1
|
Zhao ZX, Zou QY, Ma YH, Morris-Natschke SL, Li XY, Shi LC, Ma GX, Xu XD, Yang MH, Zhao ZJ, Li YX, Xue J, Chen CH, Wu HF. Recent progress on triterpenoid derivatives and their anticancer potential. PHYTOCHEMISTRY 2025; 229:114257. [PMID: 39209239 DOI: 10.1016/j.phytochem.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cancer poses a significant global public health challenge, with commonly used adjuvant or neoadjuvant chemotherapy often leading to adverse side effects and drug resistance. Therefore, advancing cancer treatment necessitates the ongoing development of novel anticancer agents with diverse structures and mechanisms of action. Natural products remain crucial in the process of drug discovery, serving as a primary source for pharmaceutical leads and therapeutic advancements. Triterpenoids are particularly compelling due to their complex structures and wide array of biological activities. Recent research has demonstrated that naturally occurring triterpenes and their derivatives have the potential to serve as promising candidates for new drug development. This review aims to comprehensively explore the anticancer properties of triterpenoids and their synthetic analogs, with a focus on recent advancements. Various aspects, such as synthesis, phytochemistry, and molecular simulation for structure-activity relationship analyses, are summarized. It is anticipated that triterpenoid derivatives will emerge as notable anticancer agents following further investigation into their mechanisms of action and in vivo studies.
Collapse
Affiliation(s)
- Zi-Xuan Zhao
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Qiong-Yu Zou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Ying-Hong Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiang-Yuan Li
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lin-Chun Shi
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guo-Xu Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Mei-Hua Yang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zi-Jian Zhao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Yuan-Xiang Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
| | - Chin-Ho Chen
- Antiviral Drug Discovery Laboratory, Surgical Oncology Research Facility, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hai-Feng Wu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Chen S, Chen K, Lin Y, Wang S, Yu H, Chang C, Cheng T, Hsieh C, Li J, Lai H, Chen D, Huang C. Ganoderic acid T, a Ganoderma triterpenoid, modulates the tumor microenvironment and enhances the chemotherapy and immunotherapy efficacy through downregulating galectin-1 levels. Toxicol Appl Pharmacol 2024; 491:117069. [PMID: 39142358 DOI: 10.1016/j.taap.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Ganoderic acid T (GAT), a triterpenoid molecule of Ganoderma lucidum, exhibits anti-cancer activity; however, the underlying mechanisms remain unclear. Therefore, in this study, we aimed to investigate the anti-cancer molecular mechanisms of GAT and explore its therapeutic applications for cancer treatment. GAT exhibited potent anti-cancer activity in an ES-2 orthotopic ovarian cancer model in a humanized mouse model, leading to significant alterations in the tumor microenvironment (TME). Specifically, GAT reduced the proportion of α-SMA+ cells and enhanced the infiltration of tumor-infiltrating lymphocytes (TILs) in tumor tissues. After conducting proteomic analysis, it was revealed that GAT downregulates galectin-1 (Gal-1), a key molecule in the TME. This downregulation has been confirmed in multiple cancer cell lines and xenograft tumors. Molecular docking suggested a theoretical direct interaction between GAT and Gal-1. Further research revealed that GAT induces ubiquitination of Gal-1. Moreover, GAT significantly augmented the anti-cancer effects of paclitaxel, thereby increasing intratumoral drug concentrations and reducing tumor size. Combined with immunotherapy, GAT enhanced the tumor-suppressive effects of the anti-programmed death-ligand 1 antibody and increased the proportion of CD8+ cells in the EMT6 syngeneic mammary cancer model. In conclusion, GAT inhibited tumor growth, downregulated Gal-1, modulated the TME, and promoted chemotherapy and immunotherapy efficacy. Our findings highlight the potential of GAT as an effective therapeutic agent for cancer.
Collapse
Affiliation(s)
- Suyu Chen
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Kuangdee Chen
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Yihsiu Lin
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Ssuchia Wang
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Huichuan Yu
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Chaohsuan Chang
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Tingchun Cheng
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Chiaoyun Hsieh
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Jiayi Li
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Hsiaohsuan Lai
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan
| | - Denghai Chen
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan.
| | - Chengpo Huang
- Trineo Biotechnology Co., Ltd, 20F, No.81, Sec.1, Xintai 5th Rd, Xizhi Dist., New Taipei City 221, Taiwan.
| |
Collapse
|
3
|
Chanphen R, Pruksatrakul T, Choowong W, Choeyklin R, Surawatanawong P, Isaka M. Ganopyrone A, a highly rearranged lanostane triterpenoid with antimalarial activity from artificially cultivated fruiting bodies of Ganoderma colossus. PHYTOCHEMISTRY 2024; 224:114168. [PMID: 38823569 DOI: 10.1016/j.phytochem.2024.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Three previously undescribed highly modified lanostane triterpenoids, ganopyrone A, ganocolossusin I, and ganodermalactone Y, were isolated from the artificially cultivated fruiting bodies of the basidiomycete Ganoderma colossus TBRC-BCC 17711. Ganopyrone A possesses an unprecedented polycyclic carbon skeleton with an α-pyrone ring and C-18/C-23 bond. It showed antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with an IC50 value of 7.8 μM (positive control: dihydroartemisinin, IC50 1.4 nM), while its cytotoxicity (Vero cells) was much weaker (IC50 103 μM).
Collapse
Affiliation(s)
- Rachada Chanphen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Thapanee Pruksatrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Wilunda Choowong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Rattaket Choeyklin
- National Biobank of Thailand, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
4
|
Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ, Suwannarach N, Rapior S, Karunarathna SC. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022; 13:24. [PMID: 36671409 PMCID: PMC9856212 DOI: 10.3390/biom13010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful "medication" for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Mahesh C. A. Galappaththi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | | | - Kalani K. Hapuarachchi
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
5
|
Chinthanom P, Sappan M, Srichomthong K, Boonpratuang T, Isaka M. Colossolactone J, a highly modified lanostane triterpenoid from a natural fruiting body of Ganoderma colossus. Nat Prod Res 2022:1-8. [PMID: 36121754 DOI: 10.1080/14786419.2022.2124987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Colossolactone J (1), an undescribed lanostane triterpenoid was isolated from a natural fruiting body of Ganoderma colossus using silica gel column chromatography and preparative HPLC. Its structure was elucidated on the basis of the spectroscopic method. The absolute configuration was determined by the combination of the modified Mosher's method and detailed NMR data analysis.
Collapse
Affiliation(s)
- Panida Chinthanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, Thailand
| | - Malipan Sappan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, Thailand
| | - Kitlada Srichomthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, Thailand
| | | | - Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, Thailand
| |
Collapse
|
6
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
7
|
Colossolactone-G synergizes the anticancer properties of 5-fluorouracil and gemcitabine against colorectal cancer cells. Biomed Pharmacother 2021; 140:111730. [PMID: 34062410 DOI: 10.1016/j.biopha.2021.111730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
Several terpenoids were isolated from Ganoderma colossum with potential chemotherapeutic properties against different solid tumor cells. Herein, we further assessed the potential chemomodulatory effects of colossolactone-G to gemcitabine (GCB) and 5-fluorouracil (5-FU) against colorectal cancer cells. Colossolactone-G induced moderate cell killing effects against both HT-29 and HCT-116 cells, with IC50's of 90.5 ± 1.7 µM and 22.3 ± 3.9 µM, respectively. Equitoxic combination demonstrated a synergistic effect between colossolactone-G and GCB, or 5-FU with combination indices ranging from 0.22 to 0.67. Both GCB and 5-FU induced moderate cell cycle arrest at G0/G1-phase and S-phase. Despite colossolactone-G's lack of influence on cell cycle distribution, it significantly potentiated GCB- and 5-FU-induced cell cycle arrest. Similarly, colossolactone-G treatment alone did not induce pronounced apoptosis in both cell lines. However, 5-FU and GCB induced significant apoptosis which was further potentiated via combination with colossolactone-G. Furthermore, colossolactone-G significantly increased autophagic cell death response in both HCT-116 and HT-29 cells and potentiated 5-FU- and GCB-induced autophagic cell death. The influence of colossolactone-G alone or in combination with GCB or 5-FU on the apoptosis and autophagy were confirmed by qPCR analysis for the expression of several key apoptosis and autophagy genes such as, TRAIL, TP53INP1, BNIP3, hp62, ATG5, ATG7, Lamp2A and the golden standard for autophagy (LC3-II). In conclusion, a synergistic effect in terms of anticancer properties was observed when colossolactone-G was combined with 5-FU and GCB, where it influenced both apoptosis and autophagic cell death mechanisms.
Collapse
|
8
|
Liu W, Yuan R, Hou A, Tan S, Liu X, Tan P, Huang X, Wang J. Ganoderma triterpenoids attenuate tumour angiogenesis in lung cancer tumour-bearing nude mice. PHARMACEUTICAL BIOLOGY 2020; 58:1061-1068. [PMID: 33161828 PMCID: PMC7655057 DOI: 10.1080/13880209.2020.1839111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Ganoderma lucidum (Leyss. ex Fr.) Karst. (Polyporaceae) triterpenoids (GLTs), the main components and bioactive metabolites of G. lucidum, have antitumour activity. OBJECTIVE We investigated the effects of GLTs in lung cancer tumour-bearing nude mice and their potential mechanism. MATERIALS AND METHODS Forty BALB/c nude mice were randomly divided into four groups: saline control, GLT (1 g/kg/day), gefitinib (GEF, 15 mg/kg/day), and GLT (1 g/kg/day) + GEF (15 mg/kg/day) for 14 days. Cell viability was conducted using the Cell Counting Kit-8 assay. The tumour volume, inhibition rate, histopathological, microvessel density (MVD), mRNAs, and proteins were determined. RESULTS GLTs inhibited the cell viability of A549 cells with an IC50 value of 14.38 ± 0.29 mg/L, while the IC50 value of GEF was 10.26 ± 0.47 μmol/L. The tumour inhibition rate in the GLT + GEF group (51.54%) was significantly decreased relative to the saline control… group (p < 0.05). The MVD in the GLT + GEF group (2.9 ± 0.7) was significantly decreased than that in the saline control group (12.8 ± 1.4, p < 0.05). The angiostatin, endostatin, and Bax protein expression in the GLT, GEF, and GLT + GEF groups were significantly increased compared to those in the saline control group, while the VEGFR2 and Bcl-2 protein expression were decreased. DISCUSSION AND CONCLUSIONS Our study provided evidence that GLT and GEF combination therapy may be a promising candidate for the treatment of lung cancer and as an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | | | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Song Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xin Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Pengcheng Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xiaoming Huang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Jinguo Wang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| |
Collapse
|
9
|
Isaka M, Chinthanom P, Choeyklin R, Thummarukcharoen T, Rachtawee P, Sappan M, Srichomthong K, Fujii R, Kawashima K, Mori S. Highly Modified Lanostane Triterpenes from the Wood-Rot Basidiomycete Ganoderma colossus: Comparative Chemical Investigations of Natural and Artificially Cultivated Fruiting Bodies and Mycelial Cultures. JOURNAL OF NATURAL PRODUCTS 2020; 83:2066-2075. [PMID: 32639735 DOI: 10.1021/acs.jnatprod.9b00947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The wood-rot basidiomycete Ganoderma colossus has been chemically investigated. Comparative analyses of the natural fruiting body, artificially cultivated fruiting bodies, and mycelial cultures resulted in the isolation, in total, of 13 new highly modified lanostanes, ganocolossusins A-H (1-8) and ganodermalactones T-X (9-13), together with 23 known compounds (14-36). There were significant overlaps of the same compounds among the three different states of the fungal materials. Ganocolossusin D (4) displayed the most potent antimalarial activity against Plasmodium falciparum K1 (multi-drug-resistant strain) with an IC50 value of 2.4 μM, while it was noncytotoxic to Vero cells at 50 μg/mL.
Collapse
Affiliation(s)
- Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Panida Chinthanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Rattaket Choeyklin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Tuksaporn Thummarukcharoen
- National Biobank of Thailand (NBT), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Pranee Rachtawee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Malipan Sappan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Kitlada Srichomthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Ryoma Fujii
- Institute of Quantum Beam Science, Ibaraki University, Mito 310-8512, Japan
| | - Kyohei Kawashima
- Institute of Quantum Beam Science, Ibaraki University, Mito 310-8512, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Ibaraki University, Mito 310-8512, Japan
| |
Collapse
|
10
|
Isaka M, Chinthanom P, Thummarukcharoen T, Boonpratuang T, Choowong W. Highly Modified Lanostane Triterpenes from Fruiting Bodies of the Basidiomycete Tomophagus sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1165-1176. [PMID: 30983350 DOI: 10.1021/acs.jnatprod.8b00869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thirty-one highly modified lanostanes (1-31), together with 19 known compounds (32-50), were isolated from fruiting bodies of the wood-rot basidiomycete Tomophagus sp. The structures were elucidated by analyses of HRMS and NMR spectroscopic data. The present work demonstrates the high structural diversity of modified lanostane triterpenoids from Tomophagus. This paper also discusses structural revisions of several known derivatives. Some of the isolated compounds exhibited moderate antimalarial activity against Plasmodium falciparum K1 (IC50 5.1-19 μM).
Collapse
Affiliation(s)
- Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC) , 113 Thailand Science Park, Phaholyothin Road , Klong Luang , Pathumthani 12120 , Thailand
| | - Panida Chinthanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC) , 113 Thailand Science Park, Phaholyothin Road , Klong Luang , Pathumthani 12120 , Thailand
| | - Tuksaporn Thummarukcharoen
- National Center for Genetic Engineering and Biotechnology (BIOTEC) , 113 Thailand Science Park, Phaholyothin Road , Klong Luang , Pathumthani 12120 , Thailand
| | - Thitiya Boonpratuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC) , 113 Thailand Science Park, Phaholyothin Road , Klong Luang , Pathumthani 12120 , Thailand
| | - Wilunda Choowong
- National Center for Genetic Engineering and Biotechnology (BIOTEC) , 113 Thailand Science Park, Phaholyothin Road , Klong Luang , Pathumthani 12120 , Thailand
| |
Collapse
|
11
|
From nutraceutical to clinical trial: frontiers in Ganoderma development. Appl Microbiol Biotechnol 2018; 102:9037-9051. [DOI: 10.1007/s00253-018-9326-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/11/2018] [Accepted: 08/25/2018] [Indexed: 12/26/2022]
|
12
|
Taofiq O, Heleno SA, Calhelha RC, Alves MJ, Barros L, González-Paramás AM, Barreiro MF, Ferreira IC. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem Toxicol 2017; 108:139-147. [DOI: 10.1016/j.fct.2017.07.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
|
13
|
Gill BS, Navgeet, Kumar S. Ganoderma lucidum targeting lung cancer signaling: A review. Tumour Biol 2017; 39:1010428317707437. [PMID: 28653896 DOI: 10.1177/1010428317707437] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lung cancer causes huge mortality to population, and pharmaceutical companies require new drugs as an alternative either synthetic or natural targeting lung cancer. The conventional therapies cause side effects, and therefore, natural products are used as a therapeutic candidate in lung cancer. Chemical diversity among natural products highlights the impact of evolution and survival of fittest. One such neglected natural product is Ganoderma lucidum used for promoting health and longevity for a longer time. The major bioconstituents of G. lucidum are mainly terpenes, polysaccharides, and proteins, which were explored for various activities ranging from apoptosis to autophagy. The bioconstituents of G. lucidum activate plasma membrane receptors and initiate various downstream signaling leading to nuclear factor-κB, phosphoinositide 3-kinase, Akt, and mammalian target of rapamycin in cancer. The bioconstituents regulate the expression of various genes involved in cell cycle, immune response, apoptosis, and autophagy in lung cancer. This review highlights the inextricable role of G. lucidum and its bioconstituents in lung cancer signaling for the first time.
Collapse
Affiliation(s)
- Balraj Singh Gill
- 1 Centre for Biosciences, Central University of Punjab, Bathinda, India
| | - Navgeet
- 2 Department of Biotechnology, Doaba College, Jalandhar, India
| | - Sanjeev Kumar
- 3 Centre for Plant Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|