1
|
Ma W, Ren H, Meng X, Liu S, Du K, Fang S, Chang Y. A review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and quality control of Paeonia lactiflora Pall. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118616. [PMID: 39053710 DOI: 10.1016/j.jep.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (called Shaoyao in China) is a common herb cultivated all over the world. In some Asian and European countries, such as China, Japan, South Korea and Britain, P. lactiflora has a long history of ethnomedical uses, which is widely used to relieve pain, treat gynecological diseases, anti-infection and so on. It is attributed to the extensive pharmacological activities of total glucosides of P. lactiflora. Up to now, it is still commonly used in clinical medicine. THE AIM OF THE REVIEW The paper aims to make a comprehensive review on the botanical characterization and distribution, ethnopharmacology, phytochemistry, biosynthesis pathway, pharmacology, pharmacokinetics and quality control of P. lactiflora, so as to provide new insights and scientific evidence for the subsequent research. MATERIALS AND METHODS The information of P. lactiflora was obtained from books related to traditional Chinese medicine and electronic databases, including Scifinder, PubMed, Web of Science, CNKI and Google Scholar. RESULTS P. lactiflora is a kind of herb with a long history and it is used for medicine, food and ornamental, and shows high utilization value. There are 200 compounds have been identified from it, including terpenoids, flavonoids, polyphenols, organic acids and others, among those paeoniflorin, a monoterpenoid glycoside, has multiple activities and is currently the focus of pharmacological research. A great deal of pharmacological experiments supported the anti-inflammatory, anti-oxidant, hepatoprotective, neuroprotective, antibacterial, antitumor, dermatosis treating and other effects of P. lactiflora. In addition, evaluating the quality of P. lactiflora is essential to safe use of drug in humans. CONCLUSIONS The chemical components of P. lactiflora are diverse and have a wide range of activities. Modern pharmacological studies have provided reliable evidence for the traditional efficacy, such as suppressing liver yang, regulating menstruation and relieving pain. However, there are still some problems to be solved, such as part of the pharmacological mechanism has not been clarified and the biosynthetic pathway of cage-like monoterpenoids remains poorly defined. In addition, further studies on compounds other than paeoniflorin are clearly warranted. It is hoped that P. lactiflora will serve the clinic better in the future.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haishuo Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Sun Y, Liu T, Zhao X. Progress in the Study of Chemical Structure and Pharmacological Effects of Total Paeony Glycosides Isolated from Radix Paeoniae Rubra. Curr Issues Mol Biol 2024; 46:10065-10086. [PMID: 39329953 PMCID: PMC11430570 DOI: 10.3390/cimb46090601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Radix paeoniae rubra, known as red peony root, is derived from the dried roots of Paeonia lactiflora pall or Paeonia veitchii lynch from the Ranunculaceae family. It is recognized for its properties of clearing heat, cooling blood, dispelling stasis, and alleviating pain, making it one of the most commonly used herbs in traditional Chinese medicine. Total paeony glycosides (TPGs) are identified as the principal active constituents of Radix paeoniae rubra, comprising monoterpenoid compounds with a cage-like pinane structure and monoterpenoids with a lactone structure. This review summarizes the chemical constituents and pharmacological effects of TPGs, with the aim of elucidating their relationships.
Collapse
Affiliation(s)
- Yumu Sun
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Taiyu Liu
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Xueying Zhao
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
3
|
Fan Z, Liu J, Wang X, Yang S, Wang Q, Yan L, Zhang Y, Wu X. Paeoniae Radix Rubra: A Review of Ethnopharmacology, Phytochemistry, Pharmacological Activities, Therapeutic Mechanism for Blood Stasis Syndrome, and Quality Control. Chem Biodivers 2024; 21:e202401119. [PMID: 38850115 DOI: 10.1002/cbdv.202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.
Collapse
Affiliation(s)
- Zuowang Fan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Sanming Medical and Polytechnic Vocational College, Sanming, 365000, China
| | - Jing Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Saisai Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Li Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yao Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiuhong Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
4
|
Kong C, Wang K, Sun L, Qin S, Wang R, Xu F. Two new glycosides from the root bark of Paeonia ostii. Nat Prod Res 2024:1-7. [PMID: 38433399 DOI: 10.1080/14786419.2024.2324372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Two new glycosides, ethyl-O-β-D-furanosyl-(1→6)-O-β-D-glucopyranoside (1) and (5-'')-galloyl-ethyl-O-β-D-furanosyl-(1→6)-O-β-D-glucopyranoside (2), together with eight known compounds (3-10) were obtained from the n-BuOH extraction of Paeonia ostii. Their structures were identified via the extensive spectroscopic analysis. Compounds 1, 3-10 exhibited the anti-inflammation activities, which inhibited the production of NO, TNF-α and IL-1β in LPS-induced RAW264.7 cells with IC50 values ranging from 6.00 to 86.78 µΜ.
Collapse
Affiliation(s)
- Chuihao Kong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Kaidi Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Lei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
- Zhejiang CONBA Pharmaceutical Co. LTD, Hangzhou, P. R. China
| | - Shihui Qin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Renzhong Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Fengqing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
- Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, P. R. China
| |
Collapse
|
5
|
Komatsu K. Comprehensive study on genetic and chemical diversity of Asian medicinal plants, aimed at sustainable use and standardization of traditional crude drugs. J Nat Med 2024; 78:267-284. [PMID: 38133706 PMCID: PMC10902101 DOI: 10.1007/s11418-023-01770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Our representative studies to achieve sustainable use of crude drugs and ensure their stable quality are introduced: comprehensive studies on genetic, chemical, and sometimes pharmacological diversity of Asian medicinal plants including Paeonia lactiflora, Glycyrrhiza uralensis, Ephedra spp., Saposhnikovia divaricata, and Curcuma spp., as well as their related crude drugs. (1) For peony root, after genetic and chemical diversity analysis of crude drug samples including white and red peony root in China, the value-added resources with quality similar to red peony root were explored among 61 horticultural P. lactiflora varieties, and two varieties were identified. In addition, an optimized post-harvest processing method, which resulted in high contents of the main active components in the produced root, was developed to promote cultivation and production of brand peony root. (2) Alternative resources of glycyrrhiza, ephedra herb and saposhnikovia root and rhizome of Japanese Pharmacopoeia grade were discovered in eastern Mongolia after field investigation and quality assessment comparing Mongolian plants with Chinese crude drugs. Simultaneously, suitable specimens and prospective regions for cultivation were proposed. (3) Because of the wide distribution and morphological similarities of Curcuma species, classification of some species is debated, which leads to confusion in the use of Curcuma crude drugs. Molecular analyses of the intron length polymorphism (ILP) markers in genes encoding diketide-CoA synthase (DCS) and curcumin synthase (CURS) and trnK sequences, combined with essential oils analysis, were demonstrated as useful for standardization of Curcuma crude drugs. The above studies, representing various facets, can be applied to other crude drugs.
Collapse
Affiliation(s)
- Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
6
|
Dragomanova S, Andonova V, Volcho K, Salakhutdinov N, Kalfin R, Tancheva L. Therapeutic Potential of Myrtenal and Its Derivatives-A Review. Life (Basel) 2023; 13:2086. [PMID: 37895468 PMCID: PMC10608190 DOI: 10.3390/life13102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The investigation of monoterpenes as natural products has gained significant attention in the search for new pharmacological agents due to their ability to exhibit a wide range in biological activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive, and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and memory-enhancing effects in experimental dementia and Parkinson's disease. Chemical modification of natural substances by conjugation with various synthetic components is a modern method of obtaining new biologically active compounds. The discovery of new potential drugs among monoterpene derivatives is a progressive avenue within experimental pharmacology, offering a promising approach for the therapy of diverse pathological conditions. Biologically active substances such as monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer's, antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal with the established pharmacophore adamantane enables the augmentation of several of its pivotal properties. Myrtenal-adamantane derivatives exhibited a variety of beneficial characteristics, such as antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are worth examining in more detail and at length.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University, 66 Ivan Mihailov St., 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
| |
Collapse
|
7
|
Chen Y, Zhang G, Cao D, Wang F, Zhang F, Shao H, Jiao W. New Monoterpene Glycoside Paeoniflorin Derivatives as NO and IL-1 β Inhibitors: Synthesis and Biological Evaluation. Molecules 2023; 28:6922. [PMID: 37836765 PMCID: PMC10574144 DOI: 10.3390/molecules28196922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Several monoterpene glycoside compounds were extracted from Paeonia lactiflora Pall. Among them, paeoniflorin, a water-soluble monoterpene glycoside found in the root of Paeonia lactiflora Pall, exhibits excellent antioxidant pharmacological functions. Initially, Sc(CF3SO3)3 was employed as the catalyst for paeoniflorin's dehydration and rearrangement reactions with alcohols. Subsequently, structural modifications were performed on paeoniflorin through a series of responses, including acetylation, deacetylation, and debenzoylation, ultimately yielding 46 monoterpene glycoside derivatives. The potential inhibitory effects on the pro-inflammatory mediators interleukin-1 beta (IL-1β) and nitric oxide (NO) were assessed in vitro. The results revealed that compounds 29 and 31 demonstrated notable inhibition of NO production, while eight derivatives (3, 8, 18, 20, 21, 29, 34, and 40) displayed substantial inhibitory effects on the secretion of IL-1β. Computational research was also undertaken to investigate the binding affinity of the ligands with the target proteins. Interactions between the proteins and substrates were elucidated, and corresponding binding energies were calculated accordingly. The findings of this study could provide valuable insights into the design and development of novel anti-inflammatory agents with enhanced pharmacological properties.
Collapse
Affiliation(s)
- Yongjie Chen
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Nanchong Central Hospital, Nanchong 637000, China
| | - Guoqing Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dongyi Cao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fan Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
8
|
Dong Y, Toume K, Zhu S, Shi Y, Tamura T, Yoshimatsu K, Komatsu K. Metabolomics analysis of peony root using NMR spectroscopy and impact of the preprocessing method for NMR data in multivariate analysis. J Nat Med 2023; 77:792-816. [PMID: 37432536 DOI: 10.1007/s11418-023-01721-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 07/12/2023]
Abstract
Peony root is an important herbal drug used as an antispasmodic analgesic. To evaluate peony roots with different botanical origins, producing areas, and post-harvest processing, 1H NMR-based metabolomics analysis was employed. Five types of monoterpenoids, including albiflorin (4), paeoniflorin (6), and sulfonated paeoniflorin (25), and six other compounds, including 1,2,3,4,6-penta-O-galloyl-β-D-glucose (18), benzoic acid (21), gallic acid (22), and sucrose (26) were detected in the extracts of peony root samples. Among them, compounds 4, 6, 18, and total monoterpenoids including 21 were quantified by quantitative 1H NMR (qHNMR). Compound 25 was detected in 1H NMR spectra of sulfur-fumigated white peony root (WPR) extracts indicating that 1H NMR was a fast and effective method for identifying sulfur-fumigated WPR. The content of 26, the main factor affecting extract yield, increased significantly in peony root after low-temperature storage for one month, whereas that in WPR did not increase due to the boiling treatment after harvesting. We investigated the impact of preprocessing methods to such analysis for NMR data from commercial samples, resulting that the data matrix transformed from qHNMR spectra and normalized to internal standard were optimum for multivariate analysis. The multivariate analysis demonstrated that among commercial samples derived from P. lactiflora, peony root samples in Japanese market (PR) had high contents of 18 and 22, and red peony root (RPR) samples had high content of monoterpenoids represented by 6; and among RPR samples, those derived from P. veitchii showed higher contents of 18 and 22 than those from P. lactiflora. The 1H NMR-based metabolomics method coupled with qHNMR was useful for evaluation of peony root and would be applicable for other crude drugs.
Collapse
Affiliation(s)
- Yuzhuo Dong
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan.
| | - Shu Zhu
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Yanhong Shi
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan
| | - Takayuki Tamura
- Center for Medicinal Plant Resources, Toyama Prefectural Institute for Pharmaceutical Research, 2732 Hirono, Kamiichi-Machi, Nakaniikawa-gun, Toyama, 930-0412, Japan
| | - Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
9
|
Ito K, Kikuchi T, Ikube K, Otsuki K, Koike K, Li W. LC-MS Profiling of Kakkonto and Identification of Ephedrine as a Key Component for Its Anti-Glycation Activity. Molecules 2023; 28:molecules28114409. [PMID: 37298887 DOI: 10.3390/molecules28114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
A total of 147 oral Kampo prescriptions, which are used clinically in Japan, were evaluated for their anti-glycation activity. Kakkonto demonstrated significant anti-glycation activity, prompting further analysis of its chemical constituents using LC-MS, which revealed the presence of two alkaloids, fourteen flavonoids, two but-2-enolides, five monoterpenoids, and four triterpenoid glycosides. To identify the components responsible for its anti-glycation activity, the Kakkonto extract was reacted with glyceraldehyde (GA) or methylglyoxal (MGO) and analyzed using LC-MS. In LC-MS analysis of Kakkonto reacted with GA, the peak intensity of ephedrine was attenuated, and three products from ephedrine-scavenging GA were detected. Similarly, LC-MS analysis of Kakkonto reacted with MGO revealed two products from ephedrine reacting with MGO. These results indicated that ephedrine was responsible for the observed anti-glycation activity of Kakkonto. Ephedrae herba extract, which contains ephedrine, also showed strong anti-glycation activity, further supporting ephedrine's contribution to Kakkonto's reactive carbonyl species' scavenging ability and anti-glycation activity.
Collapse
Affiliation(s)
- Kaori Ito
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Kanako Ikube
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| |
Collapse
|
10
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
11
|
Zhang Q, Wu Y, Ge M, Xia G, Xia H, Wang L, Wei X, He H, Lin S. Paeoniflorin-free subfraction of Paeonia lactiflora Pall. shows the potential of anti-hepatic fibrosis: an integrated analysis of network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115678. [PMID: 36058476 DOI: 10.1016/j.jep.2022.115678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatic fibrosis is a major consequence of liver disease. Radix Paeoniae Rubra (RPR), the dry root of Paeonia lactiflora Pall., has a long history of clinical application in traditional Chinese medicine (TCM) for the treatment of liver diseases. The researches of RPR active ingredients are mainly focused on paeoniflorin. However, the functional roles of other ingredients have not been clarified sufficiently in the treatment of hepatic fibrosis with RPR. AIM OF THE STUDY This study was to figure out the anti-hepatic fibrosis potential and mechanisms of CS-4, one of the paeoniflorin-free subfraction of RPR. MATERIALS AND METHODS With the guide of bioassay, CS-4, a subfraction of RPR showed in vitro inhibition of hepatic stellate cell activation, was obtained using multiple chromatographic techniques. Its ingredients were determined by UPLC-Q-TOF-MS/MS. Then, the target profiles of ingredients were obtained from the HERB database, and the disease targets were collected from the DisGeNET database. Through the network pharmacology method, a protein-protein interaction network of CS-4 against hepatic fibrosis was established to analyze and excavate the potential therapeutic targets. Combined with the KEGG analysis, a series of signaling pathways were obtained, thereby validated by western blot analysis. RESULTS The paeoniflorin-free subfraction of RPR, CS-4, was obtained and showed the most potential anti-fibrotic effect in vitro. A total of 20 main ingredients were identified from CS-4 and considered as its active ingredients. From HERB and DisGeNET databases, 1460 potential targets of CS-4 and 1180 disease targets were obtained, respectively. The overlapped 79 targets were considered to exert the potential anti-fibrosis effect of CS-4, such as JAK2, MYC, SMAD3, and IFNG. The gene enrichment analysis revealed that classical TGF-β/Smad signaling pathway and nonclassical TGF-β/PI3K-AKT signaling pathway may be two of the main mechanisms of CS-4 against hepatic fibrosis, which supported by western blot analysis. CONCLUSION In this study, a paeoniflorin-free subfraction with potential anti-hepatic fibrosis activity in vitro, CS-4, was obtained from RPR. Its multiple ingredients, multiple targets, and multiple mechanisms against hepatic fibrosis were explained by network pharmacology and verified by western blot analysis to further support the clinical applications of RPR.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yuzhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Maoxu Ge
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Lingyan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongwei He
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
12
|
Li P, Shen J, Wang Z, Liu S, Liu Q, Li Y, He C, Xiao P. Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113708. [PMID: 33346027 DOI: 10.1016/j.jep.2020.113708] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia, which comprises approximately 52 shrubs or herbaceous perennials around the world, is the only genus of the Paeoniaceae and is pervasively distributed in Asia, southern Europe, and North America. Many species of the genus Paeonia have been used for centuries in ethnomedical medical systems. AIM OF THE REVIEW The present study aims to summarize the traditional uses, clinical applications, and toxicology of the genus Paeonia, to critically evaluate the state-of-the-art phytochemical and pharmacological studies of this genus published between 2011 and 2020, and to suggest directions for further in-depth research on Paeonia medicinal resources. MATERIALS AND METHODS Popular and widely used databases such as PubMed, Scopus, Science Direct, and Google Scholar were searched using the various search strings; from these searches, a number of citations related to the traditional uses, phytochemistry, biological activities, clinical application, and toxicology of the genus Paeonia were retrieved. RESULTS The use of 21 species, 2 subspecies, and 7 varieties of the genus Paeonia as traditional herbal remedies has been reported, and many ethnomedicinal uses, such as the treatment of hematemesis, blood stasis, dysmenorrhea, amenorrhea, epilepsy, spasms, and gastritis, have been recorded. The roots and root bark are the most frequently reported parts of the plants used in medicinal applications. In phytochemical investigations, 451 compounds have been isolated from Paeonia plants to date, which contains monoterpenoid glucosides, flavonoids, tannins, stilbenes, triterpenoids and steroids, and phenols. Studies of their pharmacological activities have revealed the antioxidant, anti-inflammatory, antitumour, antibacterial, antiviral, cardiovascular protective, and neuroprotective properties of the genus Paeonia. In particular, some bioactive extracts and compounds (total glucosides of peony (TGP), paeonol, and paeoniflorin) have been used as therapeutic drugs or tested in clinical trials. In addition to the "incompatibility" of the combined use of "shaoyao" and Veratrum nigrum L. roots in traditional Chinese medicine theory, Paeonia was considered to have no obvious toxicity based on the available toxicological tests. CONCLUSION A large number of phytochemical and pharmacological reports have indicated that Paeonia is an important medicinal herb resource, and some of its traditional uses including the treatment of inflammation and cardiovascular diseases and its use as a neuroprotective agent, have been partially confirmed through modern pharmacological studies. Monoterpenoid glucosides are the main active constituents. Although many compounds have been isolated from Paeonia plants, the biological activities of only a few of these compounds (paeoniflorin, paeonol, and TGP) have been extensively investigated. Some paeoniflorin structural analogues and resveratrol oligomers have been preliminarily studied. With the exception of several species (P. suffruticosa, P. ostii, P. lactiflora, and P. emodi) that are commonly used in folk medicine, many medicinal species within the genus do not receive adequate attention. Conducting phytochemical and pharmacological experiments on these species can provide new clues that may lead to the discovery of medicinal resources. It is necessary to identify the effective phytoconstituents of crude extracts of Paeonia that displayed pharmacological activities by bioactivity-guided isolation. In addition, comprehensive plant quality control, and toxicology and pharmacokinetic studies are needed in the future studies.
Collapse
Affiliation(s)
- Pei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Zhiqiang Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Shuangshuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Qing Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
13
|
Liu X, Zhang Y, Li Z, Zhang P, Sun YJ, Wu YJ. Paeoniflorin Derivative in Paeoniae Radix Aqueous Extract Suppresses Alpha-Toxin of Staphylococcus aureus. Front Microbiol 2021; 12:649390. [PMID: 33821158 PMCID: PMC8019018 DOI: 10.3389/fmicb.2021.649390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 11/27/2022] Open
Abstract
The emergence and dissemination of bacterial infections is paralyzing our public health systems worldwide. Worse still, there are no effective antibiotics against bacterial toxins, which facilitate the infection. Natural herbs that target bacterial toxins may be a better choice for therapy of infectious diseases. However, most natural drugs present unknown compositions and unclear mechanisms. Here we demonstrated that the Chinese herb Paeoniae Radix aqueous extract (PRAE) could suppress alpha-toxin (α-toxin) of Staphylococcus aureus. We observed that the paeoniflorin derivative (PRAE-a) derivative in PRAE significantly abolished the hemolytic activity of S. aureus α-toxin. The analyses of high-performance liquid chromatography (HPLC), mass spectrometer (MS), Fourier transform infrared spectrometer (FTIR), and nuclear magnetic resonance (NMR) showed that PRAE-a was a glycoside compound with a paeoniflorin nucleus. We further found that PRAE-a disrupted the pore-forming ability of α-toxin by prevention of the dimer to heptamer. Therefore, PRAE-a proved to be an effective therapy for S. aureus lung infections in mice by inhibiting α-toxin. Collectively, these results highlighted that PRAE-a can be used as an antibacterial agent to attenuate S. aureus virulence by targeting α-toxin.
Collapse
Affiliation(s)
- Xiaoye Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, China.,Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yafei Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, China
| | - Zengshun Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, China
| | - Pengpeng Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, China
| | - Ying-Jian Sun
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Huang Q, Chen JJ, Pan Y, He XF, Wang Y, Zhang XM, Geng CA. Chemical profiling and antidiabetic potency of Paeonia delavayi: Comparison between different parts and constituents. J Pharm Biomed Anal 2021; 198:113998. [PMID: 33677281 DOI: 10.1016/j.jpba.2021.113998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Paeonia delavayi (Paeoniaceae), an endemic plant mainly distributed in southwest China, is always used as the substitute of P. suffruticosa due to their morphological and pharmacological similarity. In the previous study, P. suffruticosa was revealed with antidiabetic potency, whereas the chemical difference and antidiabetic property between different parts of P. delavayi has not yet been studied. This paper was designed to clarify the chemical constituents and antidiabetic potency of P. delavayi by LCMS analysis and enzyme inhibition on α-glucosidase, PTP1B, TCPTP, and DPP4. By interpretation of their UV absorptions and MS fragmentations, and/or comparison with reference samples, 57 constituents comprising 15 flavonoids, 10 monoterpene glycosides, eight triterpenoids, seven galloyl glucoses, six N-containing compounds, five gallic acids, two acetophenones, and four other types of compounds were identified from the different parts of P. delavayi. Moreover, two new monoterpene aglycones (42 and 47) and one new noroleanane triterpenoid (51) were speculated by their MS/MS fragmentation rules. Principal component analysis (PCA) suggested the chemical resemblance between root core and root bark which could be well differentiated with the leaves and stems by their characteristic constituents (monoterpene glycosides, flavonoids, and acetophenones). All the four parts (200 μg/mL) showed obvious inhibition on α-glucosidase and PTP1B (81.2%-98.5%), but moderate to weak inhibition on TCPTP and DPP4 (19.5%-34.9%). Nine compounds representing five main types of constituents in Paeonia plants were assayed for their antidiabetic effects, indicating flavonoids and triterpenoids were the main active substances regarding to the four enzymes. Luteolin displayed obvious activity on α-glucosidase, PTP1B, and TCPTP with IC50 values of 94.6, 136.3, and 157.3 μM, and akebonic acid could inhibit α-glucosidase and PTP1B with IC50 values of 73.5 and 57.8 μM. Luteolin and akebonic acid were recognized as competitive inhibitors of α-glucosidase, but anticompetitive and mix-type inhibitors of PTP1B, respectively. Docking study demonstrated akebonic acid as PTP1B (over TCPTP) selective inhibitor by bonding to the catalytic sites (B/C) of PTP1B. This LCMS combined with enzymatic comparison opens new sights for recognizing the chemical profiles and antidiabetic potency of P. delavayi.
Collapse
Affiliation(s)
- Qian Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Pan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China
| | - Yuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
15
|
Sun M, Wang YZ, Yang Y, Lv MW, Li SS, Teixeira da Silva JA, Wang LS, Yu XN. Analysis of Chemical Components in the Roots of Eight Intersubgeneric Hybrids of Paeonia. Chem Biodivers 2021; 18:e2000848. [PMID: 33403807 DOI: 10.1002/cbdv.202000848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
Paeonia cultivars are famous ornamental plants, and some of them are also traditional Chinese medicinal resources. Intersubgeneric hybrids of Paeonia (IHPs) are formed by the hybridization of herbaceous peony (Paeonia lactiflora) and tree peony (Paeonia×suffruticosa or lutea hybrid tree peony). The phenotypic characteristics of IHPs are similar to those of herbaceous peony, and their root systems are large and vigorous. However, their medicinal value has not been reported yet. In this study, the roots of eight IHP samples were analyzed by high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS). A total of 18 compounds were identified, including phenols, paeonols, monoterpene glycosides, and tannins. The contents of monoterpene glycosides and tannins in IHPs were higher than herbaceous peony and tree peony, exceeding 44.76 mg/g DW and 11.50 mg/g DW, respectively. Three IHPs, 'Prairie Charm', 'Garden Treasure', and 'Yellow Emperor', with more types and a higher content of medicinal compounds, were screened out by cluster analysis. These IHPs have considerable potential for the development of medicinal resources.
Collapse
Affiliation(s)
- Miao Sun
- College of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, 100083, P. R. China.,Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China
| | - Yi-Zhou Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, 100083, P. R. China.,Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China
| | - Meng-Wen Lv
- College of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, 100083, P. R. China.,Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China
| | - Shan-Shan Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jaime A Teixeira da Silva
- Independent researcher, P.O. Box 7, Miki-cho Post Office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan
| | - Liang-Sheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Nan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing, 100083, P. R. China
| |
Collapse
|
16
|
Liu W, Xie G, Yuan G, Xie D, Lian Z, Lin Z, Ye J, Zhou W, Zhou W, Li H, Wang X, Feng H, Liu Y, Yao G. 6'-O-Galloylpaeoniflorin Attenuates Osteoclasto-genesis and Relieves Ovariectomy-Induced Osteoporosis by Inhibiting Reactive Oxygen Species and MAPKs/c-Fos/NFATc1 Signaling Pathway. Front Pharmacol 2021; 12:641277. [PMID: 33897430 PMCID: PMC8058459 DOI: 10.3389/fphar.2021.641277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence suggests bright prospects of some natural antioxidants in the treatment of osteoporosis. 6'-O-Galloylpaeoniflorin (GPF), an antioxidant isolated from peony roots (one of very widely used Oriental medicines, with various anti-inflammatory, antitumor, and antioxidant activities), shows a series of potential clinical applications. However, its effects on osteoporosis remain poorly investigated. The current study aimed to explore whether GPF can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating reactive oxygen species (ROS), and investigate the possible mechanism. After the culture of primary murine bone marrow-derived macrophages/monocytes were induced by the use of macrophage colony-stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL) and then treated with GPF. Cell proliferation and viability were assessed by Cell Counting Kit-8 (CCK-8) assay. Thereafter, the role of GPF in the production of osteoclasts and the osteogenic resorption of mature osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining, podosome belt formation, and resorption pit assay. Western blotting and qRT-PCR examination were performed to evaluate proteins' generation and osteoclast-specific gene levels, respectively. The ROS generation in cells was measured in vitro by 2',7'-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Ovariectomy-induced osteoporosis mouse administered with GPF or vehicle was performed to explore the in vivo potential of GPF, then a micro-CT scan was performed in combination with histological examination for further analysis. GPF suppressed the formation of osteoclasts and podosome belts, as well as bone resorption when induced by RANKL through affecting intracellular ROS activity, MAPKs signaling pathway, and subsequent NFATc1 translocation and expression, as well as osteoclast-specific gene expression in vitro. In vivo study suggested that exposure to GPF prevented osteoporosis-related bone loss in the ovariectomized mice. These findings indicate that GPF attenuates osteoclastogenesis and relieves ovariectomy-induced osteoporosis by inhibiting ROS and MAPKs/c-Fos/NFATc1 signaling pathway. This suggested that GPF may be potentially used to treat bone diseases like periodontitis, rheumatoid arthritis, and osteoporosis associated with osteoclasts.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zihong Lin
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jiajie Ye
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenyun Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Weijun Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Henghui Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Ying Liu, ; Guanfeng Yao,
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Ying Liu, ; Guanfeng Yao,
| |
Collapse
|
17
|
Coloclyster of Red Peony Root Granules Alleviates Moderately Severe Acute Pancreatitis: A Double-Blinded, Placebo-Controlled, Randomized Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8401239. [PMID: 32774431 PMCID: PMC7396111 DOI: 10.1155/2020/8401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
The red peony root derived from Paeonia lactiflora has been applied to treat human inflammatory diseases. To investigate its therapeutic potential in treating moderately severe acute pancreatitis (MSAP), which has been rarely studied, this study was designed as a double-blinded, placebo-controlled, randomized clinical trial. A total of 60 MSAP patients were enrolled and randomly divided into an experimental (n = 30) group and a control group (n = 30), who received a coloclyster of 15 g of red peony root or placebo granules dissolved in 150 mL of water, respectively. The patients' demographic and clinical characteristics were recorded. The results showed that the experimental group had a shorter remission time of fever (p < 0.05) and abdominal pain (p < 0.01) and faster resumption of self-defecation (p < 0.01) than did the control group. In addition, the coloclyster of red peony root decreased the modified Balthazar CT score as well as the serum interleukin-6 and tumor necrosis factor-alpha levels to a greater extent than did the placebo coloclyster (p < 0.05). The remission times for the normalization of white blood cells and percentage of neutrophils and lymphocytes in the experimental group were also significantly shorter than those in the control group (p < 0.05). In conclusion, a coloclyster of red peony root could help alleviate the clinical symptoms and shorten the course of MSAP by possibly attenuating systematic inflammation. This trial is registered with 14004664.
Collapse
|
18
|
Michalea R, Stathopoulou K, Polychronopoulos P, Benaki D, Mikros E, Aligiannis N. Efficient identification of Acetylcholinesterase and Hyaluronidase inhibitors from Paeonia parnassica extracts through a HeteroCovariance Approach. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:111547. [PMID: 30336304 DOI: 10.1016/j.jep.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE On the basis of the relevant reference in the poem Theriaca of the ancient Greek physician Nicander and its traditional use, Paeonia parnassica was selected for the evaluation of two extracts obtained from the roots and aerial parts to inhibit hydrolytic enzymes involved in snake envenomation. The secondary metabolites which contribute to these activities were detected through a novel HeteroCovariance NMR based approach. Afterwards these ingredients were isolated, identified and evaluated for their inhibitory potency. AIM OF THE STUDY The identification of acetylcholinesterase and hyaluronidase inhibitors from Paeonia parnassica extracts was used as a case study for the introduction of a recently developed methodology to evaluate ethnopharmacological data and exploit them for the discovery of bioactive natural compounds. This process is based on the fractionation of the selected extracts and the simultaneous phytochemical analysis and biological assessment of the resulting fractions, which permits the rapid detection of the specified secondary metabolites prior to any laborious and time-consuming purification. MATERIALS AND METHODS The roots and aerial parts of P. parnassica were extracted using methanol: water 50:50 and the two resulted extracts were fractionated by Centrifugal Partition Chromatography. The obtained fractions were evaluated in-vitro for their ability to inhibit acetylcholinesterase and hyaluronidase enzymes and their 1H NMR spectra were recorded. The biological activity was statistically correlated with the spectral data through the HeteroCovariance Approach (HetCA). Finally the purification, identification and biological evaluation of targeted secondary metabolites were carried out. RESULTS The general chemical structures and some explicit secondary metabolites which contribute (e.g. gallotannins, gallic acid derivatives) or not (characteristic "cage-like" monoterpenes of the genus, glycosylated flavonoids) to the anti-acetylcholinesterase and anti-hyaluronidase activities were detected through HetCA. The consequent isolation and biological evaluation of targeted compounds were performed in order to validate the effectiveness and precision of the methodology. This procedure revealed the most active ingredients of both extracts obtained from roots and aerial parts against the above mentioned biological targets, as well as other compounds possessing moderate activity. CONCLUSIONS The results of this study contributed to the verification of the ancient text Theriaca regarding the use of Paeonia parnassica to treat the snake bite symptoms. Furthermore, the ingredients of the Paeonia parnassica extracts, which were responsible for their anti-cholinesterase and anti-hyaluronidase activities, were determined applying a HetCA methodology before their isolation. Therefore, the current work provides clear evidence that HetCA could consist an efficient tool for the exploitation of traditional medicine information in order to discover bioactive natural compounds and develop new pharmacotherapies which serve the needs of contemporary medicine.
Collapse
Affiliation(s)
- Rozalia Michalea
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Konstantina Stathopoulou
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Panagiotis Polychronopoulos
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Dimitra Benaki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
19
|
Study on the potential chemical markers for the discrimination between raw and processed Schisandrae Chinensis Fructus using UPLC-Q-TOF/MS coupled with multivariate statistical analyses. J Herb Med 2020. [DOI: 10.1016/j.hermed.2019.100311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Li HB, Shi Y, Pang Q, Mei Y, Su Z, Yao XS, Yu Y. Monoterpene glycosides with anti-inflammatory activity from Paeoniae Radix. Fitoterapia 2019; 138:104290. [PMID: 31398448 DOI: 10.1016/j.fitote.2019.104290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023]
Abstract
Six new monoterpene glycosides, named 6'-O-nicotinoylalbiflorin (1), 4'-O-vanillylalbiflorin (2), paeonidanin L (3), paeoniflorigenin-1-O-β-d-xyloside (4), 6'-(2-hydroxypropanoyl)-paeoniflorin (5), oxylactiflorin (6), together with 16known ones (7-22) were isolated from the 70% ethanol extract of Paeoniae Radix. Their structures were elucidated based on spectroscopic analysis (1D and 2D NMR, HRESIMS, IR and UV), chemical evidences and comparison with literatures. The inhibitory effects of all the isolates were evaluated against lipopolysaccharide (LPS) stimulated PGE2 production in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Hai-Bo Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, China
| | - Ying Shi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, China
| | - Qianqian Pang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, China
| | - Yudan Mei
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, China
| | - Zhenzhen Su
- Kanion Pharmaceutical Co. Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, China.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Wang JT, Ma ZH, Wang GK, Xu FQ, Yu Y, Wang G, Peng DY, Liu JS. Chemical constituents from plant endophytic fungus Alternaria alternata. Nat Prod Res 2019; 35:1199-1206. [PMID: 31305141 DOI: 10.1080/14786419.2019.1639699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Five new natural compounds (1-5) along with four known ones, involving dibenzo-α-pyrone derivatives, a benzo-γ-pyrone derivative and an amide-type compound were obtained from Alternaria alternata, an endophyte isolated from Paeonia lactiflora. The structures of these isolates were elucidated by intensive analysis of spectroscopic data including NMR, HRMS (ESI and EI), UV and IR spectra. Compounds (1-4) were evaluated for their cytotoxicities against five selected human tumourtumour cell lines (A-549, MDA-MB-231, MCF-7, KB and KB-VIN), and compound 3 exhibited activities against MDA-MB-231and MCF-7 with IC50 values of 20.1 μM and 32.2 μM.
Collapse
Affiliation(s)
- Ju-Tao Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Zong-Hui Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Feng-Qing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Yang Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|
22
|
Zhang CC, Geng CA, Huang XY, Zhang XM, Chen JJ. Antidiabetic Stilbenes from Peony Seeds with PTP1B, α-Glucosidase, and DPPIV Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6765-6772. [PMID: 31180676 DOI: 10.1021/acs.jafc.9b01193] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One unusual resveratrol tetramer, paeonilactiflorol (1), and 14 known compounds (2-15) were isolated from peony seeds ( Paeonia lactiflora) under the guidance of bioassay. Paeonilactiflorol (1) was determined by extensive HRESIMS, UV, IR, 1D and 2D NMR spectroscopic analyses. Most of the stilbenes showed obvious inhibition on PTP1B and α-glucosidase, superior to the monoterpene glycosides. Especially, the stilbene tetramer (1) and trimer (8) exhibited high activity inhibiting both PTP1B with IC50 values of 27.23 and 27.81 μM and α-glucosidase with IC50 values of 13.57 and 14.39 μM. Two trans-dimers (4 and 5) also showed dipeptidyl peptidase-4 (DPPIV) inhibitory activity (55.35% and 61.26%, 500 μM) in addition to PTP1B and α-glucosidase. Enzyme kinetic study indicated that the types of inhibition on PTP1B were noncompetitive for 3 and 5 and mixed for 8 and 10. Quantitative analysis suggested that the stilbene trimers 8 (23.17 ± 0.36 mg/g) and 10 (15.24 ± 0.25 mg/g) were the main contents in peony seeds and should be responsible for the antidiabetic effects. This investigation supports the therapeutic potential of peony seeds in the treatment of diabetes with stilbenes as the active constituents.
Collapse
Affiliation(s)
- Chen-Chen Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P. R. China
- Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P. R. China
- Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , P. R. China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P. R. China
- Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , P. R. China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P. R. China
- Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , P. R. China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P. R. China
- Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
23
|
Thabet AA, Youssef FS, Korinek M, Chang FR, Wu YC, Chen BH, El-Shazly M, Singab ANB, Hwang TL. Study of the anti-allergic and anti-inflammatory activity of Brachychiton rupestris and Brachychiton discolor leaves (Malvaceae) using in vitro models. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:299. [PMID: 30413192 PMCID: PMC6230296 DOI: 10.1186/s12906-018-2359-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022]
Abstract
Background Brachychiton rupestris and Brachychiton discolor (Malvaceae) are ornamental trees native to Australia. Some members of Brachychiton and its highly related genus, Sterculia, are employed in traditional medicine for itching, dermatitis and other skin diseases. However, scientific studies on these two genera are scarce. Aiming to reveal the scientific basis of the folk medicinal use of these plants, the cytotoxicity, anti-inflammatory and anti-allergic activities of Brachychiton rupestris and Brachychiton discolor leaves extracts and fractions were evaluated. Also, phytochemical investigation of B. rupestris was performed to identify the compounds exerting the biological effect. Methods Extracts as well as fractions of Brachychiton rupestris and Brachychiton discolor were tested for their cytotoxicity versus hepatoma HepG2, lung A549, and breast MDA-MB-231 cancer cell lines. Assessment of the anti-allergic activity was done using degranulation assay in RBL-2H3 mast cells. Anti-inflammatory effect was tested by measuring the suppression of superoxide anion production as well as elastase release in fMLF/CB-induced human neutrophils. Phytochemical investigation of the n-hexane, dichloromethane and ethyl acetate fractions of B. rupestris was done using different chromatographic and spectroscopic techniques. Results The tested samples showed no cytotoxicity towards the tested cell lines. The nonpolar fractions of both B. rupestris and B. discolor showed potent anti-allergic potency by inhibiting the release of β-hexosaminidase. The dichloromethane fraction of both species exhibited the highest anti-inflammatory activity by suppressing superoxide anion generation and elastase release with IC50 values of 2.99 and 1.98 μg/mL, respectively for B. rupestris, and 0.78 and 1.57 μg/mL, respectively for B. discolor. Phytochemical investigation of various fractions of B. rupestris resulted in the isolation of β-amyrin acetate (1), β-sitosterol (2) and stigmasterol (3) from the n-hexane fraction. Scopoletin (4) and β-sitosterol-3-O-β-D-glucoside (5) were obtained from the dichloromethane fraction. Dihydrodehydrodiconiferyl alcohol 4-O-β-D-glucoside (6) and dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucoside (7) were separated from the ethyl acetate fraction. Scopoletin (4) showed anti-allergic and anti-inflammatory activity. Conclusions It was concluded that the nonpolar fractions of both Brachychiton species exhibited anti-allergic and anti-inflammatory activities. Electronic supplementary material The online version of this article (10.1186/s12906-018-2359-6) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Zhu S, Shirakawa A, Shi Y, Yu X, Tamura T, Shibahara N, Yoshimatsu K, Komatsu K. Impact of different post-harvest processing methods on the chemical compositions of peony root. J Nat Med 2018; 72:757-767. [PMID: 29654516 PMCID: PMC6611895 DOI: 10.1007/s11418-018-1214-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/03/2018] [Indexed: 12/01/2022]
Abstract
The impact of key processing steps such as boiling, peeling, drying and storing on chemical compositions and morphologic features of the produced peony root was investigated in detail by applying 15 processing methods to fresh roots of Paeonia lactiflora and then monitoring contents of eight main components, as well as internal root color. The results showed that low temperature (4 °C) storage of fresh roots for approximately 1 month after harvest resulted in slightly increased and stable content of paeoniflorin, which might be due to suppression of enzymatic degradation. This storage also prevented roots from discoloring, facilitating production of favorable bright color roots. Boiling process triggered decomposition of polygalloylglucoses, thereby leading to a significant increase in contents of pentagalloylglucose and gallic acid. Peeling process resulted in a decrease of albiflorin and catechin contents. As a result, an optimized and practicable processing method ensuring high contents of the main active components in the produced root was developed.
Collapse
Affiliation(s)
- Shu Zhu
- Division of Pharmacognosy, Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Aimi Shirakawa
- Division of Pharmacognosy, Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yanhong Shi
- Division of Pharmacognosy, Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Xiaoli Yu
- Division of Pharmacognosy, Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takayuki Tamura
- Medicinal Plants Center, Toyama Prefectural Institute for Pharmaceutical Research, Kamiichi-Machi, Nakaniikawa-Gun, Toyama, 930-0412, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Katsuko Komatsu
- Division of Pharmacognosy, Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
25
|
|
26
|
Wang J, Shi D, Zheng M, Ma B, Cui J, Liu C, Liu C. Screening, separation, and evaluation of xanthine oxidase inhibitors from Paeonia lactiflora using chromatography combined with a multi-mode microplate reader. J Sep Sci 2017; 40:4160-4167. [PMID: 28857450 DOI: 10.1002/jssc.201700690] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/07/2022]
Abstract
Natural products have become one of the most important resources for discovering novel xanthine oxidase inhibitors, which are commonly employed in the treatment of hyperuricemia and gout. However, to date, few reports exist regarding the use of monoterpene glycosides as xanthine oxidase inhibitors. Thus, we herein report the use of ultrafiltration coupled with liquid chromatography in the screening of monoterpene glycoside xanthine oxidase inhibitors from the extract of Paeonia lactiflora (P. lactiflora), and both high-performance counter-current chromatography and medium-pressure liquid chromatography were employed to separate the main constituents. Furthermore, the xanthine oxidase inhibitory activities and the mechanisms of inhibition of the isolated compounds were evaluated using a multi-mode microplate reader by Molecular Devices. As a result, three monoterpene glycosides were separated by combined high-performance counter-current chromatography and medium-pressure liquid chromatography in purities of 90.4, 98.0, and 86.3%, as determined by liquid chromatography. These three compounds were identified as albiflorin, paeoniflorin, and 1-O-β-ᴅ-glucopyranosyl-8-O-benzoylpaeonisuffrone by electrospray ionization tandem mass spectrometry, and albiflorin and paeoniflorin were screened as potential xanthine oxidase inhibitors by ultrafiltration with liquid chromatography. The evaluation results of xanthine oxidase inhibitory activity corresponded with the screening results, as only albiflorin and paeoniflorin exhibited xanthine oxidase inhibitory activity.
Collapse
Affiliation(s)
- Jing Wang
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Dongfang Shi
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Meizhu Zheng
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Bing Ma
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Jing Cui
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- The Central Laboratory, Changchun Normal University, Changchun, China
| | - Chengyu Liu
- Clinical Department of Rehabilitation, College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
27
|
Synthesis and antimicrobial activity of p-menth-3-en-1-amine amide derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2833-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Shi YH, Zhu S, Ge YW, Toume K, Wang Z, Batkhuu J, Komatsu K. Characterization and quantification of monoterpenoids in different types of peony root and the related Paeonia species by liquid chromatography coupled with ion trap and time-of-flight mass spectrometry. J Pharm Biomed Anal 2016; 129:581-592. [DOI: 10.1016/j.jpba.2016.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/21/2023]
|
29
|
Itoh T, Fujiwara A, Ninomiya M, Maeda T, Ando M, Tsukamasa Y, Koketsu M. Inhibitory Effects of Echinochrome A, Isolated from Shell of the Sea Urchin Anthocidaris crassispina, on Antigen-Stimulated Degranulation in Rat Basophilic Leukemia RBL-2H3 Cells through Suppression of Lyn Activation. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Echinochrome A (Echi-A) was isolated from the sea urchin Anthocidaris crassispina and its structure determined using 1D and 2D-NMR. In the present study, we examined the inhibitory effect of Echi-A on antigen-stimulated degranulation in rat basophilic leukemia RBL-2H3 cells, which were suppressed in a dose dependent manner. The antigens bind to the high affinity immunoglobulin E receptor, which is expressed on the surface of mast cells and basophils and activate intracellular signal transduction, resulting in the release of biologically active mediators such as histamine. In order to disclose the inhibitory mechanisms of degranulation by Echi-A, we examined the elevation in intracellular Ca2+ concentration ([Ca2+]i), production levels of intracellular reactive oxygen species (ROS) and early intracellular signaling events. Both elevation of [Ca2+]i and intracellular ROS production were markedly suppressed in cells treated with Echi-A. Echi-A also suppressed the activation of Lyn, Syk, and PLCγ1/2 in antigen-stimulated cells. These results indicated that inhibition of antigen-stimulated degranulation in RBL-2H3 cells by Echi-A is mainly due to the inactivation of Lyn/Syk/PLCγ signaling pathways. Our findings suggest that Echi-A could be a beneficial agent for alleviating the symptoms of type I allergy.
Collapse
Affiliation(s)
- Tomohiro Itoh
- Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Azusa Fujiwara
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshimichi Maeda
- Graduate School of Fisheries Science, Food Science and Technology, National Fisheries University, 2-7-1 Nagata-Honmachi, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Masashi Ando
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yasuyuki Tsukamasa
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
30
|
Anti-Influenza Virus Activity and Constituents. Characterization of Paeonia delavayi Extracts. Molecules 2016; 21:molecules21091133. [PMID: 27571059 PMCID: PMC6273231 DOI: 10.3390/molecules21091133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022] Open
Abstract
Paeonia delavayi, an endemic species in southwestern China, has been widely used as a traditional remedy for cardiovascular, extravasated blood, stagnated blood and female diseases in traditional Chinese medicine (TCM). However, there are no reports on the anti-influenza virus activity of this species. Here, the anti-influenza virus activity of P. delavayi root extracts was first evaluated by an influenza virus neuraminidase (NA) inhibition assay. Meantime, constituents in the active extracts were identified using ultra-high performance liquid coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and seven major identified constituents were used to further evaluate the NA inhibitory activity. The results showed that the ethyl acetate fraction (EA) and the ethanol fraction (E) of P. delavayi both presented strong NA inhibitory activity with IC50 values of 75.932 μg/mL and 83.550 μg/mL, respectively. Twenty-seven constituents were characterized in these two active extracts by UPLC-Q-TOF-MS analysis, and seven major identified constituents exhibited high activity against the influenza virus. Among them, Benzoylpaeoniflorin (IC50 = 143.701 µM) and pentagalloylglucose (IC50 = 62.671 µM) exhibited the highest activity against the influenza virus, even far stronger than oseltamivir acid (IC50 = 281.308 µM). This study indicated that P. delavayi was a strong NA inhibitor, but cell-based inhibition, anti-influenza virus activity in vivo and anti-influenza virus mechanism still need to be tested and explored.
Collapse
|
31
|
Li J, Kuang G, Chen X, Zeng R. Identification of Chemical Composition of Leaves and Flowers from Paeonia rockii by UHPLC-Q-Exactive Orbitrap HRMS. Molecules 2016; 21:E947. [PMID: 27455214 PMCID: PMC6273322 DOI: 10.3390/molecules21070947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/27/2022] Open
Abstract
The Paeonia genus, an important source of crude drugs, has been extensively used in traditional Chinese medicine (TCM) to treat cardiovascular and female-related diseases. Although many peony species have been investigated, the study of Paeonia rockii is still quite limited, especially its chemical composition. Here, an advanced ultra-high-performance liquid chromatography (UHPLC) analytical technique combined with Q-Exactive Orbitrap hybrid quadrupole-Orbitrap mass spectrometry utilizing high-resolution full MS and MS/MS scan modes was applied to screen and identify the chemical constituents of this species. As a result, a total of 46 compounds were characterized, including 11 monoterpene glycosides, five phenolic acids, six tannins and 24 flavonoids. Among them, 16 compounds were reported for the first time in Paeonia rockii.
Collapse
Affiliation(s)
- Jinhua Li
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China.
| | - Gang Kuang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Xiaohu Chen
- Chongqing Institute for Food and Drug Control, Chongqing 401120, China.
| | - Rui Zeng
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China.
| |
Collapse
|
32
|
Chemical constituents with anti-allergic activity from the root of Edulis Superba, a horticultural cultivar of Paeonia lactiflora. J Nat Med 2016; 70:234-40. [DOI: 10.1007/s11418-016-0966-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|