1
|
Raj R, Shen P, Yu B, Zhang J. A patent review on HMGB1 inhibitors for the treatment of liver diseases. Expert Opin Ther Pat 2024; 34:127-140. [PMID: 38557201 DOI: 10.1080/13543776.2024.2338105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development. AREAS COVERED This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023. EXPERT OPINIONS In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.
Collapse
Affiliation(s)
- Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
2
|
Huang Y, Cheng M, Wang X, Dong H, Gao J. Dang Gui Bu Xue Tang, a conventional Chinese herb decoction, ameliorates radiation-induced heart disease via Nrf2/HMGB1 pathway. Front Pharmacol 2023; 13:1086206. [PMID: 36699071 PMCID: PMC9868149 DOI: 10.3389/fphar.2022.1086206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction: Radiation-induced heart disease (RIHD), characterized by cardiac dysfunction and myocardial fibrosis, is one of the most common complications after cardiothoracic radiotherapy. Dang Gui Bu Xue Tang (DBT) is a conventional Chinese herb decoction composed of Radix Astragali membranaceus (RAM) and Radix Angelicae sinensis (RAS) at a ratio of 5:1, famous for its "blood-nourishing" effect. In this study, we aimed to investigate the cardioprotective effect of DBT on RIHD. Methods: C57BL mice at 8 weeks of age were divided into five groups, namely Control, Radiation, RDBT51 (Radiation with DBT, RAM:RAS = 5:1), RDBT11 (Radiation with DBT, RAM:RAS = 1:1), and RDBT15 (Radiation with DBT, RAM:RAS = 1:5). Results: We mainly found that radiation in the cardiothoracic region led to significant left ventricular systolic dysfunction, myocardial fibrotic lesions and cardiac injury accompanied by abnormally increased myocardial HMGB1 protein levels. Administration of conventional DBT significantly ameliorated left ventricular systolic dysfunction, alleviated myocardial fibrosis, and counteracted cardiac injury, all of which supported the protective effect of DBT on RIHD, involving upregulation of myocardial Nrf2 protein levels and downregulation of HMGB1 protein levels as underlying mechanisms. Conclusions: DBT exerts a significant protective effect on RIHD, and the Nrf2/ HMGB1 pathway probably plays an important role in this protective effect.
Collapse
Affiliation(s)
- Yifan Huang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Minghan Cheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoye Wang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongliang Dong
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Hongliang Dong, ; Jian Gao,
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Hongliang Dong, ; Jian Gao,
| |
Collapse
|
3
|
Zhang W, Zhang L, Zhou H, Li C, Shao C, He Y, Yang J, Wan H. Astragaloside IV Alleviates Infarction Induced Cardiomyocyte Injury by Improving Mitochondrial Morphology and Function. Front Cardiovasc Med 2022; 9:810541. [PMID: 35265681 PMCID: PMC8899080 DOI: 10.3389/fcvm.2022.810541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The protective effect of astragaloside IV (AS-IV) on myocardial injury after myocardial infarction has been reported. However, the underlying mechanism is still largely unknown. We established a myocardial infarction model in C57BL/6 mice and injected intraperitoneally with 10 mg/kg/d AS-IV for 4 weeks. The cardiac function, myocardial fibrosis, and angiogenesis were investigated by echocardiography, Masson's trichrome staining, and CD31 and smooth muscle actin staining, respectively. Cardiac mitochondrial morphology was visualized by transmission electron microscopy. Cardiac function, infarct size, vascular distribution, and mitochondrial morphology were significantly better in AS-IV-treated mice than in the myocardial infarction model mice. In vitro, a hypoxia-induced H9c2 cell model was established to observe cellular apoptosis and mitochondrial function. H9c2 cells transfected with silent information regulator 3 (Sirt3) targeting siRNA were assayed for Sirt3 expression and activity. Sirt3 silencing eliminated the beneficial effects of AS-IV and abrogated the inhibitory effect of AS-IV on mitochondrial division. These results suggest that AS-IV protects cardiomyocytes from hypoxic injury by maintaining mitochondrial homeostasis in a Sirt3-dependent manner.
Collapse
Affiliation(s)
- Wen Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Yu He
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Jiehong Yang
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan
| |
Collapse
|
4
|
Foglio E, Pellegrini L, Russo MA, Limana F. HMGB1-Mediated Activation of the Inflammatory-Reparative Response Following Myocardial Infarction. Cells 2022; 11:cells11020216. [PMID: 35053332 PMCID: PMC8773872 DOI: 10.3390/cells11020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Different cell types belonging to the innate and adaptive immune system play mutually non-exclusive roles during the different phases of the inflammatory-reparative response that occurs following myocardial infarction. A timely and finely regulation of their action is fundamental for the process to properly proceed. The high-mobility group box 1 (HMGB1), a highly conserved nuclear protein that in the extracellular space can act as a damage-associated molecular pattern (DAMP) involved in a large variety of different processes, such as inflammation, migration, invasion, proliferation, differentiation, and tissue regeneration, has recently emerged as a possible regulator of the activity of different immune cell types in the distinct phases of the inflammatory reparative process. Moreover, by activating endogenous stem cells, inducing endothelial cells, and by modulating cardiac fibroblast activity, HMGB1 could represent a master regulator of the inflammatory and reparative responses following MI. In this review, we will provide an overview of cellular effectors involved in these processes and how HMGB1 intervenes in regulating each of them. Moreover, we will summarize HMGB1 roles in regulating other cell types that are involved in the different phases of the inflammatory-reparative response, discussing how its redox status could affect its activity.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, 04100 Latina, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Laura Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Matteo Antonio Russo
- IRCCS San Raffaele Roma and MEBIC Consortium, 00166 Rome, Italy;
- San Raffaele University of Rome, 00166 Rome, Italy
| | - Federica Limana
- San Raffaele University of Rome, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Renda G, Gökkaya İ, Şöhretoğlu D. Immunomodulatory properties of triterpenes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:537-563. [PMID: 34812259 PMCID: PMC8600492 DOI: 10.1007/s11101-021-09785-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 05/05/2023]
Abstract
The immune system is one of the main defence mechanisms of the human body. Inadequacy of this system or immunodeficiency results in increased risk of infections and tumours, whereas over-activation of the immune system causes allergic or autoimmune disorders. A well-balanced immune system is important for protection and for alleviation of these diseases. There is a growing interest to maintain a well-balanced immune system, especially after the Covid-19 pandemic. Many biological extracts, as well as natural products, have become popular due to their wide array of immunomodulatory effects and influence on the immune system. Triterpenes, one of the secondary metabolite groups of medicinal plants, exhibit immunomodulatory properties by various mechanisms. Different triterpenes, including components of commonly consumed plants, can promote some protection and alleviation of disease symptoms linked with immune responses and thus enhance overall well-being. This review aims to highlight the efficacy of triterpenes in light of the available literature evidence regarding the immunomodulatory properties of triterpenes. We have reviewed widely investigated immunomodulatory triterpenes; oleanolic acid, glycyrrhizin, glycyrrhetinic acid, pristimerin, ursolic acid, boswellic acid, celastrol, lupeol, betulin, betulinic acid, ganoderic acid, cucumarioside, and astragalosides which have important immunoregulatory properties. In spite of many preclinical and clinical trials were conducted on triterpenes related to their immunoregulatory actions, current studies have several limitations. Therefore, especially more clinical studies with optimal design is essential.
Collapse
Affiliation(s)
- Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100 Trabzon, Turkey
| | - İçim Gökkaya
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100 Trabzon, Turkey
| | - Didem Şöhretoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara Turkey
| |
Collapse
|
6
|
Qiu Y, Qiu Y, Yao GM, Luo C, Zhang C. Natural product therapies in chronic kidney diseases: An update. Nephrol Ther 2021; 18:75-79. [PMID: 34187761 DOI: 10.1016/j.nephro.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/15/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Chronic kidney disease is one of the major worldwide public health problems. Traditional Chinese medications have been widely used for chronic kidney disease treatment. As the development of modern phytochemistry technology, natural products have been isolated from traditional Chinese medications, which provide a more precise method for the investigation of traditional Chinese medications. In this article, we selected eight natural products from traditional Chinese medications for chronic kidney disease therapy to summarize the recent advances for the development of new medications.
Collapse
Affiliation(s)
- Yue Qiu
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guang-Min Yao
- Hubei Key laboratory of natural medicinal chemistry and resource evaluation, School of pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changqing Luo
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Chun Zhang
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Mihaylova R, Shkondrov A, Aluani D, Ionkova I, Tzankova V, Krasteva I. In vitro antitumour and immunomodulating activity of saponins from Astragalus glycyphyllos. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2041485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Aleksandar Shkondrov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Denitsa Aluani
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Iliana Ionkova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Ilina Krasteva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
8
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
9
|
Chen Z, Liu L, Gao C, Chen W, Vong CT, Yao P, Yang Y, Li X, Tang X, Wang S, Wang Y. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112895. [PMID: 32330511 DOI: 10.1016/j.jep.2020.112895] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (AR, Huangqi in Chinese), the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A. membranaceus (Fisch.) Bge., possesses diverse therapeutic effects against fatigue, dyspepsia, diarrhea, heart diseases, hepatitis, and anemia. In recent years, increasing evidence has indicated the multiple immunomodulatory activities of AR in preclinical and clinical studies. AIM OF THE REVIEW This review attempts to elaborate the immunomodulatory effects of AR and its potential application in the treatment of immune related diseases. MATERIALS AND METHODS A comprehensive literature search AR was carried out using multiple internationally recognized databases (including Web of Science, Google Scholar, PubMed, ScienceDirect, Wiley, ACS, Springer, Taylor & Francis, and CNKI). RESULTS The immunomodulatory effects of AR are closely attributed to its active constituents such as polysaccharides, saponins, and flavonoids. We also demonstrate that AR can be used as a potential therapeutic intervention for immune related diseases through regulating immune organs, mucosal immune, and immune system (innate immunity and acquired immunity). CONCLUSION AR promotes the development of immune organs, enhances mucosal immune function, increases the quantity and phagocytic capacity of innate immunity, promotes the maturation and differentiation of acquired immunity cells, and improves the expression of antibodies in acquired immunity. We believe that AR has a broad research space in the adjuvant treatment of immune related diseases, which could be a breakthrough point to improve the application value of AR.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lijuan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; PU-UM Innovative Institute of Chinese Medical Sciences, Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuhan Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuzhu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xudong Tang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
10
|
Li AP, He SS, Zhang WN, Zhang LC, Liu YT, Li K, Qin XM. Exploration the active compounds of Astragali Radix in treatment of adriamycin nephropathy by network pharmacology combined with transcriptomic approach. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112537. [PMID: 31901455 DOI: 10.1016/j.jep.2019.112537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE This paper aimed to study the active compounds of Astragali Radix (AR) in the treatment of adriamycin nephropathy (AN) by a combination of network pharmacology and transcriptomics. METHODS The chemical compounds of AR were screened out by text mining and database searching. Pharm Mapper was used to predict the targets of these chemical compounds. Potential targets of AN were screened by integrating the data from network pharmacology with known transcriptomics analysis results of kidney tissue. Compound-active target-potential target interactions networks were constructed so as to illustrate the relationship between compounds and targets, and obtain the chemical compounds directly related to potential targets of AN. The formula of compound contribution index (CI) based on algorithm was used to screen the active compounds of AR in the treatment of AN. In addition, we established an adriamycin-induced cell damage model with MPC5 cell, and used MTT assay, trypan blue dyeing and western blot analyses to validate the pharmacodynamic effect of the active compounds. RESULTS 27 chemical compounds and 376 targets in AR were obtained by network pharmacology. Through Compound-active target-potential target interactions networks analysis, 22 compounds and 9 active targets as well as 130 potential targets were linked through 282 edges. The CI of every chemical compounds was further calculated by formula, the first four chemical compounds, including astragaloside IV, formononetin, quercetin and calycosin, whose cumulative contribution rate reached 87.28%, were considered to be active compounds. The results of MTT and trypan blue staining indicate that four active compounds had the significant protective effect on adriamycin-induced cell damage with MPC5 cell. Western blot result showed that four active compounds could significantly increase the expression of podocin protein in MPC5 cell. CONCLUSION The active compounds of AR in the treatment of AN were successfully identified by using a network pharmacology and transcriptomics approach. This approach is expected to be beneficial to the study of the pharmacodynamic material basis of traditional Chinese medicine (TCM) in treating specific diseases.
Collapse
Affiliation(s)
- Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Sheng-Sheng He
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Wang-Ning Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Li-Chao Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yue-Tao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
11
|
Xi Y, Lu X, Zhu L, Sun X, Jiang Y, He W, Wei M. Clinical trial for conventional medicine integrated with traditional Chinese medicine (TCM) in the treatment of patients with chronic kidney disease. Medicine (Baltimore) 2020; 99:e20234. [PMID: 32481298 PMCID: PMC7249962 DOI: 10.1097/md.0000000000020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The prevalence of chronic kidney disease (CKD) has been rapidly increasing and has become one of the most concerned global health problems. It is of good importance to improve therapeutic efficiency of CKD and delay disease progression to end stage renal disease (ESRD). Traditional Chinese Medicine (TCM) is a widely used complementary therapy for patients with CKD. The aim of this study is to evaluate whether basic treatment combined with Chinese herbs mixture Qi Gui Yi Shen decoction could achieve better therapeutic effect on CKD patients. METHODS To determine whether traditional Chinese medicine Qi Gui Yi Shen decoction could achieve better therapeutic effect, we will conduct a randomized controlled trial. A total of 100 CKD patients that meet the inclusion criteria will be enrolled and divided into 2 groups: Qi Gui Yi Shen group (QGYS group) and placebo group. Each group will receive 6-monthly basic treatment in combination with TCM or placebo 3 times per day. Efficacy of Qi Gui Yi Shen decoction is evaluated by analyzing renal function and TCM symptoms, other efficacy assessments include serum level of PAI-I, expression of transforming growth factor beta1 (TGF-beta1). Routine blood count, plasma albumin (ALB), and alanine transaminase (ALT) are evaluated as side effect and safety profile. DISCUSSION The results from the clinical trial will provide evidence for the effectiveness and safety of Qi Gui Yi Shen Decoction as a treatment for CKD patients. Furthermore, this will propose a new theory and method for CKD treatment. TRIAL REGISTRATION Registered with Chinese Clinical Trials Registry at www.chictr.org. (Registration number: ChiCTR1900021622) on 1 March 2019.
Collapse
Affiliation(s)
- Yi Xi
- The First Affiliated Hospital of Soochow University
| | - Xun Lu
- Suzhou Municipal Hospital, Suzhou
| | - Like Zhu
- Zhangjiagang TCM Hospital, Zhangjiagang
| | - Xiaoyi Sun
- The First Affiliated Hospital of Soochow University
| | - Yuqin Jiang
- The First Affiliated Hospital of Soochow University
| | - Weiming He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Minggang Wei
- The First Affiliated Hospital of Soochow University
| |
Collapse
|
12
|
Zhang L, Deng S. Effects of astragaloside IV on inflammation and immunity in rats with experimental periodontitis. Braz Oral Res 2019; 33:e032. [PMID: 31038567 DOI: 10.1590/1807-3107bor-2019.vol33.0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 01/22/2023] Open
Abstract
This study aimed to investigate the effects of astragaloside IV (AsIV) on inflammation and immunity in rats with experimental periodontitis. Periodontitis was established in 48 Wistar rats, which were then randomly divided into model and 10, 20 and 40 mg/kg AsIV groups, with 12 rats in each group. The latter 3 groups were treated with AsIV at doses of 10, 20 and 40 mg/kg, respectively. The control group (12 rats, without periodontitis) and model group were given the same amount of 5% sodium carboxymethyl cellulose. The treatment was performed once per day for 8 weeks. Before and after treatment, the tooth mobility scores of the rats were determined. After treatment, the salivary occult blood index (SOBI), plaque index (PLI), peripheral blood T lymphocyte subsets, and serum inflammatory factor and immunoglobulin levels were determined. The results showed that, after treatment, compared with that in model group, in 40 mg/kg AsIV group, the general state of rats was improved, while the tooth mobility score, SOBI and PLI were significantly decreased (p < 0.05); the peripheral blood CD4+ T cell percentage and CD4+/CD8+ ratio were significantly increased (p < 0.05), while the CD8+ T cell percentage was significantly decreased (p < 0.05); the serum tumor necrosis factor-α, interleukin-1β and interleukin-2 levels were significantly decreased (p < 0.05); the serum immunoglobulin A and immunoglobulin G levels were significantly decreased (p < 0.05). In conclusion, AsIV can alleviate inflammation and enhance immunity in rats with experimental periodontitis.
Collapse
Affiliation(s)
- Liqiong Zhang
- Huazhong University of Science and Technology, Tongji Medical College, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Shaolin Deng
- Huazhong University of Science and Technology, Tongji Medical College, The Central Hospital of Wuhan, Wuhan 430014, China
| |
Collapse
|
13
|
Gong AGW, Duan R, Wang HY, Kong XP, Dong TTX, Tsim KWK, Chan K. Evaluation of the Pharmaceutical Properties and Value of Astragali Radix. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E46. [PMID: 29883402 PMCID: PMC6023478 DOI: 10.3390/medicines5020046] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
Astragali Radix (AR), a Chinese materia medica (CMM) known as Huangqi, is an important medicine prescribed in herbal composite formulae (Fufang) by Traditional Chinese medicine (TCM) practitioners for thousands of years. According to the literature, AR is suggested for patients suffering from “Qi”- and “Blood”-deficiencies, and its clinical effects are reported to be related to anti-cancer cell proliferation, anti-oxidation, relief of complications in cardiovascular diseases, etc. The underlying cell signaling pathways involved in the regulation of these various diseases are presented here to support the mechanisms of action of AR. There are two botanical sources recorded in China Pharmacopoeia (CP, 2015): Astragalus membranaceus (Fisch.) Bge. Var. mongohlicus, (Bge.) Hsiao, and Astragalus membranaceus (Fisch.) Bge. (Fam. Leguminosae), whose extracts of dried roots are processed via homogenization-assisted negative pressure cavitation extraction. Geographic factors and extraction methods have impacts on the pharmaceutical and chemical profiles of AR. Therefore, the levels of the major bioactive constituents of AR, including polysaccharides, saponins, and flavonoids, may not be consistent in different batches of extract, and the pharmaceutical efficacy of these bioactive ingredients may vary depending on the source. Therefore, the present review mainly focuses on the consistency of the available sources of AR and extracts and on the investigation of the biological functions and mechanisms of action of AR and of its major bioactive constituents. Furthermore, it will also include a discussion of the most popular AR composite formulae to further elucidate their chemical and biological profiles and understand the pharmaceutical value of AR.
Collapse
Affiliation(s)
- Amy G W Gong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China.
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Huai Y Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Xiang P Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Kelvin Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3 AF, UK.
- National Institute of Complementary Medicine, Western Sydney University, Sydney, NSW 2560, Australia.
- Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
14
|
Li J, Huang L, Wang S, Zhang Z. Increased serum levels of high mobility group protein B1 and calprotectin in pre-eclampsia. Int J Gynaecol Obstet 2018; 142:37-41. [PMID: 29569400 DOI: 10.1002/ijgo.12491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/03/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To determine whether women with pre-eclampsia have serum levels of biomarkers indicative of an elevated systemic inflammatory response. METHOD The present cross-sectional study was conducted among pregnant women either with pre-eclampsia or without pre-eclampsia who were recruited at a single Chinese hospital between August 1, 2016, and April 30, 2017. Eligible women had no history of acute or chronic inflammation. Serum concentrations of high mobility group protein B1 (HMG-1), calprotectin, and Toll-like receptor 4 (TLR4) were measured and compared. RESULTS There were 55 patients included (25 with pre-eclampsia and 30 without). The mean serum concentration of calprotectin was 2656.76 ± 1724.56 μg/L in the pre-eclampsia group versus 1877.33 ± 905.69 μg/L in the control group (P=0.036). Among patients with pre-eclampsia, elevated calprotectin levels were positively associated with the duration of hypertension in pregnancy (P=0.031) and were negatively associated with pregnancy duration at delivery (P=0.035). The mean serum concentration of HMG-1 was 72.48 ± 27.57 μg/L in the pre-eclampsia group versus 57.57 ± 20.07 μg/L in the control group (P=0.017). The mean serum concentration of TLR4 was 22.83 ± 8.46 μg/L in the pre-eclampsia group versus 18.83 ± 6.79 μg/L in the control group (P=0.057). CONCLUSION Elevated levels of HMG-1 and calprotectin could reflect an excessive systemic inflammatory response in pre-eclampsia.
Collapse
Affiliation(s)
- Jinfeng Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lifeng Huang
- Department of Surgical Intensive Care Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Liu P, Zhao H, Luo Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis 2017; 8:868-886. [PMID: 29344421 PMCID: PMC5758356 DOI: 10.14336/ad.2017.0816] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy and the Family Planning program of the 1970s - 1990s, China is rapidly becoming an aging society. Therefore, the investigation of healthspan-extending drugs becomes more urgent. Astragalus membranaceus (Huangqi) is a major medicinal herb that has been commonly used in many herbal formulations in the practice of traditional Chinese medicine (TCM) to treat a wide variety of diseases and body disorders, or marketed as life-prolonging extracts for human use in China, for more than 2000 years. The major components of Astragalus membranaceus are polysaccharides, flavonoids, and saponins. Pharmacological research indicates that the extract component of Astragalus membranaceus can increase telomerase activity, and has antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects. A proprietary extract of the dried root of Astragalus membranaceus, called TA-65, was associated with a significant age-reversal effect in the immune system. Our review focuses on the function and the underlying mechanisms of Astragalus membranaceus in lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer effects, based on experimental and clinical studies.
Collapse
Affiliation(s)
- Ping Liu
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
16
|
Maresca M, Micheli L, Cinci L, Bilia AR, Ghelardini C, Di Cesare Mannelli L. Pain relieving and protective effects of Astragalus hydroalcoholic extract in rat arthritis models. J Pharm Pharmacol 2017; 69:1858-1870. [PMID: 28960309 DOI: 10.1111/jphp.12828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The evaluation of the pharmacological profile of the dried 50% hydroalcoholic extract (50%HA) of Astragali radix in two different animal models of articular damage resembling osteoarthritis and rheumatoid arthritis. METHODS Sodium monoiodoacetate (MIA) or complete Freund's adjuvant (CFA) was intra-articular injected (day 0) in the rat tibiotarsal joint to induce damages mimicking osteoarthritis or rheumatoid arthritis. Pain measurements (responses to non-noxious and noxious stimuli, spontaneous pain, articular pain) were assessed on days 7 and 14. On day 14, the tibiotarsal joints were explanted in order to measure the diameter and to assess histological evaluations. Furthermore, the plasmatic concentrations of inflammatory and anti-inflammatory cytokines were measured. KEY FINDINGS A single administration of 50%HA (300 mg/kg per os) significantly reduced both MIA-induced pain and CFA-induced pain (78% and 96% pain relief, respectively). The repeated administration prevented the development of hypersensitivity on day 14. The haematoxylin/eosin staining revealed that 50% HA attenuated joint alterations in MIA-injected rats, and furthermore, the joint inflammatory infiltrate was reduced in both models (by about 50%). In CFA-treated rats, 50%HA lowered the plasmatic levels of the pro-inflammatory cytokines interleukin-1β and tumour necrosis factor-α as well as the joint diameter. CONCLUSIONS The 50% hydroalcoholic extract of Astragali radix is a valuable candidate for the adjuvant treatment of articular diseases.
Collapse
Affiliation(s)
- Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section,, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section,, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section,, University of Florence, Florence, Italy
| | - Anna Rita Bilia
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section,, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section,, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Li K, Chen Y, Jiang R, Chen D, Wang H, Xiong W, Li D, Liu Z, Li X, Li J, Yuan K. Protective effects of astragaloside IV against ovalbumin-induced allergic rhinitis are mediated by T-box protein expressed in T cells/GATA-3 and forkhead box protein 3/retinoic acid-related orphan nuclear receptor γt. Mol Med Rep 2017; 16:1207-1215. [PMID: 28586019 PMCID: PMC5562080 DOI: 10.3892/mmr.2017.6685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosyl-cycloastragenol, or Astragaloside IV (AST), is one of the major active ingredients isolated from Astragalus membranaceous with distinct pharmacological effects, and possesses anti-inflammatory, immunoregulatory and antifibrotic properties. However, the effects of AST on allergic rhinitis remain to be elucidated. The present study aimed to examine the effects of AST on immunoglobulin (Ig) E‑mediated allergic reactions in vivo, by using a mouse model of allergic rhinitis established via repetitive sensitization and intranasal challenge with ovalbumin (OVA). Intragastric administration of AST (25 mg/kg or 50 mg/kg) or dexamethasone (DEX; 3 mg/kg) significantly alleviated the inflammatory response, nasal symptoms and mucosa remodeling, and decreased the serum levels of OVA‑specific IgE in allergic mice. Furthermore, treatment with AST or DEX significantly suppressed the mRNA and protein expression levels of the transcription factor GATA‑3 and retinoic acid receptor‑related orphan nuclear receptor (ROR)γt in tissue samples isolated from the spleen and nasal mucosa of mice with allergic rhinitis. Conversely, mRNA and protein expression levels of T‑box protein expressed in T cells (T‑bet) and forkhead box protein 3 (Foxp3) were upregulated in the spleen and nasal mucosa of mice with allergic rhinitis following treatment with AST or DEX, and spleen protein levels of signal transducer and activator of transcription 3 followed a similar trend. In addition, treatment with AST was associated with fewer adverse events compared with treatment with DEX. The present results suggested that treatment with AST may attenuate OVA‑induced allergic rhinitis via regulating the expression of the transcription factors GATA‑3, RORγt, T‑bet and Foxp3, which commit T helper cells to the Th1 phenotype. Therefore, AST may represent an alternative therapeutic approach for the treatment of patients with allergic rhinitis.
Collapse
Affiliation(s)
- Keqiong Li
- Chongqing Cancer Research Institute, Chongqing 400030, P.R. China
| | - Yi Chen
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dilong Chen
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Wang
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, P.R. China
| | - Wei Xiong
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Danyang Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zehong Liu
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaopeng Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ke Yuan
- Department of Otorhinolaryngology, The Children's Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
18
|
Li L, Hou X, Xu R, Liu C, Tu M. Research review on the pharmacological effects of astragaloside IV. Fundam Clin Pharmacol 2016; 31:17-36. [PMID: 27567103 DOI: 10.1111/fcp.12232] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/09/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
Astragalus membranaceus Bunge has been used to treat numerous diseases for thousands of years. As the main active substance of Astragalus membranaceus Bunge, astragaloside IV (AS-IV) also demonstrates the potent protective effect on focal cerebral ischemia/reperfusion, cardiovascular disease, pulmonary disease, liver fibrosis, and diabetic nephropathy. Based on studies published during the past several decades, the current state of AS-IV research and the pharmacological effects are detailed, elucidated, and summarized. This review systematically summarizes the pharmacological effects, metabolism mechanism, and the toxicity of AS-IV. AS-IV has multiple pharmacologic effects, including anti-inflammatory, antifibrotic, antioxidative stress, anti-asthma, antidiabetes, immunoregulation, and cardioprotective effect via numerous signaling pathways. According to the existing studies and clinical practices, AS-IV possesses potential for broad application in many diseases.
Collapse
Affiliation(s)
- Lei Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaojiao Hou
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| | - Rongfang Xu
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| | - Chang Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Menbayaer Tu
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| |
Collapse
|
19
|
Shen P, Yang X, He L. [Effect of Astragali and Angelica particle on proteinuria in Chinese patients with primary glomerulonephritis]. J TRADIT CHIN MED 2016; 36:299-306. [PMID: 27468543 DOI: 10.1016/s0254-6272(16)30041-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the effect of the traditional Chinese herbs Astragali and Angelicae Sinensis (A & As) particle [contains Huangqi (Radix Astragali Mongolica), Danggui (Radix Angelicae Sinensis), Huzhanggeng (Rhizoma Polygoni Cuspidati) and Danshen (Radix Salviae Miltiorrhizae)] on proteinuria in glomerulonephritis patients with stage 2 chronic kidney disease. METHODS A prospective, multi-center, and randomized controlled clinical trial was performed for 24 weeks. From March 2011 to April 2012, 158 patients from nine hospitals in China participated. They were randomized into the A & As group (79 cases, A & As particle 15.2 g/day) and losartan group (79 cases, losartan 50 mg/day). At each follow-up visit, clinical data including blood pressure, urinalysis, 24-h-urinary protein excretion, serum albumin and serum creatinine were collected. RESULTS All 158 patients completed the follow-up. Proteinuria in the losartan group exhibited a biphasic time-dependent decline with a significant steady reduction from baseline to week 12 (P = 0.0014), and a platform level during the remaining 12-week follow-up (P > 0.05). In contrast, there was a continual significant decrease of proteinuria in the A & As group (P < 0.001). When compared with the losartan results, proteinuria in the A & As group from week 16 to week 24 was significantly reduced (P < 0.001). Stable eGFRs and blood pressure were also observed in both groups. Medication side effects were minimal and non-fatal. CONCLUSION For Chinese glomerulonephritis patients with stage 2 chronic kidney disease, therapy with A & As particles may provide effective anti-proteinuria treatment.
Collapse
|
20
|
Mao S, Yang G, Li W, Zhang J, Liang H, Li J, Zhang M. Gastroprotective Effects of Astragaloside IV against Acute Gastric Lesion in Rats. PLoS One 2016; 11:e0148146. [PMID: 26845156 PMCID: PMC4742075 DOI: 10.1371/journal.pone.0148146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/13/2016] [Indexed: 01/20/2023] Open
Abstract
Background Protection of the gastric mucosa from acute lesions induced by various irritants is a pertinent issue in the field of critical care medicine. In this study, we investigated the gastroprotective effects of astragaloside IV on acute gastric lesions in rats under stressful conditions. Methods Rats were randomized into six groups. Group 1 and 2 received 10% Tween 80 (vehicle). Group 3 received 20 mg/kg of omeprazole, a proton pump inhibitor. Groups 4, 5 and 6 received astragaloside IV at concentration of 1, 10, and 50 mg/kg, respectively. As a means to induce gastric lesions, Groups 2–6 were subjected to water immersion and restraint stress for 12 hours after treatment. Results Our present studies show that compared to rats in group 2, treatment with 1 to 50 mg/kg astragaloside IV significantly decreased the size of gastric lesions, MDA, TNFα and MCP1 levels, in addition to normalizing gastric pH, gastric mucus and SOD levels (P<0.05). Histomorphological examination confirmed that treatment with astragaloside IV elicited a dosage-dependent protective effect on the gastric mucosa. Furthermore, pretreatment with astragaloside IV resulted in significant elevations in HSP70 and reduction in Bax, along with over-expression of PLCγ response level, which was further confirmed via immunohistochemical analysis. Conclusions The acute gastric lesions induced are attenuated by pretreatment with astragaloside IV which is possibly due to the enhancing of the expression of HSP70 with concomitant antioxidant, anti-inflammatory and anti-apoptotic capacity.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
- Physiology & Experimental Medicine, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Guang Yang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
| | - Winny Li
- Faculty of Medicine, University of Toronto, University Ave., Toronto M5G 0A4, Canada
| | - Jian Zhang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
| | - Hailong Liang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
| | - Jian Li
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
| | - Minzhou Zhang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Road Dade, Guangzhou 510120, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Road Jichang, Guangzhou 510405, China
- * E-mail:
| |
Collapse
|
21
|
Zhong Y, Menon MC, Deng Y, Chen Y, He JC. Recent Advances in Traditional Chinese Medicine for Kidney Disease. Am J Kidney Dis 2015; 66:513-22. [PMID: 26015275 DOI: 10.1053/j.ajkd.2015.04.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/05/2015] [Indexed: 12/15/2022]
Abstract
Because current treatment options for chronic kidney disease (CKD) are limited, many patients seek out alternative therapies such as traditional Chinese medicine. However, there is a lack of evidence from large clinical trials to support the use of traditional medicines in patients with CKD. Many active components of traditional medicine formulas are undetermined and their toxicities are unknown. Therefore, there is a need for research to identify active compounds from traditional medicines and understand the mechanisms of action of these compounds, as well as their potential toxicity, and subsequently perform well-designed, randomized, controlled, clinical trials to study the efficacy and safety of their use in patients with CKD. Significant progress has been made in this field within the last several years. Many active compounds have been identified by applying sophisticated techniques such as mass spectrometry, and more mechanistic studies of these compounds have been performed using both in vitro and in vivo models. In addition, several well-designed, large, randomized, clinical trials have recently been published. We summarize these recent advances in the field of traditional medicines as they apply to CKD. In addition, current barriers for further research are also discussed. Due to the ongoing research in this field, we believe that stronger evidence to support the use of traditional medicines for CKD will emerge in the near future.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
22
|
Li L, Li D, Xu L, Zhao P, Deng Z, Mo X, Li P, Qi L, Li J, Gao J. Total extract of Yupingfeng attenuates bleomycin-induced pulmonary fibrosis in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:111-119. [PMID: 25636879 DOI: 10.1016/j.phymed.2014.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/06/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Yupingfeng is a Chinese herbal compound used efficaciously to treat respiratory tract diseases. Total glucosides of Yupingfeng have been proven effective in anti-inflammation and immunoregulation. Nevertheless, the role of total extract of Yupingfeng (YTE) in pulmonary fibrosis (PF), a severe lung disease with no substantial therapies, remains unknown. Present study was conducted to elucidate the anti-fibrotic activity of YTE. The rat PF model was induced by intratracheal administration of bleomycin (BLM, 5 mg/kg), and YTE (12 mg/kg/d) was gavaged from the second day. At 14 and 28 days, the lungs were harvested and stained with H&E and Masson's trichrome. The content of hydroxyproline (HYP) and type I collagen (Col-I) were detected, while the protein expression of high-mobility group box 1 (HMGB1), transforming growth factor-beta 1 (TGF-β1), Col-I and α-smooth muscle actin (α-SMA) were analyzed by immunohistochemistry or Western blot. As observed, YTE treatment attenuated the alveolitis and fibrosis induced by BLM, reduced the loss of body weight and increase of lung coefficient. Meanwhile, YTE strongly decreased the levels of HYP and Col-I, and reduced the over-expression of HMGB1, TGF-β1, Col-I and α-SMA. In conclusion, YTE could ameliorate BLM-induced lung fibrosis by alleviating HMGB1 activity and TGF-β1 activation, suggesting therapeutic potential for PF.
Collapse
Affiliation(s)
- Liucheng Li
- School of Pharmacy (Anhui Key Laboratory of Bioactivity of Natural Products), Anhui Medical University, Hefei 230032, China; Pharmaceutical Preparation Section (Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine (TCM-2009-202)), The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Delin Li
- Pharmaceutical Preparation Section (Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine (TCM-2009-202)), The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Liang Xu
- Pharmaceutical Preparation Section (Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine (TCM-2009-202)), The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ping Zhao
- Pharmaceutical Preparation Section (Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine (TCM-2009-202)), The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ziyu Deng
- School of Pharmacy (Anhui Key Laboratory of Bioactivity of Natural Products), Anhui Medical University, Hefei 230032, China; The Second Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Xiaoting Mo
- School of Pharmacy (Anhui Key Laboratory of Bioactivity of Natural Products), Anhui Medical University, Hefei 230032, China; Pharmaceutical Preparation Section (Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine (TCM-2009-202)), The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lianwen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Li
- School of Pharmacy (Anhui Key Laboratory of Bioactivity of Natural Products), Anhui Medical University, Hefei 230032, China.
| | - Jian Gao
- Pharmaceutical Preparation Section (Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine (TCM-2009-202)), The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
23
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 712] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
24
|
Cheng XD, Wei MG. Profiling the metabolism of astragaloside IV by ultra performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry. Molecules 2014; 19:18881-96. [PMID: 25407723 PMCID: PMC6271624 DOI: 10.3390/molecules191118881] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022] Open
Abstract
Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS)-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV.
Collapse
Affiliation(s)
- Xu-Dong Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, No. 218 Xianlin Avenue, Nanjing 210046, China.
| | - Ming-Gang Wei
- The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
25
|
Li X, Qu L, Dong Y, Han L, Liu E, Fang S, Zhang Y, Wang T. A review of recent research progress on the astragalus genus. Molecules 2014; 19:18850-80. [PMID: 25407722 PMCID: PMC6270929 DOI: 10.3390/molecules191118850] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/15/2022] Open
Abstract
Astragalus L., is one of the largest genuses of flowering plants in the Leguminosae family. Roots of A. membranaceus Bge. var. mongholicus (Bge.) Hsiao, A. membranaceus (Fisch.) Bge. and its processed products are listed in the China Pharmacopeia for “qi deficiency” syndrome treatment. However, more and more researches on other species of Astragalus have been conducted recently. We summarize the recent researches of Astragalus species in phytochemistry and pharmacology. More than 200 constituents, including saponins and flavonoids, obtained from 46 species of Astragalus genus were collected for this article. In pharmacological studies, crude extracts of Astragalus, as well as isolated constituents showed anti-inflammatory, immunostimulant, antioxidative, anti-cancer, antidiabetic, cardioprotective, hepatoprotective, and antiviral activities. The goal of this article is to provide an overview of chemical and pharmacological studies on the Astragalus species over the last 10 years, which could be of value to new drug or food supplement research and development.
Collapse
Affiliation(s)
- Xiaoxia Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.
| | - Lu Qu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.
| | - Yongzhe Dong
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.
| | - Lifeng Han
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Erwei Liu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Shiming Fang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China.
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.
| |
Collapse
|
26
|
Wang J, Tong X, Li P, Liu M, Peng W, Cao H, Su W. Bioactive components on immuno-enhancement effects in the traditional Chinese medicine Shenqi Fuzheng Injection based on relevance analysis between chemical HPLC fingerprints and in vivo biological effects. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:405-15. [PMID: 24950446 DOI: 10.1016/j.jep.2014.05.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/03/2014] [Accepted: 05/22/2014] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenqi Fuzheng Injection (SFI) is an injectable traditional Chinese herbal formula comprised of two Chinese herbs, Radix codonopsis and Radix astragali, which were commonly used to improve immune functions against chronic diseases in an integrative and holistic way in China and other East Asian countries for thousands of years. MATERIALS AND METHODS This present study was designed to explore the bioactive components on immuno-enhancement effects in SFI using the relevance analysis between chemical fingerprints and biological effects in vivo. According to a four-factor, nine-level uniform design, SFI samples were prepared with different proportions of the four portions separated from SFI via high speed counter current chromatography (HSCCC). SFI samples were assessed with high performance liquid chromatography (HPLC) for 23 identified components. For the immunosuppressed murine experiments, biological effects in vivo were evaluated on spleen index (E1), peripheral white blood cell counts (E2), bone marrow cell counts (E3), splenic lymphocyte proliferation (E4), splenic natural killer cell activity (E5), peritoneal macrophage phagocytosis (E6) and the amount of interleukin-2 (E7). Based on the hypothesis that biological effects in vivo varied with differences in components, multivariate relevance analysis, including gray relational analysis (GRA), multi-linear regression analysis (MLRA) and principal component analysis (PCA), were performed to evaluate the contribution of each identified component. RESULTS The results indicated that the bioactive components of SFI on immuno-enhancement activities were calycosin-7-O-β-d-glucopyranoside (P9), isomucronulatol-7,2'-di-O-glucoside (P11), biochanin-7-glucoside (P12), 9,10-dimethoxypterocarpan-3-O-xylosylglucoside (P15) and astragaloside IV (P20), which might have positive effects on spleen index (E1), splenic lymphocyte proliferation (E4), splenic natural killer cell activity (E5), peritoneal macrophage phagocytosis (E6) and the amount of interleukin-2 (E7), while 5-hydroxymethyl-furaldehyde (P5) and lobetyolin (P13) might have negative effects on E1, E4, E5, E6 and E7. Finally, the bioactive HPLC fingerprint of SFI based on its bioactive components on immuno-enhancement effects was established for quality control of SFI. CONCLUSIONS In summary, this study provided a perspective to explore the bioactive components in a traditional Chinese herbal formula with a series of HPLC and animal experiments, which would be helpful to improve quality control and inspire further clinical studies of traditional Chinese medicines.
Collapse
Affiliation(s)
- Jinxu Wang
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, PR China
| | - Xin Tong
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, PR China
| | - Peibo Li
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, PR China
| | - Menghua Liu
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, PR China
| | - Wei Peng
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, PR China
| | - Hui Cao
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhuhai 519020, PR China
| | - Weiwei Su
- Guangzhou Quality R&D Center of Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, PR China.
| |
Collapse
|
27
|
Astragaloside IV inhibits progression of lung cancer by mediating immune function of Tregs and CTLs by interfering with IDO. J Cancer Res Clin Oncol 2014; 140:1883-90. [PMID: 24980548 DOI: 10.1007/s00432-014-1744-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/10/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE Tumor cells have developed multiple mechanisms to escape immune recognition mediated by T cells. Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing enzyme inducing immune tolerance, is involved in tumor escape from host immune systems in mice. Astragaloside IV (AS-IV), an extract from a commonly used Chinese medicinal plant Astragalus membranaceus, has been shown to be capable of restoring the impaired T-cell functions in cancer patients. The purpose of this study was to investigate the mechanisms underlying the anticancer properties of AS-IV. METHODS Here, we used IDO-overexpressed murine Lewis lung carcinoma cells to establish an orthotopic lung cancer model in C57BL/6 mice. Next, tumor growth was evaluated in several different treatment groups: control (saline), AS-IV, paclitaxel, and 1-methyl tryptophan (an inhibitor of IDO). We then analyzed the percentages of various immune cell subsets among the splenic lymphocytes of lung cancer mice by flow cytometry. The level of IDO was measured by real-time PCR and Western blot. RESULTS We showed that the growth of tumor was suppressed by AS-IV treatment in vivo. AS-IV also could down-regulate regulatory T cells (Tregs) and up-regulate cytotoxic T lymphocytes (CTLs) in vivo and in vitro. Consistent with its ability to interfere with T-cell immunity, AS-IV blocked IDO induction both in vitro and in vivo. CONCLUSIONS The results of these studies indicate that AS-IV has in vivo anticancer activity and can enhance the immune response by inhibiting the Tregs frequency and induce the activity of CTLs, which might be related to the inhibition of IDO expression.
Collapse
|
28
|
Yao ML, Liu JZ, Jin S, Jiao J, Gai QY, Wei ZF, Fu YJ, Zhao JT. A novel biotransformation of astragalosides to astragaloside IV with the deacetylation of fungal endophyte Penicillium canescens. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Yeh TS, Chuang HL, Huang WC, Chen YM, Huang CC, Hsu MC. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules 2014; 19:2793-807. [PMID: 24595275 PMCID: PMC6271379 DOI: 10.3390/molecules19032793] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 01/05/2023] Open
Abstract
Astragalus membranaceus (AM) is a popular "Qi-tonifying" herb with a long history of use as a Traditional Chinese Medicine with multiple biological functions. However, evidence for the effects of AM on exercise performance and physical fatigue is limited. We evaluated the potential beneficial effects of AM on ergogenic and anti-fatigue functions following physiological challenge. Male ICR strain mice were randomly assigned to four groups (n = 10 per group) for treatment: (1) sedentary control and vehicle treatment (vehicle control); (2) exercise training with vehicle treatment (exercise control); and (3) exercise training with AM treatment at 0.615 g/kg/day (Ex-AM1) or (4) 3.075 g/kg/day (Ex-AM5). Both the vehicle and AM were orally administered for 6 weeks. Exercise performance and anti-fatigue function were evaluated by forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, and creatine kinase after 15-min swimming exercise. Exercise training combined with AM supplementation increased endurance exercise capacity and increased hepatic and muscle glycogen content. AM reduced exercise-induced accumulation of the byproducts blood lactate and ammonia with acute exercise challenge. Moreover, we found no deleterious effects from AM treatment. Therefore, AM supplementation improved exercise performance and had anti-fatigue effects in mice. It may be an effective ergogenic aid in exercise training.
Collapse
Affiliation(s)
- Tzu-Shao Yeh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 11529, Taiwan
| | - Wen-Ching Huang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Yi-Ming Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
30
|
Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels. PLoS One 2013; 8:e76495. [PMID: 24124567 PMCID: PMC3790693 DOI: 10.1371/journal.pone.0076495] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/29/2013] [Indexed: 12/04/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.
Collapse
|
31
|
Zhong Y, Deng Y, Chen Y, Chuang PY, Cijiang He J. Therapeutic use of traditional Chinese herbal medications for chronic kidney diseases. Kidney Int 2013; 84:1108-18. [PMID: 23868014 PMCID: PMC3812398 DOI: 10.1038/ki.2013.276] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 12/16/2022]
Abstract
Traditional Chinese herbal medications (TCHM) are frequently used in conjunction with western pharmacotherapy for treatment of chronic kidney diseases (CKD) in China and many other Asian countries. The practice of traditional Chinese medicine is guided by cumulative empiric experience. Recent in vitro and animal studies have confirmed the biological activity and therapeutic effects of several TCHM in CKD. However, the level of evidence supporting TCHM is limited to small, non-randomized trials. Due to variations in the prescription pattern of TCHM and the need for frequent dosage adjustment, which are inherent to the practice of traditional Chinese medicine, it has been challenging to design and implement large randomized clinical trials of TCHM. Several TCHM are associated with significant adverse effects, including nephrotoxicity. However, reporting of adverse effects associated with TCHM has been inadequate. To fully realize the therapeutic use of TCHM in CKD we need molecular studies to identify active ingredients of TCHM and their mechanism of action, rigorous pharmacologic studies to determine the safety and meet regulatory standards required for clinical therapeutic agents, and well-designed clinical trials to provide evidence-based support of their safety and efficacy.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|