1
|
Leandro LF, Moraes TS, Damasceno JL, Veneziani RCS, Ambrosio SR, Bastos JK, Santiago MB, Pedroso RS, Martins CHG. Antibacterial, antibiofilm, and antivirulence potential of the main diterpenes from Copaifera spp. oleoresins against multidrug-resistant bacteria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6975-6987. [PMID: 38619589 DOI: 10.1007/s00210-024-03077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
To evaluate the antibacterial, antibiofilm and antivirulence potential of the main diterpenes from Copaifera spp. oleoresins against multidrug-resistant (MDR) bacteria. Antimicrobial assays included determination of the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Inhibitory Concentration of Biofilm (MICB50), as well as synergistic and antivirulence assays for eight diterpenes against MDR. The tests revealed that two diterpenes (named 1 and 5) showed the best results, with MIC and MBC between 12.5 and 50 μg/mL against most MDR bacteria. These diterpenes exhibited promising MICB50 in concentration between 3.12-25 μg/mL but showed no synergistic antimicrobial activity. In the assessment of antivirulence activity, diterpenes 1 and 5 inhibited only one of the virulence factors evaluated (Dnase) produced by some strains of S. aureus at subinhibitory concentration (6.25 μg/mL). Results obtained indicated that diterpenes isolated from Copaifera oleoresin plays an important part in the search of new antibacterial and antibiofilm agents that can act against MDR bacteria.
Collapse
Affiliation(s)
- L F Leandro
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, 38405-320, Brazil
| | - T S Moraes
- Nucleus of Research in Sciences and Technology, University of Franca - UNIFRAN, Franca, São Paulo, Brazil
| | - J L Damasceno
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, 38405-320, Brazil
| | - R C S Veneziani
- Nucleus of Research in Sciences and Technology, University of Franca - UNIFRAN, Franca, São Paulo, Brazil
| | - S R Ambrosio
- Nucleus of Research in Sciences and Technology, University of Franca - UNIFRAN, Franca, São Paulo, Brazil
| | - J K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - M B Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, 38405-320, Brazil
| | - R S Pedroso
- Technical School of Health, Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, Brazil
| | - C H G Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, 38405-320, Brazil.
| |
Collapse
|
2
|
de Matos RC, Bitencourt AFA, de Oliveira ADM, Prado VR, Machado RR, Scopel M. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118137. [PMID: 38574778 DOI: 10.1016/j.jep.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When exacerbated, inflammatory processes can culminate in physical and emotional disorders and, if not stopped, can be lethal. The high prevalence of inflammation has become a public health problem, and the need for new drugs to treat this pathology is imminent. The use of medicinal plants has emerged as an alternative, and a survey of data that corroborates its application in inflammatory diseases is the starting point. Furthermore, Brazil harbors a megadiversity, and the traditional use of plants is relevant and needs to be preserved and carefully explored for the discovery of new medicines. AIM OF THE STUDY This review sought to survey the medicinal plants traditionally used in Brazil for the treatment of inflammatory processes and to perform, in an integrative way, a data survey of these species and analysis of their phytochemical, pharmacological, and molecular approaches. MATERIALS AND METHODS Brazilian plants that are traditionally used for inflammation (ophthalmia, throat inflammation, orchitis, urinary tract inflammation, ear inflammation, and inflammation in general) are listed in the DATAPLAMT database. This database contains information on approximately 3400 native plants used by Brazilians, which were registered in specific documents produced until 1950. These inflammatory disorders were searched in scientific databases (PubMed/Medline, Scopus, Web of Science, Lilacs, Scielo, Virtual Health Library), with standardization of DECS/MESH descriptors for inflammation in English, Spanish, French, and Portuguese, without chronological limitations. For the inclusion criteria, all articles had to be of the evaluated plant species, without association of synthesized substances, and full articles free available in any of the four languages searched. Duplicated articles and those that were not freely available were excluded. RESULTS A total of 126 species were identified, culminating in 6181 articles in the search. After evaluation of the inclusion criteria, 172 articles representing 40 different species and 38 families were included in the study. Comparison of reproducibility in intra-species results became difficult because of the large number of extraction solvents tested and the wide diversity of evaluation models used. Although the number of in vitro and in vivo evaluations was high, only one clinical study was found (Abrus precatorius). In the phytochemical analyses, more than 225 compounds, mostly phenolic compounds, were identified. CONCLUSION This review allowed the grouping of preclinical and clinical studies of several Brazilian species traditionally used for the treatment of many types of inflammation, corroborating new searches for their pharmacological properties as a way to aid public health. Furthermore, the large number of plants that have not yet been studied has encouraged new research to revive traditional knowledge.
Collapse
Affiliation(s)
- Rafael C de Matos
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| | - Ana F A Bitencourt
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Alexsandro D M de Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Vanessa R Prado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Renes R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Marina Scopel
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Radhakrishnan N, Karthi S, Raghuraman P, Ganesan R, Srinivasan K, Edwin ES, Ganesh-Kumar S, Mohd Esa N, Senthil-Nathan S, Vasantha-Srinivasan P, Krutmuangh P, Alwahibi MS, Elshikh MS. Chemical screening and mosquitocidal activity of essential oil derived from Mikania scandens (L.) Willd. against Anopheles gambiae Giles and their non-toxicity on mosquito predators. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2169959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Narayanaswamy Radhakrishnan
- Department of Biochemistry, School of Life Sciences, St. Peter’s Institute of Higher Education and Research, Chennai, India
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Sengodan Karthi
- Division of Bio pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Pandiyan Raghuraman
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Raja Ganesan
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Kumaraswamy Srinivasan
- Department of Biochemistry, School of Life Sciences, St. Peter’s Institute of Higher Education and Research, Chennai, India
| | - Edward-Sam Edwin
- Department of Microbiology, Division of Virology & Molecular Biology, St. Peter’s Medical College Hospital and Research Institute, Hosur, India
| | - Selvaraj Ganesh-Kumar
- Department of Microbiology, St. Peter’s Institute of Higher Education and Research, Chennai, India
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Sengottayan Senthil-Nathan
- Division of Bio pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Prabhakaran Vasantha-Srinivasan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Patcharin Krutmuangh
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Ibrahim TS, Khongorzul P, Muyaba M, Alolga RN. Ent-kaurane diterpenoids from the Annonaceae family: a review of research progress and call for further research. Front Pharmacol 2023; 14:1227574. [PMID: 37456746 PMCID: PMC10345206 DOI: 10.3389/fphar.2023.1227574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
The Annonaceae is one of the plant families with members that are credited with numerous pharmacological functions. Among the group of compounds responsible for these bioactivities are the ent-kaurane diterpenoids. The ent-kauranes are a group of 20-Carbon, tetracyclic diterpenoids that are widely distributed in other plant families including the Annonaceae family. This mini-review focuses mainly on the ent-kaurane diterpenoids isolated from the Annonaceae family, delineates the various biological activities of these compounds, and highlights the research gaps that exist for further scientific scrutiny.
Collapse
Affiliation(s)
- Traore S. Ibrahim
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Purevdulam Khongorzul
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Moses Muyaba
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Eden University, Lusaka, Zambia
| | - Raphael N. Alolga
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Kaur B, Kumar B, Sirhindi G, Guleria N, Kaur J. Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation. Foods 2023; 12:foods12081624. [PMID: 37107419 PMCID: PMC10138189 DOI: 10.3390/foods12081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fermented wheatgrass juice was prepared using a two-stage fermentation process by employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins, total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and prenylation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids, diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food supplements such as fermented wheatgrass juice.
Collapse
Affiliation(s)
- Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala 147002, Punjab, India
| | - Nidhi Guleria
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| | - Jashandeep Kaur
- Department of Biotechnology and Food Technology, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
6
|
Aftab R, Dodhia VH, Jeanes C, Wade RG. Bacterial sensitivity to chlorhexidine and povidone-iodine antiseptics over time: a systematic review and meta-analysis of human-derived data. Sci Rep 2023; 13:347. [PMID: 36611032 PMCID: PMC9825506 DOI: 10.1038/s41598-022-26658-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Surgical site infection (SSI) is the most common complication of surgery, increasing healthcare costs and hospital stay. Chlorhexidine (CHX) and povidone-iodine (PVI) are used for skin antisepsis, minimising SSIs. There is concern that resistance to topical biocides may be emergeing, although the potential clinical implications remain unclear. The objective of this systematic review was to determine whether the minimum bactericidal concentration (MBC) of topical preparations of CHX or PVI have changed over time, in microbes relevant to SSI. We included studies reporting the MBC of laboratory and clinical isolates of common microbes to CHX and PVI. We excluded studies using non-human samples and antimicrobial solvents or mixtures with other active substances. MBC was pooled in random effects meta-analyses and the change in MBC over time was explored using meta-regression. Seventy-nine studies were included, analysing 6218 microbes over 45 years. Most studies investigated CHX (93%), with insufficient data for meta-analysis of PVI. There was no change in the MBC of CHX to Staphylococci or Streptococci over time. Overall, we find no evidence of reduced susceptibility of common SSI-causing microbes to CHX over time. This provides reassurance and confidence in the worldwide guidance that CHX should remain the first-choice agent for surgical skin antisepsis.
Collapse
Affiliation(s)
- Raiyyan Aftab
- Department of Plastic Surgery, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - Vikash H Dodhia
- Royal Hampshire County Hospital, Hampshire Hospitals Foundation Trust, Winchester, UK
| | - Christopher Jeanes
- Department of Microbiology, Norfolk and Norwich University Hospital, Norfolk, UK
| | - Ryckie G Wade
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK.
- Faculty of Medicine and Health Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
7
|
Santos MFC, Oliveira LC, Ribeiro VP, Soares MG, Morae GDOI, Sartori AGDO, Rosalen PL, Bastos JK, de Alencar SM, Veneziani RCS, Ambrósio SR. Isolation of diterpenes from Araucaria sp Brazilian brown propolis and development of a validated high-performance liquid chromatography method for its analysis. J Sep Sci 2021; 44:3089-3097. [PMID: 34169651 DOI: 10.1002/jssc.202100374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
Propolis comprises a complex resinous product composed of plant's parts or exudates, pollen, bee wax, and enzymes. Brazilian brown propolis from Araucaria sp displays several biological activities. Considering the lack of validated analytical methods for its analysis, we are reporting the development of a validated high-performance liquid chromatography with photodiode array detector method to analyze Araucaria brown propolis. The crude propolis were extracted and chromatographed, furnishing six main diterpenes. The isolated standards were used to draw the analytical curves, allowing the studies of selectivity, precision, accuracy, recovery, robustness, the determination of limits of detection and limits of quantification. The mobile phase consisted of 0.1% acetic acid in water and acetonitrile, using an octadecylsilane column, 1 mL/min flow rate and detection at 200 or 241 nm. Relative standard deviation values obtained for intra-day and inter-day precision were lower than 4% for all diterpenes. From the five parameters for robustness, wavelength detection and flow rate were the critical ones. Limits of detection and quantification ranged from 0.808 to 10.359 μg/mL and from 2.448 to 31.392 μg/mL, respectively. The recoveries were between 105.03 and 108.13%, with relative standard deviation values around 5.0%. The developed method is precise, sensitive, and reliable for analyzing Araucaria brown propolis.
Collapse
Affiliation(s)
| | - Larissa Costa Oliveira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marisi Gomes Soares
- Chemistry Institute, Federal University of Alfenas - UNIFAL-MG, Alfenas-MG, Brazil
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | - Sérgio Ricardo Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| |
Collapse
|
8
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
9
|
Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, Salam AM, Shabih S, Farrokhi DR, Quave CL. A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Front Pharmacol 2021; 11:586548. [PMID: 33488385 PMCID: PMC7821031 DOI: 10.3389/fphar.2020.586548] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Antimicrobial resistance represents a serious threat to human health across the globe. The cost of bringing a new antibiotic from discovery to market is high and return on investment is low. Furthermore, the development of new antibiotics has slowed dramatically since the 1950s' golden age of discovery. Plants produce a variety of bioactive secondary metabolites that could be used to fuel the future discovery pipeline. While many studies have focused on specific aspects of plants and plant natural products with antibacterial properties, a comprehensive review of the antibacterial potential of plants has never before been attempted. Objectives: This systematic review aims to evaluate reports on plants with significant antibacterial activities. Methods: Following the PRISMA model, we searched three electronic databases: Web of Science, PubMed and SciFinder by using specific keywords: "plant," "antibacterial," "inhibitory concentration." Results: We identified a total of 6,083 articles published between 1946 and 2019 and then reviewed 66% of these (4,024) focusing on articles published between 2012 and 2019. A rigorous selection process was implemented using clear inclusion and exclusion criteria, yielding data on 958 plant species derived from 483 scientific articles. Antibacterial activity is found in 51 of 79 vascular plant orders throughout the phylogenetic tree. Most are reported within eudicots, with the bulk of species being asterids. Antibacterial activity is not prominent in monocotyledons. Phylogenetic distribution strongly supports the concept of chemical evolution across plant clades, especially in more derived eudicot families. The Lamiaceae, Fabaceae and Asteraceae were the most represented plant families, while Cinnamomum verum, Rosmarinus vulgaris and Thymus vulgaris were the most studied species. South Africa was the most represented site of plant collection. Crude extraction in methanol was the most represented type of extraction and leaves were the main plant tissue investigated. Finally, Staphylococcus aureus was the most targeted pathogenic bacteria in these studies. We closely examine 70 prominent medicinal plant species from the 15 families most studied in the literature. Conclusion: This review depicts the current state of knowledge regarding antibacterials from plants and provides powerful recommendations for future research directions.
Collapse
Affiliation(s)
- François Chassagne
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | | | - Gina Porras
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Micah Dettweiler
- Department of Dermatology, Emory University, Atlanta, GA, United States
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | | | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
- Emory University Herbarium, Emory University, Atlanta, GA, United States
- Department of Dermatology, Emory University, Atlanta, GA, United States
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| |
Collapse
|
10
|
Assessment of the antibacterial, antivirulence, and action mechanism of Copaifera pubiflora oleoresin and isolated compounds against oral bacteria. Biomed Pharmacother 2020; 129:110467. [PMID: 32603890 DOI: 10.1016/j.biopha.2020.110467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/12/2023] Open
Abstract
The microorganisms that constitute the oral microbiome can cause oral diseases, including dental caries and endodontic infections. The use of natural products could help to overcome bacterial resistance to the antimicrobials that are currently employed in clinical therapy. This study assessed the antimicrobial activity of the Copaifera pubiflora oleoresin and of the compounds isolated from this resin against oral bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays provided values ranging from 6.25 to > 400 μg/mL for the C. pubiflora oleoresin and its isolated compounds. The fractional inhibitory concentration index (FICI) assay showed that the oleoresin and chlorhexidine did not act synergistically. All the tested bacterial strains formed biofilms. MICB50 determination revealed inhibitory action: values varied from 3.12-25 μg/mL for the oleoresin, and from 0.78 to 25 μg/mL for the ent-hardwickiic acid. Concerning biofilm eradication, the C. pubiflora oleoresin and hardwickiic acid eradicated 99.9 % of some bacterial biofilms. Acid resistance determination showed that S. mutans was resistant to acid in the presence of the oleoresin and ent-hardwickiic acid at pH 4.0, 4.5, and 5.0 at all the tested concentrations. Analysis of DNA/RNA and protein release by the cell membrane demonstrated that the oleoresin and hardwiickic acid damaged the bacterial membrane irreversibly, which affected membrane integrity. Therefore, the C. pubiflora oleoresin and ent-hardwickiic acid have potential antibacterial effect and can be used as new therapeutic alternatives to treat oral diseases such as dental caries and endodontic infections.
Collapse
|
11
|
da Costa Inácio G, Alves JVB, Santos MFC, Vacari AM, Figueiredo GP, Bernardes WA, Veneziani RCS, Ambrósio SR. Feeding deterrence towards Helicoverpa armigera by Tithonia diversifolia tagitinin C-enriched extract. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
Oliveira D, Furtado FB, Gomes AAS, Belut BR, Nascimento EA, Morais SAL, Martins CHG, Santos VO, da Silva CV, Teixeira TL, Cunha LS, Oliveira AD, de Aquino FJT. Chemical Constituents and Antileishmanial and Antibacterial Activities of Essential Oils from Scheelea phalerata. ACS OMEGA 2020; 5:1363-1370. [PMID: 32010806 PMCID: PMC6990423 DOI: 10.1021/acsomega.9b01962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Scheelea phalerata Mart. ex Spreng (Arecaceae) is a palm tree found in the Brazilian cerrado. There are no topics related to volatile oils from S. phalerata leaves in the literature. This work determines its chemical composition and evaluates the biological activity under two different seasonal conditions (dry and rainy seasons). The dry essential oil yield was 0.034 ± 0.001% and the rainy essential oil yield was 0.011 ± 0.003%. Both essential oils presented different qualitative and quantitative compositions (99.4 and 98.5%). The main constituents of the dry essential oil were phytol (36.7%), nonadecane (9.7%), linolenic acid (9.1%), (Z)-hex-3-en-1-ol (4.2%), and squalene (4.0%). The main constituents of the rainy essential oil were phytol (26.1%), palmitic acid (18.7%), hexan-1-ol (15.6%), (Z)-hex-3-en-1-ol (9.7%), and oleic acid (4.0%). The antileishmanial activity against promastigotes of Leishmania amazonensis was observed only for the rainy season essential oil (IC50 value of 165.05 ± 33.26 μg mL-1). A molecular docking study showed that alcohols exert a paramount efficacy and that the action of some essential oil compounds may be similar to that of amphotericin B. Still, only the essential oil from the dry season showed moderate antibacterial activity against S. sanguinis (MICs 200-400 μg mL-1). The cytotoxicity against Vero cells was identical (>512) for both essential oils. The novel data here for both chemical characterization and biological activity, in particular, evidence that the action of these compounds is similar to that of amphotericin B, provide valuable information to the drug-discovery field.
Collapse
Affiliation(s)
- Daiane
M. Oliveira
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Fabiana B. Furtado
- Institute of Biosciences of Botucatu,
Department of Microbiology
and Immunology and Institute of Biosciences of Botucatu, Department of Physics and Biophysics, Unesp-São Paulo State University, 250 Distrito de Rubião Junior, Botucatu, SP CEP
18618-689, Brazil
| | - Antoniel A. S. Gomes
- Institute of Biosciences of Botucatu,
Department of Microbiology
and Immunology and Institute of Biosciences of Botucatu, Department of Physics and Biophysics, Unesp-São Paulo State University, 250 Distrito de Rubião Junior, Botucatu, SP CEP
18618-689, Brazil
| | - Belisa R. Belut
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Evandro A. Nascimento
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Sérgio A. L. Morais
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Carlos H. G. Martins
- Nucleus
of Research in Sciences and Technology, Laboratory of Research in
Applied Microbiology (LaPeMA), University
of Franca, 201 Parque Universitário, Franca, SP 14404-600, Brazil
| | - Vinícius
C. O. Santos
- Nucleus
of Research in Sciences and Technology, Laboratory of Research in
Applied Microbiology (LaPeMA), University
of Franca, 201 Parque Universitário, Franca, SP 14404-600, Brazil
| | - Claudio V. da Silva
- Institute
of Biomedical Sciences, Laboratory of Trypanosomatids, Federal University of Uberlândia, Campus Umuarama, Av. Pará
1720 Bloco 2B, Uberlândia, MG CEP 38400-902, Brazil
| | - Thaise L. Teixeira
- Institute
of Biomedical Sciences, Laboratory of Trypanosomatids, Federal University of Uberlândia, Campus Umuarama, Av. Pará
1720 Bloco 2B, Uberlândia, MG CEP 38400-902, Brazil
| | - Luís
C. S. Cunha
- Nucleus of
Bioprospecting in Natural Products (NuBiProN), Chemistry Department, Federal Institute of the Triângulo Mineiro, 4000 Distrito Industrial I, Uberaba, MG 38064-790, Brazil
| | - Alberto de Oliveira
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Francisco J. T. de Aquino
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| |
Collapse
|
13
|
da Costa RM, Bastos JK, Costa MCA, Ferreira MMC, Mizuno CS, Caramori GF, Nagurniak GR, Simão MR, Dos Santos RA, Veneziani RCS, Ambrósio SR, Parreira RLT. In vitro cytotoxicity and structure-activity relationship approaches of ent-kaurenoic acid derivatives against human breast carcinoma cell line. PHYTOCHEMISTRY 2018; 156:214-223. [PMID: 30321792 DOI: 10.1016/j.phytochem.2018.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/03/2018] [Accepted: 10/03/2018] [Indexed: 05/23/2023]
Abstract
In this study, ent-kaurenoic acid derivatives were obtained by microbial transformation methodologies and tested against breast cancer cell lines (MCF-7). A multivariate quantitative-structure activity relationship (QSAR) analysis was performed taking into account both microbial transformation derivatives and other analogues previously reported in literature to give some insight into the main features behind the cytotoxic activity displayed by kaurane-type diterpenes against MCF-7 cells. The partial least square regression (PLS) method was employed in the training set and the best PLS model was built with a factor describing 69.92% of variance and three descriptors (logP, εHOMO and εHOMO-1) selected by the Ordered Predictors Selection (OPS) algorithm. The QSAR model provided reasonable regression (Q2 = 0.64, R2 = 0.72, SEC = 0.29 and SEV = 0.33). The model was validated by leave-N-out cross-validation, y-randomization and external validation (R2pred = 0.89 and SEP = 0.27). The selected descriptors indicated that the activity was mainly related to electronic parameters (HOMO and HOMO-1 molecular orbital energies), as well as to logP. These findings suggest that higher activity values are directly related with both higher logP and frontier orbital energy values. The positive relationship between these orbitals and the activity suggests that the ent-kaurenoic acid analogues interaction with the target involves charge displacement, which is entirely consistent with the literature. Based on these findings, three compounds were proposed and one of them was synthesized and tested. The experimental result confirmed the activity predicted by the model.
Collapse
Affiliation(s)
- Ricardo M da Costa
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil; Informática Aplicada às Ciências - IFSULDEMINAS, Muzambinho, MG, Brazil
| | - Jairo K Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria C A Costa
- Theoretical and Applied Chemometrics Laboratory (LQTA), Institute of Chemistry, University of Campinas - Unicamp, Campinas, SP, Brazil
| | - Márcia M C Ferreira
- Theoretical and Applied Chemometrics Laboratory (LQTA), Institute of Chemistry, University of Campinas - Unicamp, Campinas, SP, Brazil
| | - Cássia S Mizuno
- Department of Pharmaceutical Sciences, University of New England, College of Pharmacy, Portland, ME, USA
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campos Universitário Trindade, Florianópolis, SC, Brazil
| | - Gláucio R Nagurniak
- Departamento de Química, Universidade Federal de Santa Catarina, Campos Universitário Trindade, Florianópolis, SC, Brazil
| | - Marília R Simão
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil
| | - Raquel A Dos Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil
| | - Rodrigo C S Veneziani
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil
| | - Sérgio R Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil.
| | - Renato L T Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil.
| |
Collapse
|
14
|
Valerino-Díaz AB, Gamiotea-Turro D, Zanatta AC, Vilegas W, Gomes Martins CH, de Souza Silva T, Rastrelli L, Campaner Dos Santos L. New Polyhydroxylated Steroidal Saponins from Solanum paniculatum L. Leaf Alcohol Tincture with Antibacterial Activity against Oral Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8703-8713. [PMID: 30048138 DOI: 10.1021/acs.jafc.8b01262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solanum paniculatum L. is widely used in Brazilian folk medicine for the treatment of liver and gastrointestinal disorders as well as for culinary purposes and beverage production. Fractionation of hydroalcoholic [ethanol (EtOH) 70%] tincture from S. paniculatum leaves led to the isolation of six new spirostanic saponins which included 6- O-α-l-rhamnopyranosyl-(1''→3')-β-d-quinovopyranosyl-(22 S,23 R,25 S)-3β,6α,23-trihydroxy-5α-spirostane (1), 6- O-β-d-xylopyranosyl-(1''→3')-β-d-quinovopyranosyl-(22 S,23 R,25 R)-3β,6α,23-trihydroxy-5α-spirostane (4), 3- O-α-l-rhamnopyranosyl-(1''→3')-β-d-quinovopyranosyl-(22 S,23 S,25 R)-3β,6α,23-trihydroxy-5α-spirostane (5), 3- O-β-d-xylopyranosyl-(1''→3')-β-d-quinovopyranosyl-(22 S,23 S,25 R)-3β,6α,23-trihydroxy-5α-spirostane (6), 6- O-α-l-rhamnopyranosyl-(1''→3')-β-d-quinovopyranosyl-(22 S,25 S)-1β,3β,6α-trihydroxy-5α-spirostane (7), and 6- O-β-d-xylopyranosyl-(1''→3')-β-d-quinovopyranosyl-(22 S,25 S)-3β,4β,6α-trihydroxy-5α-spirostane (8) together with two known spirostanic saponins (2, 3). The structures of these compounds were determined by one-dimensional (1D) and two-dimensional (2D) NMR experiments in addition to high-resolution electrospray ionization mass spectrometry (HRESIMS) analyses. The 70% alcohol tincture, used as phytomedicine, exhibited promising activities against oral pathogens, including, Steptococcus sanguinis, St. oralis, St. mutans, St. mitis, and Lactobacillus casei with minimal inhibitory concentration (MIC) values ranging from 6.25 to 50 μg/mL. The saponin fraction, nonetheless, showed lower activity against all the strains tested (from 100 to >400 μg/mL).
Collapse
Affiliation(s)
- Alexander B Valerino-Díaz
- Institute of Chemistry , UNESP - São Paulo State University , Rua Prof. Francisco Degni, 55 , 14800-060 Araraquara , São Paulo , Brazil
| | - Daylin Gamiotea-Turro
- Institute of Chemistry , UNESP - São Paulo State University , Rua Prof. Francisco Degni, 55 , 14800-060 Araraquara , São Paulo , Brazil
| | - Ana C Zanatta
- Institute of Chemistry , UNESP - São Paulo State University , Rua Prof. Francisco Degni, 55 , 14800-060 Araraquara , São Paulo , Brazil
| | - Wagner Vilegas
- Institute of Biosciences , UNESP - São Paulo State University , Praça Infante Dom Henrique, s/n , 11330-900 São Vicente , São Paulo , Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Research in Applied Microbiology , UNIFRAN - University of Franca , Av. Dr. Armando Salles Oliveira, 201 , 14404-600 Franca , São Paulo , Brazil
| | - Thayná de Souza Silva
- Laboratory of Research in Applied Microbiology , UNIFRAN - University of Franca , Av. Dr. Armando Salles Oliveira, 201 , 14404-600 Franca , São Paulo , Brazil
| | - Luca Rastrelli
- Dipartimento di Farmacia - University of Salerno , Via Giovanni Paolo II , 84084 Fisciano , Salerno , Italy
| | - Lourdes Campaner Dos Santos
- Institute of Chemistry , UNESP - São Paulo State University , Rua Prof. Francisco Degni, 55 , 14800-060 Araraquara , São Paulo , Brazil
| |
Collapse
|
15
|
Kian D, Lancheros CAC, Assolini JP, Arakawa NS, Veiga-Júnior VF, Nakamura CV, Pinge-Filho P, Conchon-Costa I, Pavanelli WR, Yamada-Ogatta SF, Yamauchi LM. Trypanocidal activity of copaiba oil and kaurenoic acid does not depend on macrophage killing machinery. Biomed Pharmacother 2018; 103:1294-1301. [PMID: 29864911 DOI: 10.1016/j.biopha.2018.04.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
Activity, mechanisms of action, and toxicity of natural compounds have been investigated in a context in which knowledge on which pathway is activated remains crucial to understand the action mechanism of these bioactive substances when treating an infected host. Herein, we showed an ability of copaiba oil and kaurenoic acid to eliminate Trypanosoma cruzi forms by infected macrophages through other mechanisms in addition to nitric oxide, reactive oxygen species, iron metabolism, and antioxidant defense. Both compounds induced an anti-inflammatory response with an increase in IL-10 and TGF-β as well as a decrease in IL-12 production. Despite being able to modulate the immune response in host cells, the antimicrobial activity of copaiba oil and kaurenoic acid seems to be a direct action of the compounds on the parasites, causing their death.
Collapse
Affiliation(s)
- Danielle Kian
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - João Paulo Assolini
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Nilton Syogo Arakawa
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Celso Vataru Nakamura
- Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Lucy Megumi Yamauchi
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
16
|
Moreti DLC, Leandro LF, da Silva Moraes T, Moreira MR, Sola Veneziani RC, Ambrosio SR, Figueiredo Almeida Gomes BP, Martins CHG. Mikania glomerata Sprengel extract and its major compound ent -kaurenoic acid display activity against bacteria present in endodontic infections. Anaerobe 2017. [DOI: 10.1016/j.anaerobe.2017.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Cano BL, Moreira MR, Goulart MO, Dos Santos Gonçalves N, Veneziani RCS, Bastos JK, Ambrósio SR, Dos Santos RA. Comparative study of the cytotoxicity and genotoxicity of kaurenoic acid and its semi-synthetic derivatives methoxy kaurenoic acid and kaurenol in CHO-K1 cells. Food Chem Toxicol 2017; 102:102-108. [PMID: 28167160 DOI: 10.1016/j.fct.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 02/02/2023]
Abstract
The diterpene kaurenoic acid (KA) has vasorelaxant, antimicrobial, anti-tumoural and anti-leishmanial effects. Semi-synthetic derivatives were obtained to achieve more satisfactory responses. The assessment of genotoxicity is part of the toxicological evaluation of therapeutic compound candidates. The present study investigated the cytotoxicity and genotoxicity of KA and its semi-synthetic derivatives methoxy kaurenoic acid (MKA) and kaurenol (KRN) using the CHO-K1 cell line. The cytotoxicity evaluation demonstrated that treatments with 200 and 400 μM KA reduced cellular proliferation to 36.5 and 4.43%, respectively, and that 100 and 200 μM KA reduced the survival fraction (SF) to 48.1 and 5.5%, respectively. MKA and KRN at concentrations of 400 μM reduced proliferation to 81 and 86.8%, respectively, while 100 and 200 μM KRN reduced the SF to 50%, and 200 μM MKA reduced the SF to 74%. No genotoxicity was observed for KA or MKA. However, 100 μM KRN increased the DNA damage index, as detected by comet assay, although a micronucleus assay did not confirm these data. The results demonstrated that KA and its semi-synthetic derivative MKA were not genotoxic when tested at noncytotoxic concentrations, but KRN was genotoxic at the highest concentration that was tested, as demonstrated by the comet assay.
Collapse
Affiliation(s)
| | | | | | | | | | - Jairo Kenupp Bastos
- Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
18
|
Antibacterial Potential of Diterpenoids. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-444-63929-5.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|