1
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
2
|
Han Y, Quan K, Chen J, Qiu H. Advances and prospects on acid phosphatase biosensor. Biosens Bioelectron 2020; 170:112671. [DOI: 10.1016/j.bios.2020.112671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 02/01/2023]
|
3
|
Liu Q, Aouidat F, Sacco P, Marsich E, Djaker N, Spadavecchia J. Galectin-1 protein modified gold (III)-PEGylated complex-nanoparticles: Proof of concept of alternative probe in colorimetric glucose detection. Colloids Surf B Biointerfaces 2019; 185:110588. [PMID: 31654887 DOI: 10.1016/j.colsurfb.2019.110588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 01/06/2023]
Abstract
Galectins (Gal) are a family of dimeric lectins, composed by two galactoside-binding sites implicated in the regulation of cancer progression and immune responses. In this study, we report for the first time the synthesis and the physical-chemical characterization of galectin-1-complex-gold COOH-terminated polyethlenglicole (PEG)-coated NPs (Gal-1 IN PEG-AuNPs) and their ability to recognize glucose in an aqueous solution with a concentration varying from 10 mM to 100 pM. The chemical protocol consistsof three steps: (i) complexation between galectin-1Gal-1 and tetrachloroauric acid (HAuCl4) to form gold-protein grains; (ii) staking process of COOH-terminated polyethlenglicole molecules (PEG) onto Gal-1-Au complex and (iii) reduction of hybrid metal ions to obtain a colloidal stable solution. During the complexation, the spectral signatures related to the Gal-1 orientation on the gold surface have been found to change due to its protonation state. The effective glucose monitoring was detected by UV-vis, Raman spectroscopy and Transmission Electron Microscopy (TEM). Overall, we observed that the interaction is strongly dependent on the Gal-1 conformation at the surface of gold nanoparticles.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France; Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fatima Aouidat
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Nadia Djaker
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France; Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|