1
|
Li P, Bez C, Zhang Y, Deng Y, Venturi V. N-acyl homoserine lactone cell-cell diffusible signalling in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2024; 25:e13467. [PMID: 39099210 PMCID: PMC11298618 DOI: 10.1111/mpp.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen University, Sun Yatsen UniversityShenzhenChina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome Center, University Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| |
Collapse
|
2
|
Ul Haq I, Maryam S, Shyntum DY, Khan TA, Li F. Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs. J Ind Microbiol Biotechnol 2024; 51:kuae018. [PMID: 38710584 PMCID: PMC11119867 DOI: 10.1093/jimb/kuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research. ONE-SENTENCE SUMMARY This comprehensive review of AFPs will be helpful for further research in antifungal research.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Divine Y Shyntum
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Taj A Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Fan Li
- School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Lin S, Chen X, Xie L, Zhang Y, Zeng F, Long Y, Ren L, Qi X, Wei J. Biocontrol potential of lipopeptides produced by Paenibacillus polymyxa AF01 against Neoscytalidium dimidiatum in pitaya. Front Microbiol 2023; 14:1188722. [PMID: 37266020 PMCID: PMC10231640 DOI: 10.3389/fmicb.2023.1188722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Pitaya canker, caused by Neoscytalidium dimidiatum, is one of the most important fungal diseases that cause significant losses in production. To replace chemical pesticides, the use of biocontrol strains to manage plant diseases has been the focus of research. In this study, the bacterial strain AF01, identified as Paenibacillus polymyxa, exhibited significant antifungal effects against N. dimidiatum and four other pitaya fungal pathogens. The strain P. polymyxa AF01 produces 13 fusaricidins, which directly inhibit mycelial growth, spore germination and germ tube elongation by causing the membrane integrity and cell ultrastructure to incur irreversible damage. Pot experiment and yield test confirmed that AF01 provided preservative effects by reducing the disease index. In comparison to the untreated control groups, RNA-seq data showed that P. polymyxa AF01 selectively blocked some transcription and translation processes and inhibited RNA and DNA structural dynamics, energy production and conversion, and signal transduction, particularly cell wall biosynthesis, changes in membrane permeability, and impairment of protein biosynthesis. Thus, P. polymyxa AF01 could be potentially useful as a suitable biocontrol agent for pitaya canker.
Collapse
Affiliation(s)
- Shanyu Lin
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Xiaohang Chen
- Baise Agricultural Scientific Research Institute, Baise, China
| | - Ling Xie
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Yan Zhang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Fenghua Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Yanyan Long
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi, China
| | - Liyun Ren
- College of Agricultural Engineering, Guangxi Vocational University of Agriculture, Nanning, China
| | - Xiuling Qi
- College of Agricultural Engineering, Guangxi Vocational University of Agriculture, Nanning, China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Luo H, Meng S, Deng Y, Deng Z, Shi H. In vitro antifungal activity of lasiodiplodin, isolated from endophytic fungus Lasiodiplodia pseudotheobromae J-10 associated with Sarcandra glabra and optimization of culture conditions for lasiodiplodin production. Arch Microbiol 2023; 205:140. [PMID: 36964826 DOI: 10.1007/s00203-023-03440-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/26/2023]
Abstract
A macrolide antibiotic, lasiodiplodin was isolated from the endophytic fungus (EF) Lasiodiplodia pseudotheobromae J-10 associated with the medicinal plant Sarcandra glabra. In vitro antifungal assay demonstrated the inhibitory activity of lasiodiplodin against the growth of six phytopathogenic fungi, with the IC50 values ranging between 15.50 and 52.30 μg/mL. The highest antifungal activities were recorded against Exserohilum turcicum, Colletotrichum capsici, and Pestalotiopsis theae, with IC50 values of 15.50, 15.90, and 17.55 μg/mL, respectively. The underlying mechanism of the antifungal activity of lasiodiplodin against E. turcicum included the alteration of its colony morphology and disturbance of its cell membrane integrity. In addition, the optimization of L. pseudotheobromae J-10 culture conditions increased lasiodiplodin yield to 52.33 mg/L from 0.59 mg/L at pre-optimization. This is the first report on the isolation and identification of antifungal compound from the EF L. pseudotheobromae J-10 associated with S. glabra, as well as on the optimization of L. pseudotheobromae J-10 culture conditions to increase lasiodiplodin yield. The results of this study support that lasiodiplodin is a natural compound with high potential bioactivity against phytopathogens, and provide a basis for further study of the EF associated with S. glabra.
Collapse
Affiliation(s)
- Haiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education-Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 1 Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, 541006, Guangxi, China
- Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, 541006, Guangxi, China
| | - Siyu Meng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education-Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 1 Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, 541006, Guangxi, China
- Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, 541006, Guangxi, China
| | - Yecheng Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education-Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 1 Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, 541006, Guangxi, China.
- Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, 541006, Guangxi, China.
| | - Zhiyong Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education-Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 1 Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, 541006, Guangxi, China
- Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, 541006, Guangxi, China
| | - Huilu Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education-Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 1 Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, 541006, Guangxi, China
- Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, 541006, Guangxi, China
| |
Collapse
|
5
|
A novel milk-derived peptide effectively inhibits Staphylococcus aureus: Interferes with cell wall synthesis, peptidoglycan biosynthesis disruption reaction mechanism, and its application in real milk system. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Choudhary M, Kumar V, Naik B, Verma A, Saris PEJ, Kumar V, Gupta S. Antifungal metabolites, their novel sources, and targets to combat drug resistance. Front Microbiol 2022; 13:1061603. [PMID: 36532457 PMCID: PMC9755354 DOI: 10.3389/fmicb.2022.1061603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Excessive antibiotic prescriptions as well as their misuse in agriculture are the main causes of antimicrobial resistance which poses a growing threat to public health. It necessitates the search for novel chemicals to combat drug resistance. Since ancient times, naturally occurring medicines have been employed and the enormous variety of bioactive chemicals found in nature has long served as an inspiration for researchers looking for possible therapeutics. Secondary metabolites from microorganisms, particularly those from actinomycetes, have made it incredibly easy to find new molecules. Different actinomycetes species account for more than 70% of naturally generated antibiotics currently used in medicine, and they also produce a variety of secondary metabolites, including pigments, enzymes, and anti-inflammatory compounds. They continue to be a crucial source of fresh chemical diversity and a crucial component of drug discovery. This review summarizes some uncommon sources of antifungal metabolites and highlights the importance of further research on these unusual habitats as a source of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Bindu Naik
- Department of Life Sciences (Food Technology & Nutrition), Graphic Era (Deemed to be University), Dehradun, India
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
7
|
Antifungal Peptide P852 Controls Fusarium Wilt in Faba Bean (Viciafaba L.) by Promoting Antioxidant Defense and Isoquinoline Alkaloid, Betaine, and Arginine Biosyntheses. Antioxidants (Basel) 2022; 11:antiox11091767. [PMID: 36139841 PMCID: PMC9495604 DOI: 10.3390/antiox11091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Green pesticides are highly desirable, as they are environmentally friendly and efficient. In this study, the antifungal peptide P852 was employed to suppress Fusarium wilt in the Faba bean. The disease index and a range of physiological and metabolomic analyses were performed to explore the interactions between P852 and the fungal disease. The incidence and disease index of Fusarium wilt were substantially decreased in diseased Faba beans that were treated with two different concentrations of P852 in both the climate chamber and field trial. For the first time, P852 exhibited potent antifungal effects on Fusarium in an open field condition. To explore the mechanisms that underlie P852′s antifungal effects, P852 treatment was found to significantly enhance antioxidant enzyme capacities including guaiacol peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and the activities of antifungal enzymes including chitinase and β-1,3-glucanase, as well as plant dry and fresh weights, and chlorophyll content compared to the control group (p ≤ 0.05). Metabolomics analysis of the diseased Faba bean treated with P852 showed changes in the TCA cycle, biological pathways, and many primary and secondary metabolites. The Faba bean treated with a low concentration of P852 (1 μg/mL, IC50) led to upregulated arginine and isoquinoline alkaloid biosynthesis, whereas those treated with a high concentration of P852 (10 μg/mL, MFC) exhibited enhanced betaine and arginine accumulation. Taken together, these findings suggest that P852 induces plant tolerance under Fusarium attack by enhancing the activities of antioxidant and antifungal enzymes, and restoring plant growth and development.
Collapse
|
8
|
Lin F, Zhu X, Sun J, Meng F, Lu Z, Lu Y. Bacillomycin D-C16 inhibits growth of Fusarium verticillioides and production of fumonisin B 1 in maize kernels. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105015. [PMID: 35082038 DOI: 10.1016/j.pestbp.2021.105015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Fusarium verticillioides causes ear and kernel rot in maize and produces mycotoxins, like fumonisin B1 (FB1). Bacillomycin D-C16 is a natural antimicrobial lipopeptide produced by Bacillus subtilis. In this study, the inhibitory effects of Bacillomycin D-C16 on the growth of F. verticillioides and on the production of FB1 in maize were investigated. Bacillomycin D-C16 displayed strong fungicidal activity against F. verticillioides, with a minimum inhibitory concentration (MIC) of 32 g/L. Scanning electron microscopy (SEM) showed that Bacillomycin D-C16 altered the morphology of F. verticillioides mycelia. Bacillomycin D-C16 reduced the ergosterol content, increased the release of nucleic acids and proteins, and increased the levels of reactive oxygen species (ROS) in fungal mycelia. Bacillomycin D-C16 also significantly inhibited the production of FB1 by inhibiting mycelial growth and decreasing the levels of fumonisin biosynthetic genes 1 (fum1), fum6 and fum14. The application of Bacillomycin D-C16 on maize kernels prior to storage inhibited the growth of F. verticillioides and the production of FB1. Our results suggested that Bacillomycin D-C16 has a significant antifungal activity that could be used as a potential natural antimicrobial agent to control food contamination and to ensure food safety.
Collapse
Affiliation(s)
- Fuxing Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China; School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
9
|
Chen Z, Wang X, Han P, Liu Y, Hong D, Li S, Ma A, Jia Y. Discovery of novel antimicrobial peptides, Brevilaterin V, from Brevibacillus laterosporus S62-9 after regulated by exogenously-added L-valine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Pok PS, García Londoño VA, Vicente S, Pacin A, Alzamora SM, Resnik SL. Citrus flavonoids against Fusarium verticillioides in post-harvest maize: Minimization of fumonisins and alteration of fungal ultrastructure. J Appl Microbiol 2021; 132:2234-2248. [PMID: 34800317 DOI: 10.1111/jam.15373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
AIMS To minimize fumonisins (FBs) accumulation by Fusarium verticillioides in post-harvest maize, using flavonoids obtained from citrus residues: naringin (NAR), neohesperidin (NEO), quercetin (QUER), and its mixtures. METHODS AND RESULTS Response surface methodology with Box-Behnken design was applied in maize at 0.98 and 0.95 aw . The optimal mixture found, composed of 0.40 mmol kg-1 NAR, 0.16 mmol kg-1 NEO and 0.37 mmol kg-1 QUER, reduced the accumulation of FBs B1, B2, and B3 by 88 ± 6%, 90 ± 6% and 85 ± 5%, respectively, when applied to maize at 0.98 aw . The mentioned mixture led to a 54 ± 9% reduction of fumonisin B1 accumulation in maize adjusted to 0.95 aw . These flavonoids applied individually and as a mixture, affected the structure of both the cell wall and the cytoplasm of F. verticillioides. The cell wall lost rigidity and the cells appeared highly deformed, with ruptured plasmalemma and disrupted endomembranes. CONCLUSIONS It was possible to diminish the accumulation of FBs in maize by a highly toxigenic Fusarium strain, producing severe damage to its ultrastructure. SIGNIFICANCE AND IMPACT OF STUDY The results indicate the possible use of flavonoids from citrus industry residues as natural and environmentally friendly antifungal agents to restrain the accumulation of FBs in stored maize.
Collapse
Affiliation(s)
- Paula Sol Pok
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Autónoma de Buenos Aires, Argentina.,Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Víctor Alonso García Londoño
- Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián Vicente
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Buenos Aires, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Provincia de Buenos Aires, Argentina
| | - Ana Pacin
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Buenos Aires, Argentina
| | - Stella Maris Alzamora
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Liliana Resnik
- Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
11
|
Rangel LI, Hamilton O, de Jonge R, Bolton MD. Fungal social influencers: secondary metabolites as a platform for shaping the plant-associated community. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:632-645. [PMID: 34510609 DOI: 10.1111/tpj.15490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fungal secondary metabolites (FSMs) are capable of manipulating plant community dynamics by inhibiting or facilitating the establishment of co-habitating organisms. Although production of FSMs is not crucial for survival of the producer, their absence can indirectly impair growth and/or niche competition of these fungi on the plant. The presence of FSMs with no obvious consequence on the fitness of the producer leaves questions regarding ecological impact. This review investigates how fungi employ FSMs as a platform to mediate fungal-fungal, fungal-bacterial and fungal-animal interactions associated with the plant community. We discuss how the biological function of FSMs may indirectly benefit the producer by altering the dynamics of surrounding organisms. We introduce several instances where FSMs influence antagonistic- or alliance-driven interactions. Part of our aim is to decipher the meaning of the FSM 'language' as it is widely noted to impact the surrounding community. Here, we highlight the contribution of FSMs to plant-associated interaction networks that affect the host either broadly or in ways that may have previously been unclear.
Collapse
Affiliation(s)
- Lorena I Rangel
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
| | - Olivia Hamilton
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Ronnie de Jonge
- Department of Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Melvin D Bolton
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
12
|
Soni R, Keharia H. Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. PLANTA 2021; 254:49. [PMID: 34383174 DOI: 10.1007/s00425-021-03695-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The spore-forming Bacillus and Paenibacillus species represent the phyla of beneficial bacteria for application as agricultural inputs in form of effective phytostimulators, biofertilizers, and biocontrol agents. The members of the genera Bacillus and Paenibacillus isolated from several ecological habitats are been thoroughly dissected for their effective application in the development of sustainable and eco-friendly agriculture. Numerous Bacillus and Paenibacillus species are reported as plant growth-promoting bacteria influencing the health and productivity of the food crops. This review narrates the mechanisms utilized by these species to enhance bioavailability and/or facilitate the acquisition of nutrients by the host plant, modulate plant hormones, stimulate host defense and stress resistance mechanisms, exert antagonistic action against soil and airborne pathogens, and alleviate the plant health. The mechanisms employed by Bacillus and Paenibacillus are seldom mutually exclusive. The comprehensive and systematic exploration of the aforementioned mechanisms in conjunction with the field investigations may assist in the exploration and selection of an effective biofertilizer and a biocontrol agent. This review aims to gather and discuss the literature citing the applications of Bacillus and Paenibacillus in the management of sustainable agriculture.
Collapse
Affiliation(s)
- Riteshri Soni
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Hareshkumar Keharia
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
13
|
Li T, Li L, Du F, Sun L, Shi J, Long M, Chen Z. Activity and Mechanism of Action of Antifungal Peptides from Microorganisms: A Review. Molecules 2021; 26:molecules26113438. [PMID: 34198909 PMCID: PMC8201221 DOI: 10.3390/molecules26113438] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Harmful fungi in nature not only cause diseases in plants, but also fungal infection and poisoning when people and animals eat food derived from crops contaminated with them. Unfortunately, such fungi are becoming increasingly more resistant to traditional synthetic antifungal drugs, which can make prevention and control work increasingly more difficult to achieve. This means they are potentially very harmful to human health and lifestyle. Antifungal peptides are natural substances produced by organisms to defend themselves against harmful fungi. As a result, they have become an important research object to help deal with harmful fungi and overcome their drug resistance. Moreover, they are expected to be developed into new therapeutic drugs against drug-resistant fungi in clinical application. This review focuses on antifungal peptides that have been isolated from bacteria, fungi, and other microorganisms to date. Their antifungal activity and factors affecting it are outlined in terms of their antibacterial spectra and effects. The toxic effects of the antifungal peptides and their common solutions are mentioned. The mechanisms of action of the antifungal peptides are described according to their action pathways. The work provides a useful reference for further clinical research and the development of safe antifungal drugs that have high efficiencies and broad application spectra.
Collapse
Affiliation(s)
- Tianxi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Lulu Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Fangyuan Du
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Lei Sun
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China;
| | - Jichao Shi
- Liaoning Agricultural Development Service Center, Shenyang 110032, China;
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
- Correspondence: (M.L.); (Z.C.)
| | - Zeliang Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
- Correspondence: (M.L.); (Z.C.)
| |
Collapse
|
14
|
Achieving Maximal Production of Fusaricidins from Paenibacillus kribbensis CU01 via Continuous Fermentation. Appl Biochem Biotechnol 2019; 190:712-720. [DOI: 10.1007/s12010-019-03121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
|
15
|
Luo H, Qing Z, Deng Y, Deng Z, Tang X, Feng B, Lin W. Two Polyketides Produced by Endophytic Penicillium citrinum DBR-9 From Medicinal Plant Stephania kwangsiensis and Their Antifungal Activity Against Plant Pathogenic Fungi. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19846795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Endophytic fungi, especially those found in medicinal plants, are widely studied as producers of secondary metabolites of biotechnological interest. In this study, on the basis of an activity-directed isolation method and spectroscopic analysis, two active polyketides, citrinin (1) and emodin (2), were isolated and identified from the fermentation of the endophytic fungus Penicillium citrinum DBR-9. This fungus was isolated from the root tubers of the traditional Chinese medicinal plant Stephania kwangsiensis. In vitro antifungal assay showed that the two polyketides displayed significant inhibition on hypha growth of tested plant pathogenic fungi with IC50 values ranging from 3.1 to 123.1 μg/mL and 3.0 to 141.0 μg/mL, respectively. In addition, the mechanism of the effects of emodin (2) on the pathogen revealed it could affect the colony morphology, destroy cell membrane integrity, and influence the protein synthesis of the tested fungal cell. This work is the first report of two polyketides-producing endophytic P. citrinum DBR-9 from the medicinal plant S. kwangsiensis. Our results present new opportunities to deeply understand the potential of these two polyketides as natural antifungal agents to control phytopathogens in agriculture.
Collapse
Affiliation(s)
- Haiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Zhen Qing
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Yecheng Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Zhiyong Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Xia’an Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Beibei Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Wei Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| |
Collapse
|
16
|
Paenibacillus polymyxa bioactive compounds for agricultural and biotechnological applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Abstract
Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum, we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi, we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium, we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks.IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including the rhizosphere. Many of these organisms are notorious as economically devastating plant pathogens, but little is known about how they communicate chemically with each other. Here, we uncover a conserved antagonistic communication between the widespread bacterial wilt pathogen Ralstonia solanacearum and plant-pathogenic fungi from disparate genera, Fusarium and Botrytis Exposure of Fusarium fujikuroi to the bacterial lipopeptide ralsolamycin resulted in production of the antibacterial metabolite bikaverin specifically in fungal tissues invaded by Ralstonia Remarkably, ralsolamycin induction of bikaverin was conserved in a Botrytis cinerea isolate carrying a horizontally transferred bikaverin gene cluster. These results indicate that horizontally transferred gene clusters may carry regulatory prompts that contribute to conserved fitness functions in polymicrobial environments.
Collapse
|