1
|
Singh PK, Devanna BN, Dubey H, Singh P, Joshi G, Kumar R. The potential of genome editing to create novel alleles of resistance genes in rice. Front Genome Ed 2024; 6:1415244. [PMID: 38933684 PMCID: PMC11201548 DOI: 10.3389/fgeed.2024.1415244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant's innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant's defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
| | | | - Himanshu Dubey
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - Prabhakar Singh
- Botany Department, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central University), Tehri Garhwal, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
2
|
Wang J, Hu H, Jiang X, Zhang S, Yang W, Dong J, Yang T, Ma Y, Zhou L, Chen J, Nie S, Liu C, Ning Y, Zhu X, Liu B, Yang J, Zhao J. Pangenome-Wide Association Study and Transcriptome Analysis Reveal a Novel QTL and Candidate Genes Controlling both Panicle and Leaf Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:27. [PMID: 38607544 PMCID: PMC11014823 DOI: 10.1186/s12284-024-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.
Collapse
Affiliation(s)
- Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Sciences, Yangjiang, 529500, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyuan Zhu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jianyuan Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Amezrou R, Ducasse A, Compain J, Lapalu N, Pitarch A, Dupont L, Confais J, Goyeau H, Kema GHJ, Croll D, Amselem J, Sanchez-Vallet A, Marcel TC. Quantitative pathogenicity and host adaptation in a fungal plant pathogen revealed by whole-genome sequencing. Nat Commun 2024; 15:1933. [PMID: 38431601 PMCID: PMC10908820 DOI: 10.1038/s41467-024-46191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.
Collapse
Affiliation(s)
- Reda Amezrou
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France.
| | - Aurélie Ducasse
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Jérôme Compain
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | - Anais Pitarch
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Laetitia Dupont
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Johann Confais
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | - Gert H J Kema
- Plant Research International B.V., Wageningen, The Netherlands
| | - Daniel Croll
- Department of Ecology and Evolution, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Joëlle Amselem
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | | | | |
Collapse
|
4
|
Escolà G, González-Miguel VM, Campo S, Catala-Forner M, Domingo C, Marqués L, San Segundo B. Development and Genome-Wide Analysis of a Blast-Resistant japonica Rice Variety. PLANTS (BASEL, SWITZERLAND) 2023; 12:3536. [PMID: 37896000 PMCID: PMC10667994 DOI: 10.3390/plants12203536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Rice is one of the most important crops in the world, and its production is severely affected by the rice blast disease caused by the fungus Magnaporthe oryzae. Several major blast resistance genes and QTLs associated with blast resistance have been described and mostly identified in indica rice varieties. In this work, we report the obtention of a blast-resistant rice breeding line derived from crosses between the resistant indica variety CT13432 and the japonica elite cultivar JSendra (highly susceptible to blast). The breeding line, named COPSEMAR9, was found to exhibit resistance to leaf blast and panicle blast, as demonstrated by disease assays under controlled and field conditions. Furthermore, a high-quality genome sequence of the blast-resistant breeding line was obtained using a strategy that combines short-read sequencing (Illumina sequencing) and long-read sequencing (Pacbio sequencing). The use of a whole-genome approach allowed the fine mapping of DNA regions of indica and japonica origin present in the COPSEMAR9 genome and the identification of parental gene regions potentially contributing to blast resistance in the breeding line. Rice blast resistance genes (including Pi33 derived from the resistant parent) and defense-related genes in the genome of COPSEMAR9 were identified. Whole-genome analyses also revealed the presence of microRNAs (miRNAs) with a known function in the rice response to M. oryzae infection in COPSEMAR9, which might also contribute to its phenotype of blast resistance. From this study, the genomic information and analysis methods provide valuable knowledge that will be useful in breeding programs for blast resistance in japonica rice cultivars.
Collapse
Affiliation(s)
- Glòria Escolà
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain; (G.E.); (V.M.G.-M.); (S.C.)
| | - Víctor M. González-Miguel
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain; (G.E.); (V.M.G.-M.); (S.C.)
| | - Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain; (G.E.); (V.M.G.-M.); (S.C.)
| | - Mar Catala-Forner
- Institute of Agrifood Research and Technology (IRTA), Field Crops, Ctra. Balada km. 1, 43870 Tarragona, Spain;
| | - Concha Domingo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Departamento del Arroz and Centro de Genómica. Ctra Moncada-Náquera km 10.7, 46113 Moncada, Spain;
| | - Luis Marqués
- Cooperativa de Productores de Semillas de Arroz, S.C.L. (COPSEMAR) Avda del Mar 1, 46410 Sueca, Spain;
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain; (G.E.); (V.M.G.-M.); (S.C.)
- Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| |
Collapse
|
5
|
Palanna KB, Vinaykumar HD, Prasanna SK, Rajashekara H, Devanna BN, Anilkumar C, Jeevan B, Raveendra HR, Khan F, Bhavana CHS, Upadhyay V, Patro TSSK, Rawat L, Rajesh M, Saravanan PT, Netam P, Rajesha G, Das IK, Patil HE, Jain AK, Saralamma S, Nayaka SC, Prakash G, Nagaraja TE. Exploring the diversity of virulence genes in the Magnaporthe population infecting millets and rice in India. FRONTIERS IN PLANT SCIENCE 2023; 14:1131315. [PMID: 37229127 PMCID: PMC10203591 DOI: 10.3389/fpls.2023.1131315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
Blast pathogen, Magnaporthe spp., that infects ancient millet crops such pearl millet, finger millet, foxtail millet, barnyard millet, and rice was isolated from different locations of blast hotspots in India using single spore isolation technique and 136 pure isolates were established. Numerous growth characteristics were captured via morphogenesis analysis. Among the 10 investigated virulent genes, we could amplify MPS1 (TTK Protein Kinase) and Mlc (Myosin Regulatory Light Chain edc4) in majority of tested isolates, regardless of the crop and region where they were collected, indicating that these may be crucial for their virulence. Additionally, among the four avirulence (Avr) genes studied, Avr-Pizt had the highest frequency of occurrence, followed by Avr-Pia. It is noteworthy to mention that Avr-Pik was present in the least number of isolates (9) and was completely absent from the blast isolates from finger millet, foxtail millet, and barnyard millet. A comparison at the molecular level between virulent and avirulent isolates indicated observably large variation both across (44%) and within (56%) them. The 136 Magnaporthe spp isolates were divided into four groups using molecular markers. Regardless of their geographic distribution, host plants, or tissues affected, the data indicate that the prevalence of numerous pathotypes and virulence factors at the field level, which may lead to a high degree of pathogenic variation. This research could be used for the strategic deployment of resistant genes to develop blast disease-resistant cultivars in rice, pearl millet, finger millet, foxtail millet, and barnyard millet.
Collapse
Affiliation(s)
- K. B. Palanna
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, PC Unit, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, Karnataka, India
| | - H. D. Vinaykumar
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, PC Unit, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, Karnataka, India
| | - S Koti. Prasanna
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, Karnataka, India
| | - H. Rajashekara
- Department of Plant Pathology, Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - B. N. Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - C. Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - B. Jeevan
- Department of Plant Pathology, Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - H. R. Raveendra
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets Zonal Agril. Research Station, Vishweshwaraiah Canal (V.C.) Farm, Mandya, Karnataka, India
| | - Farooq Khan
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, PC Unit, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, Karnataka, India
| | - C. H. Sai Bhavana
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, PC Unit, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, Karnataka, India
| | - Vinod Upadhyay
- Regional Agricultural Research Station, Assam Agriculture University, Gossaigaon, Assam, India
| | - T. S. S. K. Patro
- Department of Plant Pathology, Agricultural Research Station, Gajularega, Vizianagaram, Andra Pradesh, India
| | - Laxmi Rawat
- Department of Plant Pathology, Uttarakhand University of Hort. and Forestry, Ranichauri, Uttarakhand, India
| | - M. Rajesh
- Department of Plant Pathology, Center for Excellence in Millets, Athiyandal, Tiruvannamalai, Tamil Nadu, India
| | - P. T. Saravanan
- Department of Plant Pathology, Center for Excellence in Millets, Athiyandal, Tiruvannamalai, Tamil Nadu, India
| | - Prahlad Netam
- Department of Plant Pathology, Zonal Agricultural Research Station, Kumharwand Farm, Jagdalpur, Chhattisgarh, India
| | - G. Rajesha
- Indian Council of Agricultural Research ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, Telangana, India
| | - I. K. Das
- Indian Council of Agricultural Research ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, Telangana, India
| | - H. E. Patil
- Hill Millet Research Station, Navasari Agricultural University, Waghai, Dangs, Gujarat, India
| | - A. K. Jain
- Department of Plant Pathology, College of Agriculture, Rewa, Madhya Pradesh, India
| | - S. Saralamma
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, Regional Agricultural Research Station, Nandyal, Andhra Pradesh, India
| | - S. Chandra Nayaka
- Institute of Excellence, Vijnana Bhavan, University of Mysuru, Manasagangotri, Karnataka, India
| | - G. Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T. E. Nagaraja
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, PC Unit, University of Agricultural Sciences, Gandhi Krishi Vigyana Kendra (GKVK), Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Xing B, Zheng Y, Zhang M, Liu X, Li L, Mou C, Wu Q, Guo H, Shao Q. Biocontrol: Endophytic bacteria could be crucial to fight soft rot disease in the rare medicinal herb, Anoectochilus roxburghii. Microb Biotechnol 2022; 15:2929-2941. [PMID: 36099393 PMCID: PMC9733646 DOI: 10.1111/1751-7915.14142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
Microbial destabilization induced by pathogen infection has severely affected plant quality and output, such as Anoectochilus roxburghii, an economically important herb. Soft rot is the main disease that occurs during A. roxburghii culturing. However, the key members of pathogens and their interplay with non-detrimental microorganisms in diseased plants remain largely unsolved. Here, by utilizing a molecular ecological network approach, the interactions within bacterial communities in endophytic compartments and the surrounding soils during soft rot infection were investigated. Significant differences in bacterial diversity and community composition between healthy and diseased plants were observed, indicating that the endophytic communities were strongly influenced by pathogen invasion. Endophytic stem communities of the diseased plants were primarily derived from roots and the root endophytes were largely derived from rhizosphere soils, which depicts a possible pathogen migration image from soils to roots and finally the stems. Furthermore, interactions among microbial members indicated that pathogen invasion might be aided by positively correlated native microbial members, such as Enterobacter and Microbacterium, who may assist in colonization and multiplication through a mutualistic relationship in roots during the pathogen infection process. Our findings will help open new avenues for developing more accurate strategies for biological control of A. roxburghii bacterial soft rot disease.
Collapse
Affiliation(s)
- Bingcong Xing
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Ying Zheng
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Man Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Xinting Liu
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Lihong Li
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Chenhao Mou
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Qichao Wu
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, School of Marine SciencesNingbo UniversityNingboChina
| | - Qingsong Shao
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina,Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese MedicineZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
7
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
8
|
Wang J, Zhan G, Tian Y, Zhang Y, Xu Y, Kang Z, Zhao J. Role of Sexual Reproduction in the Evolution of the Wheat Stripe Rust Fungus Races in China. PHYTOPATHOLOGY 2022; 112:1063-1071. [PMID: 34784735 DOI: 10.1094/phyto-08-21-0331-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Experimental and population genetic approaches have reshaped our view of how fungal pathogens reproduce, with consequences for our understanding of fungal invasions. Puccinia striiformis f. sp. tritici, the causal agent of stripe rust, poses a severe threat to wheat production worldwide. The sexual stage of P. striiformis f. sp. tritici was discovered >10 years ago, but how it affects the evolution of the pathogen, especially the emergence of the new virulent races, remains largely unknown. Here, using population genetic analyses, we demonstrate that sexual reproduction plays an important role in the evolution of P. striiformis f. sp. tritici races in China, specifically the newly emerged and devastating race virulent to resistance gene Yr26, which is widely used in China and exerts strong selective pressure on the pathogen population. Association analysis identified six genes encoding secreted proteins as candidates for virulence on wheat cultivars carrying the Yr26 resistance gene. Our results highlight the important role of sexual reproduction and selection exerted by hosts in the emergence of new virulent races in China.
Collapse
Affiliation(s)
- Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Tian
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Sarkar C, Saklani BK, Singh PK, Asthana RK, Sharma TR. Variation in the LRR region of Pi54 protein alters its interaction with the AvrPi54 protein revealed by in silico analysis. PLoS One 2019; 14:e0224088. [PMID: 31689303 PMCID: PMC6830779 DOI: 10.1371/journal.pone.0224088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/05/2019] [Indexed: 11/18/2022] Open
Abstract
Rice blast, caused by the ascomycete fungus Magnaporthe oryzae is a destructive disease of rice and responsible for causing extensive damage to the crop. Pi54, a dominant blast resistance gene cloned from rice line Tetep, imparts a broad spectrum resistance against various M. oryzae isolates. Many of its alleles have been explored from wild Oryza species and landraces whose sequences are available in the public domain. Its cognate effector gene AvrPi54 has also been cloned from M. oryzae. Complying with the Flor’s gene-for-gene system, Pi54 protein interacts with AvrPi54 protein following fungal invasion leading to the resistance responses in rice cell that prevents the disease development. In the present study Pi54 alleles from 72 rice lines were used to understand the interaction of Pi54 (R) proteins with AvrPi54 (Avr) protein. The physiochemical properties of these proteins varied due to the nucleotide level polymorphism. The ab initio tertiary structures of these R- and Avr- proteins were generated and subjected to the in silico interaction. In this interaction, the residues in the LRR region of R- proteins were shown to interact with the Avr protein. These R proteins were found to have variable strengths of binding due to the differential spatial arrangements of their amino acid residues. Additionally, molecular dynamic simulations were performed for the protein pairs that showed stronger interaction than Pi54tetep (original Pi54 from Tetep) protein. We found these proteins were forming h-bond during simulation which indicated an effective binding. The root mean square deviation values and potential energy values were stable during simulation which validated the docking results. From the interaction studies and the molecular dynamics simulations, we concluded that the AvrPi54 protein interacts directly with the resistant Pi54 proteins through the LRR region of Pi54 proteins. Some of the Pi54 proteins from the landraces namely Casebatta, Tadukan, Varun dhan, Govind, Acharmita, HPR-2083, Budda, Jatto, MTU-4870, Dobeja-1, CN-1789, Indira sona, Kulanji pille and Motebangarkaddi cultivars show stronger binding with the AvrPi54 protein, thus these alleles can be effectively used for the rice blast resistance breeding program in future.
Collapse
Affiliation(s)
- Chiranjib Sarkar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Banita Kumari Saklani
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pankaj Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- * E-mail:
| |
Collapse
|
10
|
Lineage-Specific Evolved MicroRNAs Regulating NB-LRR Defense Genes in Triticeae. Int J Mol Sci 2019; 20:ijms20133128. [PMID: 31248042 PMCID: PMC6651130 DOI: 10.3390/ijms20133128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023] Open
Abstract
Disease resistance genes encoding proteins with nucleotide binding sites and Leucine-Rich Repeat (NB-LRR) domains include many members involved in the effector-triggered immunity pathway in plants. The transcript levels of these defense genes are negatively regulated by diverse microRNAs (miRNAs) in angiosperms and gymnosperms. In wheat, using small RNA expression datasets and degradome datasets, we identified five miRNA families targeting NB-LRR defense genes in monocots, some of which arose in the Triticeae species era. These miRNAs regulate different types of NB-LRR genes, most of them with coil-coiled domains, and trigger the generation of secondary small interfering RNAs (siRNA) as a phased pattern in the target site regions. In addition to acting in response to biotic stresses, they are also responsive to abiotic stresses such as heat, drought, salt, and light stress. Their copy number and expression variation in Triticeae suggest a rapid birth and death frequency. Altogether, non-conserved miRNAs as conserved transcriptional regulators in gymnosperms and angiosperms regulating the disease resistance genes displayed quick plasticity including the variations of sequences, gene copy number, functions, and expression level, which accompanied with NB-LRR genes may be tune-regulated to plants in natural environments with various biotic and abiotic stresses.
Collapse
|
11
|
Singh PK, Mahato AK, Jain P, Rathour R, Sharma V, Sharma TR. Comparative Genomics Reveals the High Copy Number Variation of a Retro Transposon in Different Magnaporthe Isolates. Front Microbiol 2019; 10:966. [PMID: 31134015 PMCID: PMC6512758 DOI: 10.3389/fmicb.2019.00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
Abstract
Magnaporthe oryzae is one of the fungal pathogens of rice which results in heavy yield losses worldwide. Understanding the genomic structure of M. oryzae is essential for appropriate deployment of the blast resistance in rice crop improvement programs. In this study we sequenced two M. oryzae isolates, RML-29 (avirulent) and RP-2421 (highly virulent) and performed comparative study along with three publically available genomes of 70-15, P131, and Y34. We identified several candidate effectors (>600) and isolate specific sequences from RML-29 and RP-2421, while a core set of 10013 single copy orthologs were found among the isolates. Pan-genome analysis showed extensive presence and absence variations (PAVs). We identified isolate-specific genes across 12 isolates using the pan-genome information. Repeat analysis was separately performed for each of the 15 isolates. This analysis revealed ∼25 times higher copy number of short interspersed nuclear elements (SINE) in virulent than avirulent isolate. We conclude that the extensive PAVs and occurrence of SINE throughout the genome could be one of the major mechanisms by which pathogenic variability is emerging in M. oryzae isolates. The knowledge gained in this comparative genome study can provide understandings about the fungal genome variations in different hosts and environmental conditions, and it will provide resources to effectively manage this important disease of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Ajay Kumar Mahato
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Priyanka Jain
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya (CSK HPKV), Palampur, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Tilak Raj Sharma
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
12
|
Guo XY, Li Y, Fan J, Xiong H, Xu FX, Shi J, Shi Y, Zhao JQ, Wang YF, Cao XL, Wang WM. Host-Induced Gene Silencing of MoAP1 Confers Broad-Spectrum Resistance to Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2019; 10:433. [PMID: 31024598 PMCID: PMC6465682 DOI: 10.3389/fpls.2019.00433] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/21/2023]
Abstract
Rice blast caused by Magnaporthe oryzae (M. oryzae) is a major threat to global rice production. In recent years, small interference RNAs (siRNAs) and host-induced gene silencing (HIGS) has been shown to be new strategies for the development of transgenic plants to control fungal diseases and proved a useful tool to study gene function in pathogens. We here tested whether in vitro feeding artificial siRNAs (asiRNAs) could compromise M. oryzae virulence and in vivo HIGS technique could improve rice blast resistance. Our data revealed that silencing of M. oryzae MoAP1 by feeding asiRNAs targeting MoAP1 (i.e., asiR1245, asiR1362, and asiR1115) resulted in inhibited fungal growth, abnormal spores, and decreased pathogenicity. Among the asiRNAs, asiR1115 was the most inhibitory toward the rice blast fungus. Conversely, the asiRNAs targeting three other genes (i.e., MoSSADH, MoACT, and MoSOM1) had no effect on fungal growth. Transgenic rice plants expressing RNA hairpins targeting MoAP1 exhibited improved resistance to 11 tested M. oryzae strains. Confocal microscopy also revealed profoundly restricted appressoria and mycelia in rice blast-infected transgenic rice plants. Our results demonstrate that in vitro asiRNA and in vivo HIGS were useful protection approaches that may be valuable to enhance rice blast resistance.
Collapse
Affiliation(s)
- Xiao-Yi Guo
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang, China
| | - Yan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Xiong
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang, China
| | - Fu-Xian Xu
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Deyang, China
| | - Jun Shi
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Yi Shi
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ji-Qun Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi-Fu Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Xiao-Long Cao
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Wen-Ming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|