1
|
Feune PKM, Keumedjio PT, Béboy SNE, Jignoua YS, Massah FJ, Saidou ST, Ndjakou BL, Lunga PK, Moundipa PF. UHPLC-MS/MS profiling and in vivo aphrodisiac and androgenic effects of the aqueous extract of the roots of Schumanniophyton magnificum (K. Schum.) Harms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118598. [PMID: 39032665 DOI: 10.1016/j.jep.2024.118598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schumanniophyton magnificum is a medicinal plant used to manage many ailments including malaria, skin diseases, parasitic infections, male sexual dysfunctions, female infertility and typhoid fever. However, no scientific investigation has been made for its folkloric use by the "Baka" Pygmies of Cameroon as an aphrodisiac. AIM OF THE STUDY To investigate the aphrodisiac and androgenic activities of the aqueous extract of the roots of Schumanniophyton magnificum in male rats and analyze the phytoconstituents by UHPLC/MS. MATERIALS AND METHODS Twenty-five male rats of 16-weeks old were divided into 5 groups and orally treated for 30 days with distilled water (10 ml/kg), or sildenafil citrate (5 mg/kg), or the aqueous extract of Schumanniophyton magnificum (43 mg/kg, 86 mg/kg and 172 mg/kg). The sexual behaviour parameters were monitored on day 1 and 30 by pairing male rats to receptive females. At the end of the experiment, rats were killed and the blood and reproductive organs were collected for histological sectioning, sperm analysis and biochemical analysis. The presence of phytoconstituents and their structures were revealed by UHPLC/MS. RESULTS The plant extract significantly increased the mount, ejaculation and intromission frequencies in comparison to those in the normal control group; and significantly doubled the serum testosterone levels (2.15 ± 0.70 ng/ml) compared to the normal control group. UHPLC/MS of the aqueous extract of Schumanniophyton magnificum identified 7 major compounds such as Schumanniofioside A, Noreugenin and Rohitukine, with antioxidant and antibacterial activities. The plant extracts significantly increased the penile nitric oxide levels (P <0.05). These results were similar to those obtained after administration of sildenafil citrate. CONCLUSIONS The aqueous extract of Schumanniophyton magnificum could be an alternative for erectile dysfunction management.
Collapse
Affiliation(s)
- Patrick Kevin Moto Feune
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Paulin Teko Keumedjio
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Sara Nathalie Edjenguèlè Béboy
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Yannick Sani Jignoua
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Fabiola Jenny Massah
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Laboratory of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364, Yaoundé, Cameroon.
| | - Sylvestre Tsila Saidou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Bruno Lenta Ndjakou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Paul Keilah Lunga
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Cameroon.
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
2
|
Shehab NG, Omolaoye TS, Du Plessis SS, Rawat SS, Naidoo N, Abushawish KY, Ahmed A, Alaa B, Ihsan H, Abdelhalim M, Ayman M, El Nebrisi E. Phytochemical Evaluation of Lepidium meyenii, Trigonella foenum-graecum, Spirulina platensis, and Tribulus arabica, and Their Potential Effect on Monosodium Glutamate Induced Male Reproductive Dysfunction in Adult Wistar Rats. Antioxidants (Basel) 2024; 13:939. [PMID: 39199185 PMCID: PMC11351587 DOI: 10.3390/antiox13080939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Monosodium glutamate (MSG), a sodium salt derived from glutamic acid, is widely used in commercial food products to improve taste, quality, and preservation. However, its consumption may have detrimental effects on male reproductive function. Nevertheless, plant extracts, such as Lepidium meyenii (Maca), Trigonella foenum-graecum (Fenugreek), Spirulina platensis (Spirulina), and Tribulus arabica (Tribulus), may ameliorate these adverse effects. To this effect, the phytochemical properties of Lepidium meyenii, Trigonella foenum-graecum, Spirulina platensis, and Tribulus arabica were assessed, and their potential impact on MSG-induced impairment of reproductive parameters was examined. The phytochemical composition (steroids, terpenes, phenols, flavonoids) of the plants was profiled through spectrophotometry and the antioxidant activity was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Thirty-six male Wistar rats were divided into six groups at random: a control group receiving distilled water, and five experimental groups (MSG, Maca, Fenugreek, Spirulina, and Tribulus) receiving 900 mg/kg/day of MSG dissolved in water for 45 days. Subsequently, the animals in the experimental groups were administered 500 mg/kg/day of the respective plant extract via oral gavage for an additional 35 days, while the MSG group continued to receive water only. Following the treatment period, the animals were sacrificed, and their reproductive tract organs were collected, weighed, and subjected to further analysis. Phytochemical analysis revealed the presence of diverse bioactive elements in the plant extracts, including phenolic and flavonoid compounds. Exposure to MSG negatively impacted total and progressive sperm motility, which was ameliorated by Lepidium meyenii treatment. Sperm morphology showed no significant differences among groups. Treatment of the phytochemical agents diminished histomorphometric alternations of the testicular length, germinal epithelium height, and number of cells in seminiferous tubules, which were caused by the initial administration of MSG. Testosterone and LH levels were reduced in the MSG group but improved in extract-treated groups. The study suggests Lepidium meyenii as a potential remedy for reproductive dysfunction. However, further investigation into its mechanisms and human safety and efficacy is warranted.
Collapse
Affiliation(s)
- Naglaa Gamil Shehab
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates;
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| | - Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (T.S.O.); (S.S.D.P.); (S.S.R.); (N.N.)
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (T.S.O.); (S.S.D.P.); (S.S.R.); (N.N.)
| | - Surendra Singh Rawat
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (T.S.O.); (S.S.D.P.); (S.S.R.); (N.N.)
| | - Nerissa Naidoo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (T.S.O.); (S.S.D.P.); (S.S.R.); (N.N.)
| | - Kholoud Y. Abushawish
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates;
| | - Ayat Ahmed
- Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates; (A.A.); (B.A.); (H.I.); (M.A.); (M.A.)
| | - Baraa Alaa
- Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates; (A.A.); (B.A.); (H.I.); (M.A.); (M.A.)
| | - Heba Ihsan
- Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates; (A.A.); (B.A.); (H.I.); (M.A.); (M.A.)
| | - Manar Abdelhalim
- Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates; (A.A.); (B.A.); (H.I.); (M.A.); (M.A.)
| | - Mariam Ayman
- Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates; (A.A.); (B.A.); (H.I.); (M.A.); (M.A.)
| | - Eslam El Nebrisi
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai 20170, United Arab Emirates
| |
Collapse
|
3
|
Shipa AME, Kahilo KA, Elshazly SA, Taher ES, Nasr NE, Alotaibi BS, Almadaly EA, Assas M, Abdo W, Abouzed TK, Salem AE, Kirci D, El-Seedi HR, Refaey MS, Rizk NI, Shukry M, Dorghamm DA. Protective effect of Petroselinum crispum methanolic extract against acrylamide-induced reproductive toxicity in male rats through NF-ĸB, kinesin, steroidogenesis pathways. Reprod Toxicol 2024; 126:108586. [PMID: 38614435 DOI: 10.1016/j.reprotox.2024.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
This study examined the protective effects of a Petroselinum crispum (P. crispum) methanolic extract on reproductive dysfunction induced by acrylamide in male rats. A total of 40 rats were divided into four groups (n=10). The control group received distilled water, the acrylamide group received 10 mg/kg of acrylamide, the P. crispum group received 100 mg/kg of P. crispum extract, and the combined group was pretreated with P. crispum for two weeks before co-administration of P. crispum and acrylamide. All administrations were administered orally using a gastric tube for eight weeks. Acrylamide decreased testosterone levels but did not affect levels of FSH or LH. It also increased testicular levels of (MDA) malondialdehyde and reduced activity of (SOD) superoxide dismutase and impairment of sperm parameters. Furthermore, the administration of acrylamide resulted in an elevation of tumor necrosis factor-alpha (TNF-α) levels and a reduction in the levels of steroidogenic acute regulatory protein (STAR) and cytochrome P450scc (P450scc). Acrylamide negatively affected the histopathological outcomes, Johnsen's score, the diameter of seminiferous tubules, and the thickness of the germinal epithelium. It also upregulated the expression of NF-ĸB P65 and downregulated the expression of kinesin motor protein. In contrast, treatment with P. crispum extract restored the levels of antioxidant enzymes, improved sperm parameters, and normalized the gene expression of TNF-α, IL-10, IL-6, iNOS, NF-ĸB, STAR, CYP17A1, 17β-HSD and P450scc. It also recovered testicular histological parameters and immunoexpression of NF-ĸB P65 and kinesin altered by acrylamide. P. crispum showed protective effects against acrylamide-induced reproductive toxicity by suppressing oxidative damage and inflammatory pathways.
Collapse
Affiliation(s)
- Ahmed M E Shipa
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samir A Elshazly
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Essam A Almadaly
- Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mona Assas
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Walied Abdo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Faculty of Medicine, Biochemistry Department University of Misrata, Libya
| | | | - Damla Kirci
- Department of Pharmacognosy, Faculty of Pharmacy, Selçuk University, Konya, Turkiye
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa A Dorghamm
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
4
|
Ragab SMM, Almohaimeed HM, Alghriany AAI, Khalil NSA, Abd-Allah EA. Protective effect of Moringa oleifera leaf ethanolic extract against uranyl acetate-induced testicular dysfunction in rats. Sci Rep 2024; 14:932. [PMID: 38195615 PMCID: PMC10776666 DOI: 10.1038/s41598-023-50854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Uranyl acetate (UA) is used in civilian and military applications, predisposing it to wide dispersion in ecosystems. Using high-performance liquid chromatography, gas chromatography-mass spectrometry, and 2,2-Diphenyl-1-picrylhydrazyl scavenging radical analysis, we confirmed that Moringa oleifera leaf ethanolic extract (MLEE) is rich in biologically active phytochemicals. Thus, this study aims to investigate the possible defensive effect of MLEE against UA-induced testicular dysfunction. To achieve this, rats were divided randomly and evenly into three groups for 14 days. The control group received no treatment, while the UA group received a single intraperitoneal injection of UA at a dose of 5 mg/kg BW dissolved in saline on the 12th day of the experiment, followed by no treatment the following day. The MLEE + UA group received daily oral administration of MLEE (300 mg/kg BW) dissolved in distilled water before exposure to UA intoxication. The disruption observed in the pituitary-gonadal axis of UA-intoxicated rats was characterized by a significant decrease in luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol 17beta levels. Additionally, there was a notable increase in malondialdehyde and a decrease in catalase, superoxide dismutase, reduced glutathione, and nitric oxide, accompanied by an up-regulation in the immuno-expression of nuclear factor-kappa B, indicating a disturbance in the redox balance. The TUNEL assay confirmed a substantial rise in apoptotic cell numbers in the UA group. Testicular histopathological changes, excessive collagen deposition, and reduced glycogen content were evident following UA exposure. However, supplementation with MLEE effectively countered these mentioned abnormalities. MLEE is proposed to combat the toxicological molecular targets in the UA-affected testis by restoring the balance between oxidants and antioxidants while obstructing the apoptotic cascade. MLEE contains an abundance of redox-stabilizing and cytoprotective phytochemicals that have the potential to counteract the mechanistic pathways associated with UA exposure. These findings encourage further research into other plausible protective aspects of Moringa oleifera against the UA challenge.
Collapse
Affiliation(s)
- Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Nasser S Abou Khalil
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Elham A Abd-Allah
- Department of Zoology, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
5
|
Kumbhare SD, Ukey SS, Gogle DP. Antioxidant activity of Flemingia praecox and Mucuna pruriens and their implications for male fertility improvement. Sci Rep 2023; 13:19360. [PMID: 37938242 PMCID: PMC10632466 DOI: 10.1038/s41598-023-46705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Globally, 15-24% couples are unable to conceive naturally and 50% of cases of this problem are due to infertility in males. Of this, about 50% of male infertility problems are developed due to unknown reasons called as idiopathic infertility. It is well established that, reactive oxygen species (ROS) have negative impact on male fertility and are involved in 80% of total idiopathic male infertility cases. Medicinal plants are considered as an alternative approach for mitigating the health problems. The plants with good antioxidant capacity can improve the male infertility symptoms generated by ROS. Such medicinal plants can be used to alleviate the symptoms of male infertility with their diverse phytoconstituents. Mucuna pruriens is a well-accepted herb, with its seeds being used to improve the male fertility in various ways and one of the ways is by eliminating the ROS. In our field survey, another plant, Flemingia praecox, although less known, its roots are used in all problems related to the male fertility by tribal people of the Gadchiroli district of Maharashtra, India. The study was conducted to determine in vitro antioxidant potential of F. praecox and compared the results with the well-established male fertility improving plant M. pruriens with special emphasis on medicinally important roots of F. praecox and seeds of M. pruriens. The objective of the study was investigated by studying their total phenol (TPC) and flavonoid (TFC) content, antioxidant parameters (DPPH, FRAP, ABTS, DMPD, β-carotene bleaching and TAA) and finally DNA damage protection capacity of the plant extracts was studied. The plant parts used for the medicinal purposes have been investigated along with other major parts (leaves, stem and roots of both the plants) and compared with synthetic antioxidants, BHA, BHT and ascorbic acid. Moreover, the inhibition of two male infertility enzyme markers, PDE5 and arginase by F. praecox root and M. pruriens seed extract was also studied in vitro. The results showed that F. praecox possesses higher antioxidant activity than M. pruriens in the majority of studies as observed in TFC, DPPH, TAA, ABTS and DMPD assays. However, M. pruriens seeds showed best results in TPC, FRAP and DNA damage protection assay. F. praecox root extract also gave better PDE5 inhibition value than M. pruriens seeds. This study will help to establish the authenticity of F. praecox used by tribal people and will encourage its further use in managing the male infertility problems.
Collapse
Affiliation(s)
- Shravan D Kumbhare
- Post Graduate Teaching Department of Botany, RTM Nagpur University, Nagpur, 440033, India
| | - Sanghadeep S Ukey
- Post Graduate Teaching Department of Botany, RTM Nagpur University, Nagpur, 440033, India
- Department of Botany, Lokmanya Tilak College, Yavatmal, 445304, India
| | - Dayanand P Gogle
- Post Graduate Teaching Department of Botany, RTM Nagpur University, Nagpur, 440033, India.
- Post Graduate Teaching Department of Molecular Biology and Genetic Engineering, RTM Nagpur University, Nagpur, 440033, India.
| |
Collapse
|
6
|
Taghipour Z, Bahmanzadeh M, Rahimi R. The Effects of Clove and Its Constituents on Reproductive System: a Comprehensive Review. Reprod Sci 2023; 30:2591-2614. [PMID: 37040058 DOI: 10.1007/s43032-023-01223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023]
Abstract
Clove with the scientific name of Syzygium aromaticum (L.) Merr. & L.M. Perry is an evergreen tree in which its buds are used for medicinal purposes. Traditional medicine manuscripts as well as recent studies reported its effects on male and female reproductive systems. The aim of this study is to investigate the reported contradictory effects of clove and its phytochemicals on the reproductive system of both males and females. All types of in vitro, animal, and human studies of clove and its main constituents in the field of reproductive systems were collected via searching electronic databases including PubMed and Scopus from the onset till 2021. In this review, 76 articles were included, of which 25 were related to male reproduction, 32 were related to female reproduction, and 19 were related to reproductive malignancies. Analysis of the literature indicates the effects of clove and its constituents especially eugenol and β-caryophyllene on the level of sex hormones, fertility, sperm abnormalities, endometriosis, menstrual cycle, as well as gynecological infections, and reproductive tumors. The main mechanism of clove has not been understood yet but it seems that different parameters affect its pharmacological activity including the type of extract, dose, and duration of administration as well as the primary cause of the disorder. According to the effects of clove on different parts of the reproductive system, it seems that it can be a suitable candidate for related disorders, provided that more and more detailed studies are done on it.
Collapse
Affiliation(s)
- Zahra Taghipour
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bahmanzadeh
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
7
|
Zhang X, Tang Y, Lu G, Gu J. Pharmacological Activity of Flavonoid Quercetin and Its Therapeutic Potential in Testicular Injury. Nutrients 2023; 15:2231. [PMID: 37432408 DOI: 10.3390/nu15092231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Quercetin is a natural flavonoid widely found in natural fruits and vegetables. Recent studies have shown that quercetin mediates multiple beneficial effects in a variety of organ damage and diseases, and is considered a healthcare supplement with health-promoting potential. Male infertility is a major health concern, and testicular damage from multiple causes is an important etiology. Previous studies have shown that quercetin has a protective effect on reproductive function. This may be related to the antioxidant, anti-inflammatory, and anti-apoptotic biological activities of quercetin. Therefore, this paper reviews the mechanisms by which quercetin exerts its pharmacological activity and its role in testicular damage induced by various etiologies. In addition, this paper compiles the application of quercetin in clinical trials, demonstrating its practical effects in regulating blood pressure and inhibiting cellular senescence in human patients. However, more in-depth experimental studies and clinical trials are needed to confirm the true value of quercetin for the prevention and protection against testicular injury.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Abd-Allah ER, El-Rahman HAA. Ameliorative effects of nano Moringa on fluoride-induced testicular damage via down regulation of the StAR gene and altered steroid hormones. Reprod Biol 2023; 23:100724. [PMID: 36563520 DOI: 10.1016/j.repbio.2022.100724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Fluoride is a common environmental contaminant that has harmful effects on human health when it is present in high concentrations. Fluoride enters the bloodstream after being absorbed by the gastrointestinal system when fluoride-contaminated groundwater is consumed by people. The aim of the present study was to determine whether polyphenol-rich nano Moringa oleifera (NMO) could protect rat testicles from sodium fluoride (NaF) damage by evaluating sperm quality, sex hormones, testicular oxidative status, histopathology, and StAR gene expression. Twenty-eight adult Wistar rats were divided equally and randomly into four groups: group one received distilled water; group two received NMO at a dosage of 250 mg/kg/body weight; group three received NaF at a dosage of 10 mg/kg/body weight; and group four received NaF and NMO. The rats were orally administrated daily for a duration of eight weeks. The study's findings demonstrated that, in comparison to rats exposed to NaF alone, co-administration of NMO and NaF enhanced sperm motility and viability, decreased sperm morphological changes, restored the balance between oxidant and antioxidant status, improved testosterone and dehydroepiandrosterone, improved testicular histology, raised the Johnson score, and upregulated the StAR gene in testicular tissue. These findings show that NMO is promise as a prophylactic medication against sodium fluoride-induced testicular damage because administration of NMO had no adverse effects and enhanced reproductive health.
Collapse
Affiliation(s)
- Entsar R Abd-Allah
- Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | | |
Collapse
|
9
|
Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: A mini review. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:130-135. [PMID: 36717303 DOI: 10.1016/j.joim.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 01/22/2023]
Abstract
Male infertility has become a problem worldwide, and recent research has emphasized the development of more effective therapy options. Among natural compounds, rutin has been widely studied for its potential to treat dysfunction related to male infertility, including a reduction in sperm quality, spermatogenesis disruption and structural disruption in the testis. A thorough review of scientific literature published in several databases, including Google Scholar, PubMed/MEDLINE and Scopus, was used to synthesize the present state of research on the role of rutin in male reproductive health. Rutin has been shown to possess antiapoptotic, antioxidant and anti-inflammatory activities, among others, which are crucial in the management of male infertility. Numerous investigations have shown that rutin protects against male infertility and have explored the underlying mechanisms involved. The present review, therefore, assesses the therapeutic mechanisms involved in male infertility treatment using rutin. Rutin was able to mitigate the induced oxidative stress, apoptosis, inflammation, and related physiological processes that can cause testicular dysfunction. Please cite this article as: Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: a mini review. J Integr Med. 2022; Epub ahead of print.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Osun State, Nigeria.
| |
Collapse
|
10
|
Al-Tawalbeh D, Bdeir R, Al-Momani J. The Use of Medicinal Herbs to Treat Male Infertility in Jordan: Evidence-Based Review. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/42rwhfit62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Quercetin Ameliorates Testicular Damage in Zucker Diabetic Fatty Rats through Its Antioxidant, Anti-Inflammatory and Anti-Apoptotic Properties. Int J Mol Sci 2022; 23:ijms232416056. [PMID: 36555696 PMCID: PMC9781092 DOI: 10.3390/ijms232416056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of quercetin (QUE) on the testicular architecture as well as markers of oxidative, inflammatory, and apoptotic profile of male gonads in Zucker diabetic fatty (ZDF) rats suffering from Type 2 diabetes mellitus in the absence or presence of obesity. QUE was administered orally at a dose of 20 mg/kg/day for 6 weeks. Morphometric analysis revealed that QUE treatment led to an improvement in testicular appearance, particularly in the case of Obese ZDF rats. Furthermore, a significant stabilization of the antioxidant capacity (p < 0.05), superoxide dismutase and catalase activity (p < 0.01), with a concomitant decrease in lipid peroxidation (p < 0.05) were observed in Obese ZDF animals exposed to QUE. Our data also indicate a significant decline in the levels of interleukin (IL)-1 (p < 0.05), IL-6 (p < 0.01) and tumor necrosis factor alpha (p < 0.001) following QUE supplementation to Obese ZDF rats in comparison with their respective control. Finally, a significant down-regulation of the pro-apoptotic BAX protein (p < 0.0001) was observed in Obese ZDF rats administered with QUE, while a significant Bcl-2 protein overexpression (p < 0.0001) was recorded in Lean ZDF animals when compared to their untreated control. As such, our results suggest that QUE is a potentially beneficial agent to reduce testicular damage in ZDF rats with Type 2 diabetes mellitus by decreasing oxidative stress, chronic inflammation, and excessive cell loss through apoptosis.
Collapse
|
12
|
Eguchi H, Kimura R, Matsunaga H, Matsunaga T, Yoshino Y, Endo S, Ikari A. Increase in Anticancer Drug-Induced Toxicity by Fisetin in Lung Adenocarcinoma A549 Spheroid Cells Mediated by the Reduction of Claudin-2 Expression. Int J Mol Sci 2022; 23:ijms23147536. [PMID: 35886884 PMCID: PMC9316057 DOI: 10.3390/ijms23147536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Claudin-2 (CLDN2), a component of tight junction, is involved in the reduction of anticancer drug-induced toxicity in spheroids of A549 cells derived from human lung adenocarcinoma. Fisetin, a dietary flavonoid, inhibits cancer cell growth, but its effect on chemosensitivity in spheroids is unknown. Here, we found that fisetin (20 μM) decreases the protein level of CLDN2 to 22.3%. Therefore, the expression mechanisms were investigated by real-time polymerase chain reaction and Western blotting. Spheroids were formed in round-bottom plates, and anticancer drug-induced toxicity was measured by ATP content. Fisetin decreased the phosphorylated-Akt level, and CLDN2 expression was decreased by a phosphatidylinositol 3-kinase (PI3K) inhibitor, suggesting the inhibition of PI3K/Akt signal is involved in the reduction of CLDN2 expression. Hypoxia level, one of the hallmarks of tumor microenvironment, was reduced by fisetin. Although fisetin did not change hypoxia inducible factor-1α level, it decreased the protein level of nuclear factor erythroid 2-related factor 2, a stress response factor, by 25.4% in the spheroids. The toxicity of doxorubicin (20 μM) was enhanced by fisetin from 62.8% to 40.9%, which was rescued by CLDN2 overexpression (51.7%). These results suggest that fisetin can enhance anticancer drug toxicity in A549 spheroids mediated by the reduction of CLDN2 expression.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Riho Kimura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Haruka Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (R.K.); (H.M.); (Y.Y.); (S.E.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
13
|
Kopalli SR, Yoo SK, Kim B, Kim SK, Koppula S. Apigenin Isolated from Carduus crispus Protects against H 2O 2-Induced Oxidative Damage and Spermatogenic Expression Changes in GC-2spd Sperm Cells. Molecules 2022; 27:molecules27061777. [PMID: 35335140 PMCID: PMC8955133 DOI: 10.3390/molecules27061777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/03/2023] Open
Abstract
Testicular oxidative stress is one of the most common factors underlying male infertility. Welted thistle, Carduus crispus Linn., and its bioactive principles are attracting scientific interest in treating male reproductive dysfunctions. Here, the protective effects of apigenin isolated from C. crispus against oxidative damage induced by hydrogen peroxide (H2O2) and dysregulation in spermatogenesis associated parameters in testicular sperm cells was investigated. Cell viabilities, ROS scavenging effects, and spermatogenic associated molecular expressions were measured by MTT, DCF-DA, Western blotting and real-time RT-PCR, respectively. A single peak with 100% purity of apigenin was obtained in HPLC conditions. Apigenin treated alone (2.5, 5, 10 and 20 µM) did not exhibit cytotoxicity, but inhibited the H2O2-induced cellular damage and elevated ROS levels significantly (p < 0.05 at 5, 10 and 20 µM) and dose-dependently. Further, H2O2-induced down-regulation of antioxidant (glutathione S-transferases m5, glutathione peroxidase 4, and peroxiredoxin 3) and spermatogenesis-associated (nectin-2 and phosphorylated-cAMP response element-binding protein) molecular expression in GC-2spd cells were attenuated by apigenin at both protein and mRNA levels (p < 0.05). In conclusion, our study showed that apigenin isolated from C. crispus might be an effective agent that can protect ROS-induced testicular dysfunctions.
Collapse
Affiliation(s)
| | - Sung-Kwang Yoo
- Ottugi Food Co., Ltd., Anyang-si 14060, Gyeonggi-do, Korea;
| | - Bokyung Kim
- Department of Physiology and Immunology, School of Medicine, Konkuk University, Chungju 27381, Korea;
| | - Si-Kwan Kim
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea;
| | - Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea;
- Correspondence:
| |
Collapse
|
14
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
15
|
Montano L, Maugeri A, Volpe MG, Micali S, Mirone V, Mantovani A, Navarra M, Piscopo M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int J Mol Sci 2022; 23:ijms23031568. [PMID: 35163492 PMCID: PMC8836239 DOI: 10.3390/ijms23031568] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The role of environmental factors in influencing health status is well documented. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s entire defense system. Therefore, together with public health measures, evidence-based individual resilience measures are necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction and non-communicable diseases; this is especially relevant for workers occupationally exposed to pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is characterized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this review, we collected evidence from pre-clinical and clinical studies showing that the impairment of male fertility and gonadal development, as well as cancers of reproductive system, due to the exposure of organic and inorganic pollutants, may be counteracted by flavonoids.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL), 84124 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maria Grazia Volpe
- Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;
| | - Salvatore Micali
- Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Vincenzo Mirone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80126 Naples, Italy;
| | - Alberto Mantovani
- Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute, 00161 Roma, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence:
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
16
|
Li R, Zhu Y, Ma M, Lei M, Zhao Y, Liu T, Yu M, Zhao Y, Yu Z. Characterization of chemical constituents in Shuanghuanglian oral dosage forms by ultra-high performance liquid chromatography coupled with time-of-flight mass spectrometry. J Sep Sci 2021; 45:1020-1030. [PMID: 34967127 DOI: 10.1002/jssc.202100860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/06/2022]
Abstract
Shuanghuanglian is a common traditional Chinese medicine prescription. It is an herbal formula composed of Lonicerae Japonicae Flos, Scutellariae Radix and Forsythiae Fructus. A comprehensive understanding of Shuanghuanglian oral dosage forms components was obtained using a method based on ultra-high performance liquid chromatography coupled with time-of-flight mass spectrometry for the separation and characterization of Shuanghuanglian oral liquids, granules, soft capsules and effervescent tablets. A total of 358 components were chemically defined or tentatively identified, including flavonoids, caffeic acid derivatives, lignans, coumarins, iridoids, triterpenes and anthraquinones. The results will provide a basis for the general study of Shuanghuanglian and be meaningful for the composition identification of traditional Chinese medicine prescriptions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruiyun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yanru Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Mingyan Ma
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315000, P. R. China
| | - Min Lei
- SCIEX Analytical Instrument Trading Co., Ltd. Shanghai Office, Shanghai, 200000, P. R. China
| | - Yingchun Zhao
- Shenyang Institute for Food and Drug Control, Shenyang, 110034, P. R. China
| | - Ting Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Miao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
17
|
Tvrdá E, Benko F, Slanina T, du Plessis SS. The Role of Selected Natural Biomolecules in Sperm Production and Functionality. Molecules 2021; 26:5196. [PMID: 34500629 PMCID: PMC8434568 DOI: 10.3390/molecules26175196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence from in vivo as well as in vitro studies indicates that natural biomolecules may play important roles in the prevention or management of a wide array of chronic diseases. Furthermore, the use of natural compounds in the treatment of male sub- or infertility has been proposed as a potential alternative to conventional therapeutic options. As such, we aimed to evaluate the effects of selected natural biomolecules on the sperm production, structural integrity, and functional activity. At the same time, we reviewed their possible beneficial or adverse effects on male reproductive health. Using relevant keywords, a literature search was performed to collect currently available information regarding molecular mechanisms by which selected natural biomolecules exhibit their biological effects in the context of male reproductive dysfunction. Evidence gathered from clinical trials, in vitro experiments and in vivo studies suggest that the selected natural compounds affect key targets related to sperm mitochondrial metabolism and motion behavior, oxidative stress, inflammation, DNA integrity and cell death. The majority of reports emphasize on ameliorative, stimulating and protective effects of natural biomolecules on the sperm function. Nevertheless, possible adverse and toxic behavior of natural compounds has been indicated as well, pointing out to a possible dose-dependent impact of natural biomolecules on the sperm survival and functionality. As such, further research leading to a deeper understanding of the beneficial or adverse roles of natural compounds is necessary before these can be employed for the management of male reproductive dysfunction.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Filip Benko
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Tomáš Slanina
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| |
Collapse
|
18
|
Chen Y, Bi F, Sun Z. A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia. PLoS One 2021; 16:e0252906. [PMID: 34153045 PMCID: PMC8216565 DOI: 10.1371/journal.pone.0252906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022] Open
Abstract
Oligoasthenozoospermia is a complex disease caused by a variety of factors, and its incidence is increasing yearly worldwide. Yishen Tongluo formula (YSTLF), created by Professor Sun Zixue, has been used to treat oligoasthenozoospermia in clinical practice for several decades with a good therapeutic effect. However, the chemical and pharmacological profiles of YSTLF remain unclear and need to be elucidated. In this study, a network pharmacology approach was applied to explore the potential mechanisms of YSTLF in oligoasthenozoospermia treatment. All of the compounds in YSTLF were retrieved from the corresponding databases, and the bioactive ingredients were screened according to their oral bioavailability (OB) and drug-likeness (DL). The potential proteins of YSTLF were obtained from the traditional Chinese medicine systems pharmacology (TCMSP) database and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) database, while the potential genes of oligoasthenozoospermia were obtained from the GeneCards database and the DisGeNET database. The STRING database was used to construct an interaction network according to the common targets identified by the online tool Venny for YSTLF and oligoasthenozoospermia. The topological characteristics of nodes were visualized and analyzed through Cytoscape. Biological functions and significant pathways were determined and analyzed using the Gene Ontology (GO) knowledgebase, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Metascape. Finally, the disease-formula-compound-target-pathway network was constructed by Cytoscape. A total of 106 bioactive ingredients and 134 potential targets from YSTLF were associated with oligoasthenozoospermia or considered to be therapeutically relevant. Pathway analysis indicated that the PI3K/Akt, MAPK and apoptosis signaling pathways were significant pathways involved in oligoasthenozoospermia. In conclusion, the current study expounded the pharmacological actions and molecular mechanisms of YSTLF in treating oligoasthenozoospermia from a holistic viewpoint. The potential molecular mechanisms were closely related to antioxidative stress, antiapoptosis and anti-inflammation, with TNF, CCND1, ESR1, NFKBIA, NR3C1, MAPK8, and IL6 being possible targets. This network pharmacology prediction may offer a helpful tool to illustrate the molecular mechanisms of the Chinese herbal compound YSTLF in oligoasthenozoospermia treatment.
Collapse
Affiliation(s)
- Yangdi Chen
- Henan University of Chinese Medicine, Zhengzhou, Henan, P. R. China
| | - Fanggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Zixue Sun
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, P. R. China
- * E-mail:
| |
Collapse
|
19
|
Ferramosca A, Lorenzetti S, Di Giacomo M, Lunetti P, Murrieri F, Capobianco L, Dolce V, Coppola L, Zara V. Modulation of Human Sperm Mitochondrial Respiration Efficiency by Plant Polyphenols. Antioxidants (Basel) 2021; 10:antiox10020217. [PMID: 33540578 PMCID: PMC7912874 DOI: 10.3390/antiox10020217] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Plant bioactives, such as polyphenols, can differentially affect (positively or negatively) sperm quality, depending on their concentration. These molecules have been proposed as natural scavengers of reactive oxygen species (ROS) for male infertility treatment. However, few data are available about their effects on the molecular mechanisms related to sperm quality and, in particular, to sperm mitochondrial function. We investigated the effects of quercetin, naringenin, genistein, apigenin, luteolin, and resveratrol at the concentration of 0.1-1000 nM on mitochondrial respiration efficiency. Upon chemical exposure, spermatozoa were swollen in a hypotonic solution and used for polarographic assays of mitochondrial respiration. All tested compounds, except for apigenin, caused a significant increase in the mitochondrial respiration efficiency at the concentration of 0.1 nM, and a significant decrease starting from concentrations of 10 nM. The analysis of oxygen consumption rate in the active and in the resting state of mitochondrial respiration suggested different mechanisms by which the tested compounds modulate mitochondrial function. Therefore, by virtue of their ability to stimulate the respiration active state, quercetin, genistein, and luteolin were found to improve mitochondrial function in asthenozoospermic samples. Our results are relevant to the debate on the promises and perils of natural antioxidants in nutraceutical supplementation.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
- Correspondence: ; Tel.: +39-0832-298705; Fax: +39-0832-298626
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, I-00161 Rome, Italy;
| | - Mariangela Di Giacomo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Francesco Murrieri
- Biological Medical Center “Tecnomed”, I-73048 Nardò (LE), Italy; (F.M.); (L.C.)
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (Cosenza), Italy;
| | - Lamberto Coppola
- Biological Medical Center “Tecnomed”, I-73048 Nardò (LE), Italy; (F.M.); (L.C.)
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| |
Collapse
|