjab, Pakistan. Toxins (Basel) 2022; 14:toxins14020117. [PMID: 35202144 PMCID: PMC8876583 DOI: 10.3390/toxins14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Sesame Sesamum indicum L. is a major oil-based seed crop that has been widely cultivated and consumed in Pakistan. Unfortunately, sesame is highly prone to Aspergillus fungal growth in the field, and under inappropriate storage conditions can become contaminated with aflatoxins, the most potent carcinogen found in nature. Here, we have isolated a high number of Aspergillus isolates from sesame seeds in fresh and stored conditions obtained from rainfed and irrigated zones of Punjab, Pakistan, and characterized them for aflatoxigenic potentials. Using morphological identification techniques, 260 isolates were grouped as potential Aspergillus section Flavi, with 126 and 134 originating from the rainfed and irrigated zones, respectively. Out of 260 in total, 188 isolates were confirmed to produce aflatoxins. There were no significant differences in potential aflatoxigenic isolates with respect to the rainfed and irrigated zones. However, the number of potential aflatoxigenic isolates was significantly higher (p < 0.05) in stored samples than that of those from fresh sesame seeds in the rainfed and irrigated zone. Whole genome sequencing and comparative analyses of 12 select isolates have revealed that one of the A. flavus isolates, which produced very low aflatoxins (AFP10), has an elevated missense variant rate, numerous high impact mutations, and a 600 base pair deletion in the norB gene. In summary, our study provides insights into aflatoxigenic potential and the associated genetic diversity of indigenous Aspergillus section Flavi isolates and potential management strategies for reducing aflatoxin contamination levels in a major crop consumed in Punjab, Pakistan.
Collapse
Affiliation(s)
- Maryam Ajmal
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.); (A.A.)
| | - Ahmad F. Alshannaq
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA; (A.F.A.); (H.M.); (D.C.)
| | - Heungyun Moon
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA; (A.F.A.); (H.M.); (D.C.)
| | - Dasol Choi
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA; (A.F.A.); (H.M.); (D.C.)
| | - Abida Akram
- Department of Botany, Faculty of Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.); (A.A.)
| | - Brian Gagosh Nayyar
- Department of Botany, Faculty of Sciences, University of Sialkot, Sialkot 51310, Pakistan;
| | - John G. Gibbons
- Department of Food Science, College of Natural Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA; (A.F.A.); (H.M.); (D.C.)
- Department of Systems Biotechnology, Konkuk Institute of Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence:
| |
Collapse
|
6
|
Chacón-Vargas K, McCarthy CO, Choi D, Wang L, Yu JH, Gibbons JG. Comparison of Two Aspergillus oryzae Genomes From Different Clades Reveals Independent Evolution of Alpha-Amylase Duplication, Variation in Secondary Metabolism Genes, and Differences in Primary Metabolism. Front Microbiol 2021; 12:691296. [PMID: 34326825 PMCID: PMC8313989 DOI: 10.3389/fmicb.2021.691296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes (bacteria, yeasts, molds), in addition to plants and animals, were domesticated for their roles in food preservation, nutrition and flavor. Aspergillus oryzae is a domesticated filamentous fungal species traditionally used during fermentation of Asian foods and beverage, such as sake, soy sauce, and miso. To date, little is known about the extent of genome and phenotypic variation of A. oryzae isolates from different clades. Here, we used long-read Oxford Nanopore and short-read Illumina sequencing to produce a highly accurate and contiguous genome assemble of A. oryzae 14160, an industrial strain from China. To understand the relationship of this isolate, we performed phylogenetic analysis with 90 A. oryzae isolates and 1 isolate of the A. oryzae progenitor, Aspergillus flavus. This analysis showed that A. oryzae 14160 is a member of clade A, in comparison to the RIB 40 type strain, which is a member of clade F. To explore genome variation between isolates from distinct A. oryzae clades, we compared the A. oryzae 14160 genome with the complete RIB 40 genome. Our results provide evidence of independent evolution of the alpha-amylase gene duplication, which is one of the major adaptive mutations resulting from domestication. Synteny analysis revealed that both genomes have three copies of the alpha-amylase gene, but only one copy on chromosome 2 was conserved. While the RIB 40 genome had additional copies of the alpha-amylase gene on chromosomes III, and V, 14160 had a second copy on chromosome II and an third copy on chromosome VI. Additionally, we identified hundreds of lineage specific genes, and putative high impact mutations in genes involved in secondary metabolism, including several of the core biosynthetic genes. Finally, to examine the functional effects of genome variation between strains, we measured amylase activity, proteolytic activity, and growth rate on several different substrates. RIB 40 produced significantly higher levels of amylase compared to 14160 when grown on rice and starch. Accordingly, RIB 40 grew faster on rice, while 14160 grew faster on soy. Taken together, our analyses reveal substantial genome and phenotypic variation within A. oryzae.
Collapse
Affiliation(s)
- Katherine Chacón-Vargas
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.,Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Colin O McCarthy
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Dasol Choi
- Deapertment of Food Science, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, and Food Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jae-Hyuk Yu
- Department of Bacteriology, and Food Research Institute, University of Wisconsin-Madison, Madison, WI, United States.,Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - John G Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.,Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
7
|
Xie Y, Zhong Y, Chang J, Kwan HS. Chromosome-level de novo assembly of Coprinopsis cinerea A43mut B43mut pab1-1 #326 and genetic variant identification of mutants using Nanopore MinION sequencing. Fungal Genet Biol 2020; 146:103485. [PMID: 33253902 DOI: 10.1016/j.fgb.2020.103485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
The homokaryotic Coprinopsis cinerea strain A43mut B43mut pab1-1 #326 is a widely used experimental model for developmental studies in mushroom-forming fungi. It can grow on defined artificial media and complete the whole lifecycle within two weeks. The mutations in mating type factors A and B result in the special feature of clamp formation and fruiting without mating. This feature allows investigations and manipulations with a homokaryotic genetic background. Current genome assembly of strain #326 was based on short-read sequencing data and was highly fragmented, leading to the bias in gene annotation and downstream analyses. Here, we report a chromosome-level genome assembly of strain #326. Oxford Nanopore Technology (ONT) MinION sequencing was used to get long reads. Illumina short reads was used to polish the sequences. A combined assembly yield 13 chromosomes and a mitochondrial genome as individual scaffolds. The assembly has 15,250 annotated genes with a high synteny with the C. cinerea strain Okayama-7 #130. This assembly has great improvement on contiguity and annotations. It is a suitable reference for further genomic studies, especially for the genetic, genomic and transcriptomic analyses in ONT long reads. Single nucleotide variants and structural variants in six mutagenized and cisplatin-screened mutants could be identified and validated. A 66 bp deletion in Ras GTPase-activating protein (RasGAP) was found in all mutants. To make a better use of ONT sequencing platform, we modified a high-molecular-weight genomic DNA isolation protocol based on magnetic beads for filamentous fungi. This study showed the use of MinION to construct a fungal reference genome and to perform downstream studies in an individual laboratory. An experimental workflow was proposed, from DNA isolation and whole genome sequencing, to genome assembly and variant calling. Our results provided solutions and parameters for fungal genomic analysis on MinION sequencing platform.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Yiyi Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
The sino-nasal warzone: transcriptomic and genomic studies on sino-nasal aspergillosis in dogs. NPJ Biofilms Microbiomes 2020; 6:51. [PMID: 33184275 PMCID: PMC7665010 DOI: 10.1038/s41522-020-00163-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
We previously showed that each dog with chronic non-invasive sino-nasal aspergillosis (SNA) was infected with a single genotype of Aspergillus fumigatus. Here, we studied the transcriptome of this fungal pathogen and the canine host within the biofilm resulting from the infection. We describe here transcriptomes resulting from natural infections in animal species with A. fumigatus. The host transcriptome showed high expression of IL-8 and alarmins, uncontrolled inflammatory reaction and dysregulation of the Th17 response. The fungal transcriptome showed in particular expression of genes involved in secondary metabolites and nutrient acquisition. Single-nucleotide polymorphism analysis of fungal isolates from the biofilms showed large genetic variability and changes related with adaptation to host environmental factors. This was accompanied with large phenotypic variability in in vitro stress assays, even between isolates from the same canine patient. Our analysis provides insights in genetic and phenotypic variability of Aspergillus fumigatus in biofilms of naturally infected dogs reflecting in-host adaptation. Absence of a Th17 response and dampening of the Th1 response contributes to the formation of a chronic sino-nasal warzone.
Collapse
|
9
|
Park J, Lee MK, Yu JH, Kim JH, Han KH. Complete mitochondrial genome sequence of Afla-Guard ®, commercially available non-toxigenic Aspergillus flavus. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:3590-3592. [PMID: 33367022 PMCID: PMC7594763 DOI: 10.1080/23802359.2020.1825129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Afla-Guard® is a commercial non-toxigenic Aspergillus flavus strain used to decrease aflatoxin contamination level in field. Its mitochondrial genome was sequenced, showing that its length is 29,208 bp with typical configuration of Aspergillus mitochondrial genome. 17 SNPs and 27 INDELs were identified by comparing with previous A. flavus mitochondrial genome. Phylogenetic trees present that A. flavus of Afla-Guard® was clustered with the previous A. flavus mitochondrial genome.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd, Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Mi-Kyung Lee
- Department of Bacteriology, The University of Wisconsin-Madison, Madison, WI, USA.,Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, The University of Wisconsin-Madison, Madison, WI, USA
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| |
Collapse
|
10
|
Park J, Lee MK, Yu JH, Zhu B, Kim JH, Han KH. Complete mitochondrial genome sequence of Aspergillus flavus SRRC1009: insight of intraspecific variations on A. flavus mitochondrial genomes. Mitochondrial DNA B Resour 2020; 5:3585-3587. [PMID: 33367020 PMCID: PMC7594760 DOI: 10.1080/23802359.2020.1771226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 11/21/2022] Open
Abstract
The mitogenome of Aspergillus flavus SRRC1009 was sequenced to investigate intraspecific variations on mitochondrial genomes of A. flavus. It shows 29,202 bp with a typical configuration of Aspergillus mitogenome. Sixteen SNPs and 22 INDELs and 17 SNPs and 27 INDELs were identified against AflaGuard® and JQ355000, respectively. Phylogenetic trees present in the three A. flavus mitochondrial genomes were clustered with A. oryzae mitochondrial genome in one clade.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Mi-Kyung Lee
- Department of Bacteriology, The University of Wisconsin-Madison, Madison, WI, USA
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, The University of Wisconsin-Madison, Madison, WI, USA
| | - Bohan Zhu
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Jong-Hwa Kim
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, Republic of Korea
| |
Collapse
|
11
|
Penouilh-Suzette C, Fourré S, Besnard G, Godiard L, Pecrix Y. A simple method for high molecular-weight genomic DNA extraction suitable for long-read sequencing from spores of an obligate biotroph oomycete. J Microbiol Methods 2020; 178:106054. [PMID: 32926900 DOI: 10.1016/j.mimet.2020.106054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Long-read sequencing technologies are having a major impact on our approaches to studying non-model organisms and microbial communities. By significantly reducing the cost and facilitating the genome assembly pipelines, any laboratory can now develop its own genomics program regardless of the complexity of the genome studied. The most crucial current challenge is to develop efficient protocols for extracting genomic DNA (gDNA) with high quality and integrity adapted to the organism of interest. This can be particularly complex for obligate pathogens that must maintain intimate interactions inside infected host tissues. Here we propose a simple and cost-effective method for high molecular weight gDNA extraction from spores of Plasmopara halstedii, an obligate biotroph oomycete pathogen responsible for downy mildew in sunflower. We optimized the yield, the quality and the integrity of the extracted gDNA by fine-tuning three critical parameters, the grinding, the lysis temperature and the lysis duration. We obtained gDNA with a fragment size distribution reaching a peak ranging from 79 to 145 kb. More than half of the extracted gDNA consisted of DNA fragments larger than 42 kb, with 23% of fragments larger than 100 kb. We then demonstrated the relevance of this protocol for long-read sequencing using PacBio RSII technology. With this protocol, we were able to obtain a mean read length of 9.3 kb, a max read length of 71 kb and an N50 of 13.3 kb. The development of such DNA extraction protocols is an essential prerequisite for fully exploiting technologies requiring high molecular weight gDNA (e.g. long-read sequencing or optical mapping). These technological advances will help generate data to answer questions such as the role of newly duplicated gene clusters, repeated regions, genomic structural variations or to define number of chromosomes that still remains undefined in many species of pathogenic fungi and oomycetes.
Collapse
Affiliation(s)
- Charlotte Penouilh-Suzette
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Sandra Fourré
- GeT-PlaGe, INRAE Auzeville, US 1426, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Guillaume Besnard
- CNRS, Université Paul Sabatier, IRD, UMR 5174 EDB (Laboratoire Évolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France.
| | - Laurence Godiard
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Yann Pecrix
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France; CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Pole de Protection des Plantes, 7 chemin de l'IRAT, F-97410 Saint Pierre, Réunion, France.
| |
Collapse
|
12
|
The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans. J Microbiol 2019; 57:893-899. [DOI: 10.1007/s12275-019-9214-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022]
|
13
|
Yamashita S, Nakagawa H, Sakaguchi T, Arima TH, Kikoku Y. Detection of Talaromyces macrosporus and Talaromyces trachyspermus by a PCR assay targeting the hydrophobin gene. Lett Appl Microbiol 2019; 68:415-422. [PMID: 30636057 DOI: 10.1111/lam.13116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/04/2018] [Accepted: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Talaromyces species are typical fungi capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Hydrophobins, which are unique to fungi, are small secreted proteins that form amphipathic layers on the outer surface of fungal cell walls. In this study, species-specific primer sets for detecting and identifying Talaromyces macrosporus and Talaromyces trachyspermus were designed based on hydrophobin gene sequences. A conventional polymerase chain reaction (PCR) assay using these primer sets produced species-specific amplicons for T. macrosporus and T. trachyspermus. The detection limit for each primer set was 100 pg template DNA. This assay also detected fungal DNA extracted from blueberries inoculated with T. macrosporus. Other heat-resistant fungi, including Byssochlamys, Neosartorya and Talaromyces species, which cause food spoilage, were not detected in PCR amplifications with these primer sets. Furthermore, a conventional PCR assay using a crude DNA extract as the template also yielded amplicons specific to T. macrosporus and T. trachyspermus. The simple and rapid PCR assay described herein is highly species-specific and can reliably detect T. macrosporus and T. trachyspermus, suggesting it may be relevant for the food and beverage industry. SIGNIFICANCE AND IMPACT OF THE STUDY: The heat-resistant ascospores of Talaromyces macrosporus and Talaromyces trachyspermus are responsible for food spoilage after pasteurization. Traditional methods for detecting fungal contamination based on morphological characteristics are time-consuming and exhibit low sensitivity and specificity. In this study, a conventional polymerase chain reaction (PCR) assay based on hydrophobin gene sequences was developed for the specific detection of T. macrosporus and T. trachyspermus. This detection method was simple, rapid and highly specific. These results suggest that the conventional PCR assay developed in this study may be useful for detecting T. macrosporus and T. trachyspermus in raw materials and processed food products.
Collapse
Affiliation(s)
- S Yamashita
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - H Nakagawa
- R & D Center, Aohata Corporation, Takehara, Hiroshima, Japan
| | - T Sakaguchi
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - T-H Arima
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - Y Kikoku
- R & D Center, Aohata Corporation, Takehara, Hiroshima, Japan
| |
Collapse
|
14
|
Alshannaq AF, Gibbons JG, Lee MK, Han KH, Hong SB, Yu JH. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae strain. Sci Rep 2018; 8:16871. [PMID: 30442975 PMCID: PMC6237848 DOI: 10.1038/s41598-018-35246-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
Aflatoxins (AFs) are a group of carcinogenic and immunosuppressive mycotoxins that threaten global food safety. Globally, over 4.5 billion people are exposed to unmonitored levels of AFs. Aspergillus flavus is the major source of AF contamination in agricultural crops. One approach to reduce levels of AFs in agricultural commodities is to apply a non-aflatoxigenic competitor, e.g., Afla-Guard, to crop fields. In this study, we demonstrate that the food fermenting Aspergillus oryzae M2040 strain, isolated from Korean Meju (a brick of dry-fermented soybeans), can inhibit aflatoxin B1 (AFB1) production and proliferation of toxigenic A. flavus in lab culture conditions and peanuts. In peanuts, 1% inoculation level of A. oryzae M2040 could effectively displace the toxigenic A. flavus and inhibit AFB1 production. Moreover, cell-free culture filtrate of A. oryzae M2040 effectively inhibited AFB1 production and A. flavus growth, suggesting A. oryzae M2040 secretes inhibitory compounds. Whole genome-based comparative analyses indicate that the A. oryzae M2040 and Afla-Guard genomes are 37.9 and 36.4 Mbp, respectively, with each genome containing ~100 lineage specific genes. Our study establishes the idea of using A. oryzae and/or its cell-free culture fermentate as a potent biocontrol agent to control A. flavus propagation and AF contamination.
Collapse
Affiliation(s)
- Ahmad F Alshannaq
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Dr, Madison, WI, 53706, USA
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, 240 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Mi-Kyung Lee
- Biological resource center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju, 55338, Republic of Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, NAS, RDA, Wanju, Republic of Korea
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA.
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA.
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Genome Sequence of the Extremely Acidophilic Fungus Acidomyces richmondensis FRIK2901. Microbiol Resour Announc 2018; 7:MRA01314-18. [PMID: 30533739 PMCID: PMC6256575 DOI: 10.1128/mra.01314-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 11/20/2022] Open
Abstract
Acidomyces richmondensis is an extremophilic fungal species found in warm, acidic, and metal-rich environments. To improve upon the existing reference genome, we used PacBio and Illumina sequencing to assemble a highly contiguous 29.3-Mb genome of A. richmondensis FRIK2901. Acidomyces richmondensis is an extremophilic fungal species found in warm, acidic, and metal-rich environments. To improve upon the existing reference genome, we used PacBio and Illumina sequencing to assemble a highly contiguous 29.3-Mb genome of A. richmondensis FRIK2901.
Collapse
|
16
|
Characterization of the velvet regulators in Aspergillus flavus. J Microbiol 2018; 56:893-901. [PMID: 30361976 DOI: 10.1007/s12275-018-8417-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
Fungal development and secondary metabolism are closely associated via the activities of the fungal NK-kB-type velvet regulators that are highly conserved in filamentous fungi. Here, we investigated the roles of the velvet genes in the aflatoxigenic fungus Aspergillus flavus. Distinct from other Aspergillus species, the A. flavus genome contains five velvet genes, veA, velB, velC, velD, and vosA. The deletion of velD blocks the production of aflatoxin B1, but does not affect the formation of sclerotia. Expression analyses revealed that vosA and velB mRNAs accumulated at high levels during the late phase of asexual development and in conidia. The absence of vosA or velB decreased the content of conidial trehalose and the tolerance of conidia to the thermal and UV stresses. In addition, double mutant analyses demonstrated that VosA and VelB play an inter-dependent role in trehalose biosynthesis and conidial stress tolerance. Together with the findings of previous studies, the results of the present study suggest that the velvet regulators play the conserved and vital role in sporogenesis, conidial trehalose biogenesis, stress tolerance, and aflatoxin biosynthesis in A. flavus.
Collapse
|