1
|
Zhao P, Qiu J, Pan C, Tang Y, Chen M, Song H, Yang J, Hao X. Potential roles and molecular mechanisms of bioactive ingredients in Curcumae Rhizoma against breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154810. [PMID: 37075623 DOI: 10.1016/j.phymed.2023.154810] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Breast cancer is the most prevalent cancer worldwide, with high morbidity and mortality. Despite great advances in the therapeutic strategies, the survival rate in the past decades of patients with breast cancer remains unsatisfactory. Growing evidence has demonstrated that Curcumae Rhizoma, called Ezhu in Chinese, showed various pharmacological properties, including anti-bacterial, anti-oxidant, anti-inflammatory and anti-tumor activities. It has been widely used in Chinese medicine to treat many types of human cancer. PURPOSE To comprehensively summarize and analyze the effects of active substances in Curcumae Rhizoma on breast cancer malignant phenotypes and the underlying mechanisms, as well as discuss its medicinal value and future perspectives. METHOD We used "Curcumae Rhizoma" or the name of crude extracts and bioactive components in Curcumae Rhizoma in combination with "breast cancer" as key words. Studies focusing on their anti-breast cancer activities and mechanisms of action were extracted from Pubmed, Web of Science and CNKI databases up to October 2022. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS Crude extracts and 7 main bioactive phytochemicals (curcumol, β-elemene, furanodiene, furanodienone, germacrone, curdione and curcumin) isolated from Curcumae Rhizoma have shown many anti-breast cancer pharmacological properties, including inhibiting cell proliferation, migration, invasion and stemness, reversing chemoresistance, and inducing cell apoptosis, cycle arrest and ferroptosis. The mechanisms of action were involved in regulating MAPK, PI3K/AKT and NF-κB signaling pathways. In vivo and clinical studies demonstrated that these compounds exhibited high anti-tumor efficacy and safety against breast cancer. CONCLUSION These findings provide strong evidence that Curcumae Rhizoma acts as a rich source of phytochemicals and has robust anti-breast cancer properties.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jianfei Qiu
- Key Laboratory of Modern Pathogen Biology and Characteristics, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang & Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China.
| |
Collapse
|
2
|
Yu J, Chen W, Zhao L, Yue T, Yang W, Wang X. Efficient separation of anti-inflammatory isolates from Polygonti rhizome by three different modes of high-speed counter-current chromatography. J Sep Sci 2022; 45:4012-4022. [PMID: 36136041 DOI: 10.1002/jssc.202200545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022]
Abstract
Successful isolation of 15 compounds from Polygonti rhizome was obtained by an efficient technique combined with macroporous resin column chromatography pretreatment and three different modes of high-speed counter-current chromatography for the first time. For the pretreatment, AB-8 resin was applied to remove the polysaccharides and enrich four different parts (samples I, II, III, and IV) by polarities. For the separation, sample I was separated by pH-zone-refining counter-current chromatography and seven cycle recycling mode high-speed counter-current chromatography, yielding four alkaloids (1--4); samples II-IV were further separated by the conventional high-speed counter-current chromatography, yielding seven flavonoids (5-10, 12), one steroid saponin (11), and three terpenoids (13-15). Finally, the isolates were assayed for their anti-inflammatory activities against nitric oxide production with compounds 5, 9-10, 13 showing significant anti-inflammatory activities, IC50 values which were 13.0, 16.2, 17.1, and 14.7 μM, respectively, while others showing moderate and weak anti-inflammatory activities, respectively.
Collapse
Affiliation(s)
- Jinqian Yu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Wenxiu Chen
- Weifang Engineering Vocational College, Weifang, P. R. China
| | - Lei Zhao
- Chemical Technology Research Institute of Shandong, Qingdao University of Science and Technology, Jinan, P. R. China
| | - Tao Yue
- Chemical Technology Research Institute of Shandong, Qingdao University of Science and Technology, Jinan, P. R. China
| | - Wencui Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
3
|
Placovinane: 1″β-Ethoxy-6,4′-dimethoxy-3″,3″-dimethyl-1″,2″-dihydropyranoisoflavone, a New Isoflavone Derivative. MOLBANK 2022. [DOI: 10.3390/m1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Isoflavonoids possess a 3-phenylchroman skeleton and are the biologically active secondary metabolites of various plants that are used for different health promoting and restoring effects through a variety of mechanisms. Chromatographic separation of the n-hexane extract from the stems of Placolobium vietnamense led to the isolation of a new isoflavone derivative, placovinane (1), together with four known compounds (2–5). The structures of isolated compounds were identified from their spectroscopic data and by comparison with the literature. All isolated compounds were evaluated for their α-glucosidase inhibition. They all exhibited potent α-glucosidase inhibition with IC50 values ranging from 11.0 to 87.3 µM, which was significantly less than the positive control acarbose (IC50 179 µM). The cytotoxicity of 1 was evaluated against KB, Hep G2, and MCF7 cell lines, and displayed weak cytotoxicity toward KB and Hep G2 cell lines, with the IC50 values of 89.6 and 93.8 μM, respectively.
Collapse
|
4
|
New Benzil and Isoflavone Derivatives with Cytotoxic and NO Production Inhibitory Activities from Placolobium vietnamense. Molecules 2022; 27:molecules27144624. [PMID: 35889499 PMCID: PMC9317696 DOI: 10.3390/molecules27144624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
The phytochemical investigation of Placolobium vietnamense stems led to the isolation of a new isoflavone derivative (1) and three new benzil derivatives (2–4), together with four known pyranoisoflavones (5–8). The structures of all isolated compounds were determined on the basis of extensive spectroscopic analyses, including NMR and HRMS spectral data, as well as comparison of their spectroscopic data with those reported in the literature. The cytotoxicity of all isolated compounds was assessed against the human liver hepatocellular carcinoma (Hep G2) cell line, and compound 1 displayed the most significant cytotoxicity with an IC50 value of 8.0 μM. Furthermore, all isolated compounds were also tested for their inhibitory activity against NO production in RAW 264.7 macrophages. Of these, compound 1 exhibited the strongest inhibitory efficacy against the LPS-induced NO production with the IC50 value of 13.7 μM.
Collapse
|
5
|
New Flavonoid Derivatives from Melodorum fruticosum and Their α-Glucosidase Inhibitory and Cytotoxic Activities. Molecules 2022; 27:molecules27134023. [PMID: 35807266 PMCID: PMC9268484 DOI: 10.3390/molecules27134023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Three new flavonoid derivatives, melodorones A–C (1–3), together with four known compounds, tectochrysin (4), chrysin (5), onysilin (6), and pinocembrin (7), were isolated from the stem bark of Melodorum fruticosum. Their structures were determined on the basis of extensive spectroscopic methods, including NMR and HRESIMS, and by comparison with the literature. Compounds 1–7 were evaluated for their in vitro α-glucosidase inhibition and cytotoxicity against KB, Hep G2, and MCF7 cell lines. Among them, compound 1 exhibited the best activity against α-glucosidase and was superior to the positive control with an IC50 value of 2.59 μM. On the other hand, compound 1 showed moderate cytotoxicity toward KB, Hep G2, and MCF7 cell lines with the IC50 values of 23.5, 19.8, and 23.7 μM, respectively. These findings provided new evidence that the stem bark of M. fruticosum is a source of bioactive flavonoid derivatives that are highly valuable for medicinal development.
Collapse
|