Asynchronous development of Zymoseptoria tritici infection in wheat.
Fungal Genet Biol 2020;
146:103504. [PMID:
33326850 PMCID:
PMC7812371 DOI:
10.1016/j.fgb.2020.103504]
[Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Zymoseptoria tritici passes 6 morphologically defined stages during infection.
Surface-located spores and hyphae are found for up to 17/18 days.
Entry through stomata occurs from 1 to 13 days post infection.
Mesophyll apoplast colonisation continuously increases during infection.
Up to 5 stages co-exist in infected leaves at a given time.
The fungus Zymoseptoria tritici causes Septoria tritici blotch of wheat. Pathogenicity begins with spore germination, followed by stomata invasion by hyphae, mesophyll colonization and fruiting body formation. It was previously found that entry into the plant via stomata occurs in a non-synchronized way over several days, while later developmental steps, such as early and late fruiting body formation, were reported to follow each other in time. This suggests synchronization of the pathogen population in planta prior to sporulation. Here, we image a fluorescent Z. tritici IPO323-derived strain during infection. We describe 6 morphologically distinct developmental stages, and determine their abundance in infected leaves, with time post inoculation. This demonstrates that 3-5 stages co-exist in infected tissues at any given time. Thus, later stages of pathogen development also occur asynchronously amongst the population of infecting cells. This merits consideration when interpreting transcriptomics or proteomics data gathered from infected plants.
Collapse