1
|
Oriola AO, Kar P. Naturally Occurring Xanthones and Their Biological Implications. Molecules 2024; 29:4241. [PMID: 39275090 PMCID: PMC11396865 DOI: 10.3390/molecules29174241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Xanthones are chemical substances in higher plants, marine organisms, and lower microorganisms. The most prevalent naturally occurring sources of xanthones are those belonging to the families Caryophyllaceae, Guttiferae, and Gentianaceae. Structurally, xanthones (9H xanthan-9-one) are heterocyclic compounds with oxygen and a γ-pyrone component. They are densely packed with a two-benzene ring structure. The carbons in xanthones are numbered from their nucleus and biosynthetic construct. They have mixed shikimate-acetate (higher plants) and acetate-malonate (lower organisms) biosynthetic origins, which influence their classification. Based on the level of oxidation of the C-ring, they are classified into monomers, dimers, and heterodimers. While based on the level of oxygenation or the type of ring residue, they can be categorized into mono-, di-, tri-, tetra-, penta- and hexa-oxygenated xanthones, bis-xanthones, prenylated and related xanthones, xanthonolignoids, and other miscellaneous xanthones. This structural diversity has made xanthones exhibit considerable biological properties as promising antioxidant, antifungal, antimicrobial, and anticancer agents. Structure-activity relationship studies suggest C-1, C-3, C-6, and C-8 as the key positions that influence the biological activity of xanthones. Furthermore, the presence of functional groups, such as prenyl, hydroxyl, glycosyl, furan, and pyran, at the key positions of xanthones, may contribute to their spectrum of biological activity. The unique chemical scaffolds of xanthones, their notable biological activities, and the structure-activity relationships of some lead molecules were discussed to identify lead molecules as possible drug candidates.
Collapse
Affiliation(s)
- Ayodeji O Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa
| | - Pallab Kar
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa
| |
Collapse
|
2
|
Phuong DTL, Van Phuong N, Le Tuan N, Cong NT, Hang NT, Thanh LN, Hue VT, Vuong NQ, Ha NTT, Popova M, Trusheva B, Bankova V. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Activities of Ethanol Extract and Chemical Constituents Isolated from Homotrigona apicalis Propolis-In Vitro and Molecular Docking Studies. Life (Basel) 2023; 13:1682. [PMID: 37629539 PMCID: PMC10455239 DOI: 10.3390/life13081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The chemical investigation of Homotrigona apicalis propolis collected in Binh Dinh province, Vietnam, led to the isolation of nine compounds, including four sesquiterpenes: spathulenol (1), 1αH,5βH-aromandendrane-4β,10α-diol (2), 1β,6α-dihydroxy-4(15)-eudesmene (3), and 1βH,5βH-aromandendrane-4α,10β-diol (4); three triterpenes: acetyl oleanolic acid (5), 3α-hydroxytirucalla-8,24-dien-21-oic acid (6), and ursolic acid (7); and two xanthones: cochinchinone A (8) and α-mangostin (9). Sesquiterpens 1-4 and triterpene 6 were isolated for the first time from stingless bee propolis. Plants in the Cratoxylum and Aglaia genus were suggested as resin sources of the propolis sample. In the antibacterial activity evaluation, the EtOH extract only showed moderate activity on S. aureus, while the isolated compounds 7-9 showed good antibacterial activity, with IC50 values of 0.56 to 17.33 µg/mL. The EtOH extract displayed selective cytotoxicity against the A-549 cancer cell line, with IC50 values of 22.82 ± 0.86 µg/mL, and the xanthones 8 and 9 exhibited good activity against the KB, HepG-2, and A-549 cancer cell lines, with IC50 values ranging from 7.55 ± 0.25 µg/mL to 29.27 ± 2.07 µg/mL. The cytotoxic effects of xanthones 8 and 9 were determined by the inhibition of the EGFR and HER2 pathways using a molecular docking study. Compounds 8 and 9 displayed strong binding affinity with EFGR and HER2, with values of -9.3 to -9.9 kcal/mol. Compounds 5, 8, and 9 showed potential α-glucosidase inhibitory activities, which were further confirmed by computational studies. The binding energies of compounds 5, 8, and 9 were lower than that of arcabose.
Collapse
Affiliation(s)
| | - Nguyen Van Phuong
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
| | - Nguyen Le Tuan
- Faculty of Natural Sciences, Quy Nhon University, Binh Dinh 55000, Vietnam;
| | - Nguyen Thanh Cong
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
- Department of Pharmacy, Dai Nam University, Hanoi 10000, Vietnam
| | - Nguyen Thu Hang
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
| | - Le Nguyen Thanh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Vu Thi Hue
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Nguyen Quoc Vuong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Nguyen Thi Thu Ha
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| |
Collapse
|
3
|
Goh LPW, Jawan R, Faik AAM, Gansau JA. A review of stingless bees' bioactivity in different parts of the world. J Med Life 2023; 16:16-21. [PMID: 36873121 PMCID: PMC9979177 DOI: 10.25122/jml-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/30/2022] [Indexed: 03/07/2023] Open
Abstract
Stingless bees, also known as meliponines, live in beehives. However, reports on the distribution of stingless bees are scattered, resulting in a lack of precision. Honey and propolis are the main components that can be harvested from their beehive, with a great commercial value of up to 610 million USD. Despite the enormous potential profits, discrepancies in their bioactivities have been observed worldwide, leading to a lack of confidence. Therefore, this review provided oversight on the potential of stingless bee products and highlighted the differences between stingless bees in Asia, Australia, Africa, and America. The bioactivity of stingless bee products is diverse and exhibits great potential as an antimicrobial agent or in various diseases such as diabetes, cardiovascular disease, cancers, and oral problems.
Collapse
Affiliation(s)
- Lucky Poh Wah Goh
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Roslina Jawan
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ainol Azifa Mohd Faik
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jualang Azlan Gansau
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
4
|
Popova M, Trusheva B, Chimshirova R, Antonova D, Gechovska K, Thanh LN, Lien NTP, Phuong DTL, Bankova V. Chemical Profile and Antioxidant Capacity of Propolis from Tetragonula, Lepidotrigona, Lisotrigona and Homotrigona Stingless Bee Species in Vietnam. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227834. [PMID: 36431935 PMCID: PMC9696581 DOI: 10.3390/molecules27227834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
The present study aimed to analyze and compare the chemical profile and antioxidant capacity of propolis from different bee species and different regions. The chemical profiles of propolis from six stingless bee species (Tetragonula iridipennis, T. laeviceps, Lepidotrigona terminata, L. ventralis, Lisotrigona carpenteri and Homotrigona apicalis) collected from a total of eight locations in Vietnam were investigated by gas chromatography-mass spectrometry (GC-MS). More than 70 compounds were identified, amongst which phenolic lipids (cardanols, resorcinols and anacardic acids), aromatic acids, triterpenes and xanthones. Taxonomic markers for Mangifera indica (phenolic lipids and cycloartane triterpenes) were detected in propolis from bees of the genera Tetragonula and Lepidotrigona, although in different amounts, whereas propolis from H. apicalis was characterized by triterpenes of the amyrine type, typical of dipterocarp trees. A clear discrimination between both groups was observed by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Propolis from Tetragonula and Lepidotrigona spp. and from Lisotrigona carpenteri, which is rich in xanthones, possesses higher radical scavenging and ferric-reducing capacity than that from H. apicalis. Propolis produced by all six stingless bee species in Vietnam was analyzed for the first time. In addition, this is the first report on L. carpenteri propolis.
Collapse
Affiliation(s)
- Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
- Correspondence:
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Ralitsa Chimshirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Daniela Antonova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Kamelia Gechovska
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Le Nguyen Thanh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
| | - Nguyen Thi Phuong Lien
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
| | | | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: A systematic scoping review of the experimental evidence. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
6
|
Pereira FAN, Barboza JR, Vasconcelos CC, Lopes AJO, Ribeiro MNDS. Use of Stingless Bee Propolis and Geopropolis against Cancer-A Literature Review of Preclinical Studies. Pharmaceuticals (Basel) 2021; 14:1161. [PMID: 34832943 PMCID: PMC8623341 DOI: 10.3390/ph14111161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the major maladies affecting humankind and remains one of the leading causes of death worldwide. The investigation of the biological activities of stingless bee products, especially propolis and geopropolis, has revealed promising therapeutic properties, especially in the research on new antineoplastic agents. This literature review of preclinical trials, involving biological assays of antitumor activity and identification of the chemical composition of propolis and geopropolis of stingless bee species, describes the cytotoxicity in tumor lineages (breast, lung, ovarian, liver, mouth, pharynx, larynx, colon, stomach, colorectal, cervix, kidney, prostate, melanoma, human glioblastoma, canine osteosarcoma, erythroleukemia, human chronic myelocytic leukemia, and human promyelocytic leukemia) of propolis and geopropolis of 33 species of stingless bees. The chemical composition of propolis and geopropolis was identified, indicating that these belong to the chemical classes of phenolic acids, flavonoids, coumarins, benzophenones, anthraquinones, alkaloids, terpenes, steroids, saponins, fatty acids, and carbohydrates and are possibly responsible for the cytotoxicity in tumor cells. Apoptosis was one of the main mechanisms of cytotoxicity of extracts and substances isolated from stingless bee products. Although the results found are encouraging, other preclinical studies and clinical trials are essential for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Francisco Assis Nascimento Pereira
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (J.R.B.); (C.C.V.)
| | | | | | - Alberto Jorge Oliveira Lopes
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (J.R.B.); (C.C.V.)
| | - Maria Nilce de Sousa Ribeiro
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (J.R.B.); (C.C.V.)
| |
Collapse
|
7
|
Kurniawan YS, Priyangga KTA, Jumina, Pranowo HD, Sholikhah EN, Zulkarnain AK, Fatimi HA, Julianus J. An Update on the Anticancer Activity of Xanthone Derivatives: A Review. Pharmaceuticals (Basel) 2021; 14:1144. [PMID: 34832926 PMCID: PMC8625896 DOI: 10.3390/ph14111144] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
The annual number of cancer deaths continues increasing every day; thus, it is urgent to search for and find active, selective, and efficient anticancer drugs as soon as possible. Among the available anticancer drugs, almost all of them contain heterocyclic moiety in their chemical structure. Xanthone is a heterocyclic compound with a dibenzo-γ-pyrone framework and well-known to have "privileged structures" for anticancer activities against several cancer cell lines. The wide anticancer activity of xanthones is produced by caspase activation, RNA binding, DNA cross-linking, as well as P-gp, kinase, aromatase, and topoisomerase inhibition. This anticancer activity depends on the type, number, and position of the attached functional groups in the xanthone skeleton. This review discusses the recent advances in the anticancer activity of xanthone derivatives, both from natural products isolation and synthesis methods, as the anticancer agent through in vitro, in vivo, and clinical assays.
Collapse
Affiliation(s)
- Yehezkiel Steven Kurniawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Krisfian Tata Aneka Priyangga
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Harno Dwi Pranowo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Abdul Karim Zulkarnain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Hana Anisa Fatimi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Jeffry Julianus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta 55282, Indonesia;
| |
Collapse
|