1
|
Xu ZY, Hu Z, La CS, Du NN, Bai M, Hao J, Lin B, Huang XX, Song SJ. Hydroxyl-Amide Alkaloids from Pepper Roots: Potential Sources of Natural Antioxidants and Tyrosinase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19800-19811. [PMID: 39116367 DOI: 10.1021/acs.jafc.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Pepper (Piper nigrum L.) is a widely used spice plant known for its fruits and roots, which serve as flavor enhancers in culinary applications and hold significant economic value. Despite the popularity of pepper fruits, their roots remain relatively understudied, with limited research conducted on their bioactive components. This study focused on discovering and separating the primary bioactive amide alkaloids found in pepper roots. The process involved using the antioxidant activity of crude fractions and the Global Natural Products Social Molecular Networking analysis platform. The process led to the discovery of 23 previously unknown hydroxyl-amide alkaloids. Notably, compounds 11, 12, and 14 showed excellent antioxidant activity, while compound 11 exhibited significant inhibitory effects on mushroom tyrosinase. Theoretical exploration of enzyme-ligand interactions was conducted through molecular docking and molecular dynamics simulation. The findings of this study highlight the potential of hydroxyl-amide alkaloids as antioxidant products and natural food preservatives in the pharmaceutical and food cosmetic industries.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chang-Sheng La
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ning-Ning Du
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming Bai
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jinle Hao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
2
|
Rao QR, Rao JB, Zhao M. The specialized sesquiterpenoids produced by the genus Elephantopus L.: Chemistry, biological activities and structure-activity relationship exploration. PHYTOCHEMISTRY 2024; 221:114041. [PMID: 38442848 DOI: 10.1016/j.phytochem.2024.114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The genus Elephantopus L. is a valuable resource rich in sesquiterpenoids with structural diversity and various bioactivities, showing great potential for applications in medicinal field and biological industry. Up to now, over 129 sesquiterpenoids have been isolated and identified from this plant genus, including 114 germacrane-type, 7 guaianolide-type, 5 eudesmane-type, 1 elemanolide-type, and 2 bis-sesquiterpenoids. These sesquiterpenoids were reported to show a diverse range of pharmacological properties, including cytotoxic, anti-tumor, anti-inflammatory, antimicrobial, and antiprotozoal. Consequently, some of them were identified as active scaffolds in the design and development of drugs. Considering that there is currently no overview available that covers the sesquiterpenoids and their biological activities in the Elephantopus genus, this article aims to comprehensively review the chemical structures, biosynthetic pathways, pharmacological properties, and structure-activity relationship of sesquiterpenoids found in the Elephantopus genus, which will establish a theoretical framework that can guide further research and exploration of sesquiterpenoids from Elephantopus plants as promising therapeutic agents.
Collapse
Affiliation(s)
- Qian-Ru Rao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China; Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jian-Bo Rao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Min Zhao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
4
|
Shi WY, Bai M, Zhang X, Qin SY, Yao GD, Lin B, Song SJ, Huang XX. Diverse guaiane-type sesquiterpenoids from the root of Daphne genkwa based on molecular networking. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Bai M, Xu W, Li Q, Liu DF, Lv TM, Du NN, Yao GD, Lin B, Song SJ, Huang XX. Highly Oxidized Germacranolides from Elephantopus tomentosus and the Configurational Revision of Some Previously Reported Analogues. JOURNAL OF NATURAL PRODUCTS 2022; 85:2433-2444. [PMID: 36223633 DOI: 10.1021/acs.jnatprod.2c00630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Highly oxidized germacranolides are mainly found in the genus Elephantopus, contain a characteristic ten-membered molecular core that is highly flexible, and exhibit potential cytotoxic properties. However, their configurations were assigned ambiguously in previous reports due to spectroscopic observation of macrocyclic systems. Herein, 17 highly oxidized germacranolides, including 12 new germacranolides (1-12), were isolated from Elephantopus tomentosus. Their structures were characterized by spectroscopic data analysis combined with X-ray crystallography and ECD calculations, and it was possible to propose configurational revisions of five previously reported analogues (13-17). Cytotoxic activities for 1-17 against two hepatocellular carcinoma cell lines (HepG2 and Hep3B) were tested, and compounds 1-10 and 13-16 generated IC50 values of 2.2-9.8 μM. Furthermore, the observed cytotoxic activity of 1 was determined as being mediated by inducing the apoptosis of HepG2 and Hep3B cells via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - De-Feng Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Tian-Ming Lv
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|