1
|
Bao Z, Chen B, Yu K, Wei Y, Liang X, Yao H, Liao X, Xie W, Yin K. Microbiome dynamics and functional profiles in deep-sea wood-fall micro-ecosystem: insights into drive pattern of community assembly, biogeochemical processes, and lignocellulose degradation. Appl Environ Microbiol 2025; 91:e0216524. [PMID: 39641605 PMCID: PMC11784029 DOI: 10.1128/aem.02165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Wood-fall micro-ecosystems contribute to biogeochemical processes in the oligotrophic deep ocean. However, the community assembly processes and biogeochemical functions of microbiomes in wood fall remain unclear. This study investigated the diversity, community structure, assembly processes, and functional profiles of bacteria and fungi in a deep-sea wood fall from the South China Sea using physicochemical indices, amplicon sequencing, and metagenomics. The results showed that distinct wood-fall contact surfaces exhibit habitat heterogeneity. The bacterial community of all contact surfaces and the fungal community of seawater contact surface (SWCS) were affected by homogeneous selection. In SWCS and transition region (TR), bacterial communities were influenced by dispersal limitation, whereas fungal communities were affected by homogenizing dispersal. The Venn diagram visualization revealed that the shared fungal community between SWCS and TR was dominated by Aspergillaceae. Additionally, the bacterial community demonstrated a higher genetic potential for sulfur, nitrogen, and methane metabolism than fungi. The sediment contact surface enriched modules were associated with dissimilatory sulfate reduction and methanogenesis, whereas the modules related to nitrate reduction exhibited enrichment characteristics in TR. Moreover, fungi showed a stronger potential for lignocellulase production compared to bacteria, with Microascaceae and Nectriaceae identified as potential contributors to lignocellulose degradation. These results indicate that environmental filtering and organism exchange levels regulated the microbial community assembly of wood fall. The biogeochemical cycling of sulfur, nitrogen, and methane was mainly driven by the bacterial community. Nevertheless, the terrestrial fungi Microascaceae and Nectriaceae might degrade lignocellulose via the combined action of multiple lignocellulases.IMPORTANCEThe presence and activity of microbial communities may play a crucial role in the biogeochemical cycle of deep-sea wood-fall micro-ecosystems. Previous studies on wood falls have focused on the microbiome diversity, community composition, and environmental impact, while few have investigated wood-fall micro-ecosystems by distinguishing among distinct contact surfaces. Our study investigated the microbiome dynamics and functional profiles of bacteria and fungi among distinct wood-fall contact surfaces. We found that the microbiome community assembly was regulated by environmental filtering and organism exchange levels. Bacteria drive the biogeochemical cycling of sulfur, nitrogen, and methane in wood fall through diverse metabolic pathways, whereas fungi are crucial for lignocellulose degradation. Ultimately, this study provides new insights into the driving pattern of community assembly, biogeochemical processes, and lignocellulose degradation in the microbiomes of deep-sea wood-fall micro-ecosystems, enhancing our comprehension of the ecological impacts of organic falls on deep-sea oligotrophic environments.
Collapse
Affiliation(s)
- Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xinyue Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Huanting Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xianrun Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
2
|
Singh S, Kumar S, Singh AK, Varshney M, Roy S. Exploring Marine Alkaloids: A Natural Approach to Cancer Treatment. Curr Pharm Biotechnol 2025; 26:63-79. [PMID: 38918975 DOI: 10.2174/0113892010316791240611093022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Cancer is one of the most complicated and prevalent diseases in the world, and its incidence is growing worldwide. Natural products containing pharmacological activity are widely used in the pharmaceutical industry, especially in anticancer drugs, due to their diverse structures and distinctive functional groups that inspire new drug results by means of synthetic chemistry. Terrestrial medicinal plants have traditionally been the primary source for developing natural products (NPs). However, over the past thirty years, marine organisms such as invertebrates, plants, algae, and bacteria have revealed many new pharmaceutical compounds known as marine NPs. This field constantly evolves as a discipline in molecular targeted drug discovery, incorporating advanced screening tools that have revolutionised and become integral to modern antitumor research. This review discusses recent studies on new natural anticancer alkaloids obtained from marine organisms. The paper illustrates the structure and origin of marine alkaloids and demonstrates the cytotoxic action of new alkaloids from several structural families and their synthetic analogs. The most recent findings about the potential or development of some of them as novel medications, together with the status of our understanding of their current mechanisms of action, are also compiled.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Surendra Kumar
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Amit Kumar Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Mayuri Varshney
- Maya Institute of Pharmacy, Hathras, Uttar Pradesh, 204101, India
| | - Suchismita Roy
- Disto Pharmaceuticals Pvt Ltd Unit 2, 209/A, Phase-3 IDA, Pashamaylaram Patancheru, Sangareddy, district, Hyderabad, Telangana, 502307, India
| |
Collapse
|
3
|
Shi J, Yu M, Chen W, Chen S, Qiu Y, Xu Z, Wang Y, Huang G, Zheng C. Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species. Mar Drugs 2024; 22:321. [PMID: 39057430 PMCID: PMC11277891 DOI: 10.3390/md22070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Nitrogen heterocycles have drawn considerable attention because of their structurally novel and significant biological activities. Marine-derived fungi, especially the Aspergillus species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This review prioritizes the structural diversity and biological activities of nitrogen heterocycles that are produced by marine-derived Aspergillus species from January 2019 to January 2024, and their relevant biological activities. A total of 306 new nitrogen heterocycles, including seven major categories-indole alkaloids, diketopiperazine alkaloids, quinazoline alkaloids, isoquinoline alkaloids pyrrolidine alkaloids, cyclopeptide alkaloids, and other heterocyclic alkaloids-are presented in this review. Among these nitrogen heterocycles, 52 compounds had novel skeleton structures. Remarkably, 103 compounds showed various biological activities, such as cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities, and 21 compounds showed potent activities. This paper will guide further investigations into the structural diversity and biological activities of nitrogen heterocycles derived from the Aspergillus species and their potential contributions to the future development of new natural drug products in the medicinal and agricultural fields.
Collapse
Affiliation(s)
- Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Weikang Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Zhenyang Xu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yi Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
4
|
Wang P, Huang X, Jiang C, Yang R, Wu J, Liu Y, Feng S, Wang T. Antibacterial properties of natural products from marine fungi reported between 2012 and 2023: a review. Arch Pharm Res 2024; 47:505-537. [PMID: 38850495 DOI: 10.1007/s12272-024-01500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/04/2024] [Indexed: 06/10/2024]
Abstract
The oceans are rich in diverse microorganisms, animals, and plants. This vast biological complexity is a major source of unique secondary metabolites. In particular, marine fungi are a promising source of compounds with unique structures and potent antibacterial properties. Over the last decade, substantial progress has been made to identify these valuable antibacterial agents. This review summarizes the chemical structures and antibacterial activities of 223 compounds identified between 2012 and 2023. These compounds, effective against various bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus, exhibit strong potential as antibacterial therapeutics. The review also highlights the relevant challenges in transitioning from drug discovery to product commercialization. Emerging technologies such as metagenomics and synthetic biology are proposed as viable solutions. This paper sets the stage for further research on antibacterial compounds derived from marine fungi and advocates a multidisciplinary approach to combat drug-resistant bacteria.
Collapse
Affiliation(s)
- Ping Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiaomei Huang
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen, 361100, Fujian, China
| | - Chenyuan Jiang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Rushuang Yang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jialing Wu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yinghui Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shuangshuang Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
5
|
Zhang W, Jiang X, Wang M, Zhang Z, Wang N. Origin of the 6/5/6/5 Tetracyclic Cyclopiazonic Acids. Mar Drugs 2024; 22:74. [PMID: 38393045 PMCID: PMC10890092 DOI: 10.3390/md22020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The natural product α-cyclopiazonic acid (α-CPA) is a very potent Ca2+-ATPase inhibitor. The CPA family of compounds comprise over 80 chemical entities with at least five distinct skeletons. While α-CPA features a canonical 6/5/6/5/5 skeleton, the 6/5/6/5 skeleton is the most prevalent among the CPA family. However, the origin of the unique tetracyclic skeleton remains unknown. The 6/5/6/5-type CPAs may derive from a precursor of acetoacetyl-l-tryptophan (AATrp) generated from a hypothetic thioesterase-like pathway. Alternatively, cleavage of the tetramic acid ring would also result in the formation of the 6/5/6/5 scaffold. Aspergillus oryzae HMP-F28 is a marine sponge-associated filamentous fungus known to produce CPAs that act as primary neurotoxins. To elucidate the origin of this subfamily of CPAs, we performed homologous recombination and genetic engineering experiments on strain HMP-F28. Our results are supportive of the ring cleavage pathway through which the tetracyclic 6/5/6/5-type CPAs are generated from 6/5/6/5/5-type pentacyclic CPAs.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xuejian Jiang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Minjun Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhizhen Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Nan Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
6
|
Li H, Fu Y, Song F. Marine Aspergillus: A Treasure Trove of Antimicrobial Compounds. Mar Drugs 2023; 21:md21050277. [PMID: 37233471 DOI: 10.3390/md21050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Secondary metabolites from marine organisms are diverse in structure and function. Marine Aspergillus is an important source of bioactive natural products. We reviewed the structures and antimicrobial activities of compounds isolated from different marine Aspergillus over the past two years (January 2021-March 2023). Ninety-eight compounds derived from Aspergillus species were described. The chemical diversity and antimicrobial activities of these metabolites will provide a large number of promising lead compounds for the development of antimicrobial agents.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yanqi Fu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Liang Y, Liao H, Chen X, Wang Q, Li Q, Shen Y, Zheng Y, Li XN, Zhu H, Li D, Sun W, Chen C, Zhang Y. Pegriseofamines A-E: Five cyclopiazonic acid related indole alkaloids from the fungus Penicillium griseofulvum. Bioorg Chem 2023; 136:106553. [PMID: 37119783 DOI: 10.1016/j.bioorg.2023.106553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
Five new cyclopiazonic acid related indole alkaloids, pegriseofamines A-E (1-5), were isolated from the fungus Penicillium griseofulvum. Their structures and absolute configurations were determined by NMR, HRESIMS, quantum-chemical calculation, and X-ray diffraction experiments. Among them, pegriseofamine A (1) possesses an undescribed 6/5/6/7 tetracyclic ring system generated by the fusion of an azepine and an indole unit via a cyclohexane, and the postulated biosynthetic origin of 1 was discussed. Compound 4 could relieve liver injury and prevent hepatocyte apoptosis in ConA-induced autoimmune liver disease.
Collapse
Affiliation(s)
- Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Xuanni Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qiwei Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
8
|
Wang HS, Zhang LF, Liu MX, Gu XJ, Li MF, Zheng CP, Wang K, Xiao D, Zhou M, Li XM, Hu QF, Li YK. Two New CPA-Type Indole Alkaloids from the Tobacco-Derived Fungus Aspergillus versicolor and the Anti-TMV Activity. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Two New CPA-Type Indole Alkaloids from the Tobacco-Derived Fungus Aspergillus oryzae and Anti-TMV Activity. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Aspergillines K and L, Two New Anti-TMV Indole Alkaloids from Fungus Aspergillus versicolor Derived from Tobacco. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Yang GY, Dai JM, Mi QL, Li ZJ, Li XM, Zhang JD, Wang J, Li YK, Wang WG, Zhou M, Hu QF. Cyclopiazonic acid type indole alkaloids from Nicotiana tabacum-derived fungus Aspergillus versicolor and their anti-tobacco mosaic virus activities. PHYTOCHEMISTRY 2022; 198:113137. [PMID: 35240133 DOI: 10.1016/j.phytochem.2022.113137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Indole alkaloids have attracted widespread attention of chemists and biologists. Therefore, the aim of this study is to screen more bioactivities indole alkaloids from the microorganisms. In this study, five undescribed CPA-type indole alkaloids, aspergillines F-J, and three known CPA-type indole alkaloids, aspergilline A, aspergilline C, and cyclopiamide E, were obtained from the Nicotiana tabacum-derived fungus Aspergillus versicolor. Notably, aspergillines F and G represent the first examples of indole alkaloids with a benzo[cd]indol-2(1H)-one skeleton, and aspergilline J is also the firstly obtained indole alkaloids bearing a N-1-(2-(1H-imidazole-5-yl)ethyl) moiety. Aspergillines F-J and cyclopiamide E were tested for their anti-TMV activities, and the results revealed that aspergillines G and J exhibited obvious anti-TMV activities with inhibition rates of 41.2 and 56.8% at the concentration of 20 μM, respectively. These rates are high than that of positive control (with inhibition rate of 32.5%). In addition, the molecular docking studies for the isolated CPA-type indole alkaloids may also reveal that the benzo[cd]indol-2(1H)-one substructure is the fundamental for anti-TMV activity and the oxygen-containing substituent groups at C-19 also increases the inhibitory activity. This study of structure-activity relationship is helpful to find new anti-TMV activity inhibitors.
Collapse
Affiliation(s)
- Guang-Yu Yang
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China
| | - Jia-Meng Dai
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Qi-Li Mi
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Zhen-Jie Li
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Xue-Mei Li
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Jian-Duo Zhang
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Jin Wang
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China
| | - Yin-Ke Li
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China
| | - Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China
| | - Min Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China.
| | - Qiu-Fen Hu
- Yunnan Key Laboratory of Tobacco Chemistry, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China.
| |
Collapse
|
12
|
Structurally Diverse Polycyclic Salicylaldehyde Derivative Enantiomers from a Marine-Derived Fungus Eurotium sp. SCSIO F452. Mar Drugs 2021; 19:md19100543. [PMID: 34677441 PMCID: PMC8538301 DOI: 10.3390/md19100543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
To enlarge the chemical diversity of Eurotium sp. SCSIO F452, a talented marine-derived fungus, we further investigated its chemical constituents from a large-scale fermentation with modified culture. Four pairs of new salicylaldehyde derivative enantiomers, euroticins F-I (1–4), as well as a known one eurotirumin (5) were isolated and characterized. Compound 1 features an unprecedented constructed 6/6/6/5 tetracyclic structures, while 2 and 3 represent two new types of 6/6/5 scaffolds. Their structures were established by comprehensive spectroscopic analyses, X-ray diffraction, 13C NMR, and electronic circular dichroism calculations. Selected compounds showed significant inhibitory activity against α-glucosidase and moderate cytotoxic activities against SF-268, MCF-7, HepG2, and A549 cell lines.
Collapse
|