1
|
Qin Z, Li Y, Liu D, Hua Y, Lv Y, Zhang X, Fan C, Yang J. Deciphering the benefits and intensity levels of primary metabolites from Allium macrostemon Bunge and Allium chinense G. Don. Chin Med 2024; 19:99. [PMID: 39010119 PMCID: PMC11251333 DOI: 10.1186/s13020-024-00957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Allii Macrostemonis Bulbus is also named Xiebai in China. It is an edible vegetable, and also a famous herb for treating coronary heart disease. Allium chinense G. Don (ACGD) and Allium macrostemon Bunge (AMB) are it botanical sources. The aim of this study was to explore the cardioprotective effects, and decipher the visual spatial distribution and absolute content of primary metabolites derived from these two herbs. METHODS H9c2 cells were used to perform the hypoxia-reoxygenation (H/R)-induced myocardial injury model. Their protective effects were evaluated by apoptosis levels. Furthermore, matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry imaging approach (MALDI-TOF MSI) was carried out to present the spatial location of primary metabolites including fatty acids, amino acids, carotenoids, and vitamins in these two Allium herbs. Multiple analytical methods were applied to perform quantitative analysis of these primary metabolites in AMB and ACGD bulbs by liquid chromatography tandem mass spectrometry (LC-MS). RESULTS First, AMB and ACGD extracts both could increase the cell viability in H9c2 cells, and attenuate H/R-induced injury. They markedly decreased apoptosis, accompanied by activating the BCL-2/BAX pathway. Further, MALDI-TOF MSI-based relative quantification results showed several amino acids, fatty acids, carotenoids, and vitamins were largely rich in the tunics and outside scales of fresh bulbs, while some primary metabolites were abundant in their developing flower buds. Absolute quantification results displayed total contents of amino acids in ACGD bulbs were higher than those in AMB, while total contents of fatty acids and vitamins provides opposite trends in these two Allium herbs. The total contents of carotenoids and trace elements showed no significant differences between AMB and ACGD samples. CONCLUSIONS This study would be helpful to understand the myocardial injury protection effects of these two Allium herbs, and the spatial accumulation and quantitative content levels of their main nutrients.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongmei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuzhuo Hua
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Yuandong Lv
- Hangzhou EXPECLIN Medical Technology Co., Ltd., Hangzhou, 311305, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China
| | - Cailian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Research Center of Application & Translation of Precision Clinical Pharmacy, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Maarman G, Sanni O. Pulmonary hypertension and the potential of 'drug' repurposing: A case for African medicinal plants. Afr J Thorac Crit Care Med 2024; 30:e1352. [PMID: 39171151 PMCID: PMC11334905 DOI: 10.7196/ajtccm.2024.v30i2.1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/25/2024] [Indexed: 08/23/2024] Open
Abstract
Abstract Pulmonary hypertension (PH) is a haemodynamic disorder in which elevated blood pressure in the pulmonary circulation is caused by abnormal vascular tone. Despite advances in treatment, PH mortality remains high, and drug repurposing has been proposed as a mitigating approach. This article reviews the studies that have investigated drug repurposing as a viable option for PH. We provide an overview of PH and highlight pharmaceutical drugs with repurposing potential, based on limited evidence of their mechanisms of action. Moreover, studies have demonstrated the benefits of medicinal plants in PH, most of which are of Indian or Asian origin. Africa is a rich source of many medicinal plants that have been scientifically proven to counteract myriad pathologies. When perusing these studies, one will notice that some African medicinal plants can counteract the molecular pathways (e.g. proliferation, vasoconstriction, inflammation, oxidative stress and mitochondrial dysfunction) that are also involved in the pathogenesis of PH. We review the actions of these plants with actions applicable to PH and highlight that they could be repurposed as adjunct PH therapies. However, these plants have either never been tested in PH, or there is little evidence of their actions against PH. We therefore encourage caution, as more research is needed to study these plants further in experimental models of PH while acknowledging that the outcomes of such proof of-concept studies may not always yield promising findings. Regardless, this article aims to stimulate future research that could make timely contributions to the field. Study synopsis What the study adds. Pulmonary hypertension (PH) remains a fatal disease, and 80% of the patients live in developing countries where resources are scarce and specialised therapies are often unavailable. Drug repurposing is a viable option to try to improve treatment outcomes.Implications of the findings. We propose that another form of 'drug' repurposing is the use of medicinal plants, many of which have demonstrated benefits against pathological processes that are also key in PH, e.g. apoptosis, tumour-like growth of cells, proliferation, oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- S Jacobs
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Payne
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - S Shaboodien
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - T Kgatla
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - A Pretorius
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Jumaar
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - G Maarman
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - O Sanni
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Li S, Lin P, Xing H, Li X, Yao Z, Zhang X, Yao X, Yang J, Qin Z. Unveiling the spatial metabolome and anti-atherosclerosis effects of Allium macrostemon Bunge and Allium chinense G. Don. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
4
|
Qin Z, Duan S, Li Y, Li X, Xing H, Yao Z, Zhang X, Yao X, Yang J. Characterization of volatile organic compounds with anti-atherosclerosis effects in Allium macrostemon Bge. and Allium chinense G. Don by head space solid phase microextraction coupled with gas chromatography tandem mass spectrometry. Front Nutr 2023; 10:996675. [PMID: 36819690 PMCID: PMC9929146 DOI: 10.3389/fnut.2023.996675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Allium macrostemon Bge. (AMB) and Allium chinense G. Don (ACGD) are both edible Allium vegetables and named officinal Xiebai (or Allii Macrostemonis Bulbus) in East Asia. Their medicinal qualities involve in lipid lowering and anti-atherosclerosis effects. And steroidal saponins, nitrogenous compounds and sulfur compounds are like the beneficial components responsible for medicinal functions. Sulfur compounds are the recognized main components both in the volatile oils of AMB and ACGD. Besides, few researches were reported about their holistic chemical profiles of volatile organic compounds (VOCs) and pharmacodynamic effects. Methods In this study, we first investigated the lipid-lowering and anti-atherosclerotic effects of volatile oils derived from AMB and ACGD in ApoE -/- mice with high fat and high cholesterol diets. Results The results showed the volatile oils of AMB and ACGD both could markedly reduce serum levels of TG, TC, and LDL-C (p < 0.05), and had no alterations of HDL-C, ALT, and AST levels (p > 0.05). Pathological results displayed they both could obviously improve the morphology of cardiomyocytes and the degree of myocardial fibrosis in model mice. Meanwhile, oil red O staining results also proved they could apparently decrease the lesion areas of plaques in the aortic intima (p < 0.05). Furthermore, head space solid phase microextraction coupled with gas chromatography tandem mass spectrometry combined with metabolomics analysis was performed to characterize the VOCs profiles of AMB and ACGD, and screen their differential VOCs. A total of 121 and 115 VOCs were identified or tentatively characterized in the volatile oils of AMB and ACGD, respectively. Relative-quantification results also confirmed sulfur compounds, aldehydes, and heterocyclic compounds accounted for about 85.6% in AMB bulbs, while approximately 86.6% in ACGD bulbs were attributed to sulfur compounds, ketones, and heterocyclic compounds. Multivariate statistical analysis showed 62 differentially expressed VOCs were observed between AMB and ACGD, of which 17 sulfur compounds were found to be closely associated with the garlic flavor and efficacy. Discussion Taken together, this study was the first analysis of holistic chemical profiles and anti-atherosclerosis effects of AMB and ACGD volatile oils, and would benefit the understanding of effective components in AMB and ACGD.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Henan Applied and Translational Center of Precision Clinical Pharmacy, Zhengzhou, China,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuyi Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinqiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Henan Applied and Translational Center of Precision Clinical Pharmacy, Zhengzhou, China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Henan Applied and Translational Center of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Henan Applied and Translational Center of Precision Clinical Pharmacy, Zhengzhou, China,*Correspondence: Jing Yang,
| |
Collapse
|
5
|
Bhatia T, Gupta GD, Kurmi BD, Singh D. Role of solid lipid nanoparticle for the delivery of Lipophilic Drugs and Herbal Medicines in the treatment of pulmonary hypertension. Pharm Nanotechnol 2022; 10:PNT-EPUB-126042. [PMID: 36045536 DOI: 10.2174/2211738510666220831113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon condition marked by elevated pulmonary artery pressure that leads to right ventricular failure. The majority of drugs are now been approved by FDA for PAH, however, several biopharmaceutical hindrances lead to failure of the therapy. Various novel drug delivery systems are available in the literature from which lipid-based nanoparticles i.e. solid lipid nanoparticle is widely investigated for improving the solubility and bioavailability of drugs. In this paper, the prototype phytoconstituents used in pulmonary arterial hypertension have limited solubility and bioavailability. We highlighted the novel concepts of SLN for lipophilic phytoconstituents with their potential applications. This paper also reviews the present state of the art regarding production techniques for SLN like High-Pressure Homogenization, Micro-emulsion Technique, and Phase Inversion Temperature Method, etc. Furthermore, toxicity aspects and in vivo fate of SLN are also highlighted in this review. In a nutshell, safer delivery of phytoconstituents by SLN added a novel feather to the cap of successful drug delivery technologies.
Collapse
Affiliation(s)
- Tanuja Bhatia
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab (142001), India
| |
Collapse
|
6
|
Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. Natural Products in Cardiovascular Diseases: The Potential of Plants from the Allioideae Subfamily (Ex-Alliaceae Family) and Their Sulphur-Containing Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:1920. [PMID: 35893624 PMCID: PMC9332240 DOI: 10.3390/plants11151920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and, together with associated risk factors such as diabetes, hypertension, and dyslipidaemia, greatly impact patients' quality of life and health care systems. This burden can be alleviated by fomenting lifestyle modifications and/or resorting to pharmacological approaches. However, due to several side effects, current therapies show low patient compliance, thus compromising their efficacy and enforcing the need to develop more amenable preventive/therapeutic strategies. In this scenario, medicinal and aromatic plants are a potential source of new effective agents. Specifically, plants from the Allioideae subfamily (formerly Alliaceae family), particularly those from the genus Allium and Tulbaghia, have been extensively used in traditional medicine for the management of several CVDs and associated risk factors, mainly due to the presence of sulphur-containing compounds. Bearing in mind this potential, the present review aims to gather information on traditional uses ascribed to these genera and provide an updated compilation of in vitro and in vivo studies validating these claims as well as clinical trials carried out in the context of CVDs. Furthermore, the effect of isolated sulphur-containing compounds is presented, and whenever possible, the relation between composition and activity and the mechanisms underlying the beneficial effects are pointed out.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-290 Coimbra, Portugal
| |
Collapse
|
7
|
Characterization of polysaccharide fractions from Allii macrostemonis bulbus and assessment of their antioxidant. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
9
|
Yang X, Dai Y, Ji Z, Zhang X, Fu W, Han C, Xu Y. Allium macrostemon Bunge. exerts analgesic activity by inhibiting NaV1.7 channel. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114495. [PMID: 34364968 DOI: 10.1016/j.jep.2021.114495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allium macrostemon Bunge. is an edible Chinese herb traditionally used for the treatment of thoracic pain, stenocardia, heart asthma and diarrhea. Although its biological potential has been extensively proven such as antioxidant activity, antiplatelet aggregation, vasodilation and antidepressant-like activity, there are no reports in the literature regarding its pharmacological analgesic activity. AIM OF THE STUDY The study was carried out to examine the anti-nociceptive activity of the crude extract of A. macrostemon bulbs and interpret its likely molecular target. MATERIALS AND METHODS The bulbs of A. macrostemon were gathered, dried-up, and extracted with water (AMWD). AMWD was subjected to activity testing, using chemical-induced (acetic acid and formalin test) and heat-induced (hot plate) pain models. To evaluate the likely mechanistic strategy involved in the analgesic effect of AMWD, whole-cell patch clamp recordings were conducted in acutely dissociated dorsal root ganglion (DRG) neurons and human embryonic kidney 293T (HEK293T) cells expressing pain-related receptors. Electrophysiological methods were employed to detect the action potentials of DRG neurons and potential targets of A. macrostemon. RESULTS AMWD showed significant palliative effect in all heat and chemical induced pain assays. Moreover, AMWD significantly reduces the excitability of dorsal root ganglion neurons by reducing the firing frequency of action potentials. Further analysis revealed that voltage-gated sodium channel Nav1.7 is the potential target of A. macrostemon for its analgesic activity. CONCLUSION This study has brought new scientific evidence of preclinical efficacy of A. macrostemon as an anti-nociceptive agent. Apparently, these effects are involved with the inhibition of the voltage-sensitive Nav1.7 channel contributing to the reduction of peripheral neuronal excitability. Our present study justifies the folkloric usage of A. macrostemon as a remedy for several pain states. Furthermore, A. macrostemon is a good resource for the development of analgesic drugs targeting Nav1.7 channel.
Collapse
Affiliation(s)
- Xiaopei Yang
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China.
| | - Yuwen Dai
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Zhilin Ji
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Xiangyi Zhang
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Wei Fu
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Chaochi Han
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China
| | - Yunsheng Xu
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong, 675005, China.
| |
Collapse
|
10
|
Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules 2021; 26:molecules26123506. [PMID: 34207498 PMCID: PMC8227493 DOI: 10.3390/molecules26123506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a global health burden that greatly impact patient quality of life and account for a huge number of deaths worldwide. Despite current therapies, several side effects have been reported that compromise patient adherence; thus, affecting therapeutic benefits. In this context, plant metabolites, namely volatile extracts and compounds, have emerged as promising therapeutic agents. Indeed, these compounds, in addition to having beneficial bioactivities, are generally more amenable and present less side effects, allowing better patient tolerance. The present review is an updated compilation of the studies carried out in the last 20 years on the beneficial potential of essential oils, and their compounds, against major risk factors of CVDs. Overall, these metabolites show beneficial potential through a direct effect on these risk factors, namely hypertension, dyslipidemia and diabetes, or by acting on related targets, or exerting general cellular protection. In general, monoterpenic compounds are the most studied regarding hypotensive and anti-dyslipidemic/antidiabetic properties, whereas phenylpropanoids are very effective at avoiding platelet aggregation. Despite the number of studies performed, clinical trials are sparse and several aspects related to essential oil’s features, namely volatility and chemical variability, need to be considered in order to guarantee their efficacy in a clinical setting.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
11
|
Petropoulos SA, Di Gioia F, Polyzos N, Tzortzakis N. Natural Antioxidants, Health Effects and Bioactive Properties of Wild Allium Species. Curr Pharm Des 2020; 26:1816-1837. [PMID: 32013820 DOI: 10.2174/1381612826666200203145851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is an increasing interest from the pharmaceutical and food industry in natural antioxidant and bioactive compounds derived from plants as substitutes for synthetic compounds. The genus Allium is one of the largest genera, with more than 900 species, including important cultivated and wild species, having beneficial health effects. OBJECTIVE The present review aims to unravel the chemical composition of wild Allium species and their healthrelated effects, focusing on the main antioxidant compounds. For this purpose, a thorough study of the literature was carried out to compile reports related to health effects and the principal bioactive compounds. Considering the vast number of species, this review is divided into subsections where the most studied species are presented, namely Allium ampeloprasum, A. flavum, A. hookeri, A. jesdianum, A. neapolitanum, A. roseum, A. stipitatum, A. tricoccum, and A. ursinum, with an additional composite section for less studied species. METHODS The information presented in this review was obtained from worldwide accepted databases such as Scopus, ScienceDirect, PubMed, Google Scholar and Researchgate, using as keywords the respective names of the studied species (both common and Latin names) and the additional terms of"antioxidants" "health effects" and "bioactive properties". CONCLUSION The genus Allium includes several wild species, many of which are commonly used in traditional and folklore medicine while others are lesser known or are of regional interest. These species can be used as sources of natural bioactive compounds with remarkable health benefits. Several studies have reported these effects and confirmed the mechanisms of action in several cases, although more research is needed in this field. Moreover, considering that most of the studies refer to the results obtained from species collected in the wild under uncontrolled conditions, further research is needed to elucidate the effects of growing conditions on bioactive compounds and to promote the exploitation of this invaluable genetic material.
Collapse
Affiliation(s)
- Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, Pennsylvania, United States
| | - Nikos Polyzos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
12
|
Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12505-12526. [PMID: 33138361 DOI: 10.1021/acs.jafc.0c05002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-containing spice compounds possess diverse biological functions and play an important role in food, chemicals, pharmaceuticals, and agriculture. The development of functional spices has become increasingly popular, especially for medicinal functions for dietary health. Thus, this review focuses on the properties and functions of sulfur-containing spice compounds, including antioxidant, anti-inflammatory, antiobesity, anticancer, antibacterial, and insecticidal functions, among others. Developments over the last five years concerning the properties of sulfur-containing spice compounds are summarized and discussed.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Benjian Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Jasemi SV, Khazaei H, Aneva IY, Farzaei MH, Echeverría J. Medicinal Plants and Phytochemicals for the Treatment of Pulmonary Hypertension. Front Pharmacol 2020; 11:145. [PMID: 32226378 PMCID: PMC7080987 DOI: 10.3389/fphar.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary hypertension (PH) is a progressive disease that is associated with pulmonary arteries remodeling, right ventricle hypertrophy, right ventricular failure and finally death. The present study aims to review the medicinal plants and phytochemicals used for PH treatment in the period of 1994 – 2019. Methods PubMed, Cochrane and Scopus were searched based on pulmonary hypertension, plant and phytochemical keywords from August 23, 2019. All articles that matched the study based on title and abstract were collected, non-English, repetitive and review studies were excluded. Results Finally 41 studies remained from a total of 1290. The results show that many chemical treatments considered to this disease are ineffective in the long period because they have a controlling role, not a therapeutic one. On the other hand, plants and phytochemicals could be more effective due to their action on many mechanisms that cause the progression of PH. Conclusion Studies have shown that herbs and phytochemicals used to treat PH do their effects from six mechanisms. These mechanisms include antiproliferative, antioxidant, antivascular remodeling, anti-inflammatory, vasodilatory and apoptosis inducing actions. According to the present study, many of these medicinal plants and phytochemicals can have effects that are more therapeutic than chemical drugs if used appropriately.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
14
|
Li H, Seo MS, An JR, Jung HS, Ha KS, Han ET, Hong SH, Bae YM, Na SH, Park WS. Dipeptidyl peptidase-4 inhibitor sitagliptin induces vasorelaxation via the activation of Kv channels and PKA. Toxicol Appl Pharmacol 2019; 384:114799. [PMID: 31678606 DOI: 10.1016/j.taap.2019.114799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
The present study investigated the vasorelaxant effects of sitagliptin, which is a dipeptidyl peptidase-4 (DPP-4) inhibitor in aortic rings pre-contracted with phenylephrine (Phe). Sitagliptin induced vasorelaxation in a concentration-dependent manner but the inhibition of voltage-dependent K+ (Kv) channels by pretreatment with 4-aminopyridine (4-AP) effectively reduced this effect. By contrast, the inhibition of inward rectifier K+ (Kir) channels by pretreatment with barium (Ba2+), large-conductance calcium (Ca2+)-activated K+ (BKCa) channels with paxilline, and adenosine triphosphate (ATP)-sensitive K+ (KATP) channels with glibenclamide did not change this effect. Although the application of SQ 22536, which is an adenylyl cyclase inhibitor, also did not change this effect, treatment with KT 5720, a protein kinase A (PKA) inhibitor, effectively reduced the vasorelaxant effects of sitagliptin. ODQ, which is a guanylyl cyclase inhibitor, and KT 5823, a protein kinase G (PKG) inhibitor, did not impact the effect. Furthermore, neither the inhibition of Ca2+ channels by pretreatment with nifedipine nor the inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps by pretreatment with thapsigargin changed the effect. Similarly, the effects of sitagliptin were not altered by eliminating the endothelium, by pretreatment with a nitric oxide (NO) synthase inhibitor (L-NAME), or by inhibition of small- and intermediate-conductance Ca2+-activated K+ channels (SKCa and IKCa) using apamin and TRAM-34. Taken together, these results suggest that sitagliptin induces vasorelaxation by inhibiting both membrane potential (Em)-dependent and -independent vasoconstriction and activating PKA and Kv channels independently of PKG signaling pathways, other K+ channels, SERCA pumps, and the endothelium.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mi Seon Seo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hee Seok Jung
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Seok-Ho Hong
- Institute of Medical Sciences, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
15
|
Meng XB, Zhu T, Yang DH, Liang W, Sun GB, Sun XB. Xuezhitong capsule, an extract of Allium macrostemon Bunge, exhibits reverse cholesterol transport and accompanies high-density lipoprotein levels to protect against hyperlipidemia in ApoE -/- mice. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:239. [PMID: 31317009 DOI: 10.21037/atm.2019.04.77] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Xuezhitong capsules (XZT) are derived from Xie Bai and used for abnormal lipid homeostasis treatment through maintained metabolic balance. However, their mechanisms are largely unknown. Here, we mainly assessed the contribution of reverse cholesterol transport (RCT) and the accompanying increase in the high-density lipoprotein (HDL) effects of XZT to cholesterol dysfunction amelioration in mice. Methods We assessed serum lipids by using enzymatic kits. We observed atherosclerotic plaque formation by hematoxylin-eosin (HE) and Oil Red O staining. We studied the lipid metabolism, fatty acid synthase (FAS), HDL, low-density lipoprotein receptor (LDLR), triglyceride (TG) metabolic enzyme expression levels, and RCT function in various tissues upon stimulation with high-fat diet, XZT, and some positive drugs by ELISA. Results After 34 weeks of high-fat diet administration, blood lipids levels increased because attenuated by XZT treatment (800 and 1,600 mg/kg, i.g.). XZT improved the lipid metabolism instability, induced RCT activation, and subsequently increased the HDL levels in hyperlipidemic mice (P<0.05). FAS (P<0.05) and LDLR (P<0.01) levels also remarkably improved. The effects of XZT were closely associated with RCT activation and the accompanying increase in the HDL levels, as characterized by XZT-induced preservation in ATP-binding cassette transporter member 1 (ABCA1), scavenger receptor class B type 1 (SRB1), acyl coenzyme A: cholesterol acyltransferase (ACAT), lecithin cholesterol acyltransferase (LCAT), apolipoprotein A I (ApoA1) and apolipoprotein B (ApoB). However, XZT showed no effect on high fat diet-activated TG metabolic enzyme expression levels (P>0.05). Conclusions XZT are promising drugs in balancing the cholesterol dysfunction from hyperlipidemia through RCT activation and accompanying increase in HDL levels.
Collapse
Affiliation(s)
- Xiang-Bao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ting Zhu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - De-Hui Yang
- Dongfang Pharmaceutical Co. Ltd., Jilin 130000, China
| | - Wei Liang
- Dongfang Pharmaceutical Co. Ltd., Jilin 130000, China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Pozsgai G, Bátai IZ, Pintér E. Effects of sulfide and polysulfides transmitted by direct or signal transduction-mediated activation of TRPA1 channels. Br J Pharmacol 2018; 176:628-645. [PMID: 30292176 PMCID: PMC6346070 DOI: 10.1111/bph.14514] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous mediator in various physiological and pathological processes, including neuroimmune modulation, metabolic pathways, cardiovascular system, tumour growth, inflammation and pain. Now the hydrogen polysulfides (H2Sn) have been recognised as signalling molecules modulating ion channels, transcription factors and protein kinases. Transient receptor potential (TRP) cation channels can be activated by mechanical, thermal or chemical triggers. Here, we review the current literature regarding the biological actions of sulfide and polysulfide compounds mediated by TRP channels with special emphasis on the role of TRPA1, best known as ion channels in nociceptors. However, the non‐neuronal TRPA1 channels should also be considered to play regulatory roles. Although sulfide and polysulfide effects in different pathological circumstances and TRPA1‐mediated processes have been investigated intensively, our review attempts to present the first comprehensive overview of the potential crosstalk between TRPA1 channels and sulfide‐activated signalling pathways. Linked Articles This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc
Collapse
Affiliation(s)
- Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - István Zoárd Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|