1
|
Liu L, Xie S, Zhu Y, Zhao H, Zhang B. Sodium carboxymethyl celluloses as a cryoprotectant for survival improvement of lactic acid bacterial strains subjected to freeze-drying. Int J Biol Macromol 2024; 260:129468. [PMID: 38242412 DOI: 10.1016/j.ijbiomac.2024.129468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
This study investigated the possibility of sodium carboxymethyl celluloses (Na-CMC) in protecting the viability of lactic acid bacteria (LAB) against freeze-drying stress. 1 % concentration of Na-CMC with a 0.7 substitution degree and viscosity of 1500 to 3100 (MPa.s) was found to protect Lactobacillus delbrueckii subsp. bulgaricus CICC 6098 best, giving a high survival rate of 23.19 ± 0.88 %, high key enzymatic activities, and 28-day storage stability. Additionally, Na-CMC as cryoprotectant provided good protection for other 7 lactic acid bacterial strains subjected to freeze-drying. The highest survival rate was 48.79 ± 0.20 U/mg for β-GAL, 2.75 ± 0.15 U/mg for Na+-K+-ATPase, and 2.73 ± 0.41 U/mg for Ca2+-Mg2+-ATPase as 48.48 ± 0.46 % for freeze-dried Pediococcus pentosaceus CICC 22228. It was Interesting to note that the presence of Na-CMC reduced the freezable water content of the lyophilized powders containing the tested strains through its hydroxyl group, and supplied micro-holes and fibers for protecting the integrated structure of LAB cell membrane and wall against the freezing damage. It is clear that addition of Na-CMC should be promising as a new cryoprotective agent available for processing the lyophilized stater cultures of LAB strains.
Collapse
Affiliation(s)
- Lu Liu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Shanshan Xie
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yadong Zhu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Khurajog B, Disastra Y, Lawwyne LD, Sirichokchatchawan W, Niyomtham W, Yindee J, Hampson DJ, Prapasarakul N. Selection and evaluation of lactic acid bacteria from chicken feces in Thailand as potential probiotics. PeerJ 2023; 11:e16637. [PMID: 38107571 PMCID: PMC10725671 DOI: 10.7717/peerj.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Background Lactic acid bacteria (LAB) are widely used as probiotics in poultry production due to their resilience to low pH and high bile salt concentrations, as well as their beneficial effects on growth performance and antagonistic activity against enteric pathogens. However, the efficacy of probiotics depends on strain selection and their ability to colonize the host's intestine. This study aimed to select, identify, and evaluate LAB strains isolated from chicken feces in Thailand for potential use as probiotics in the chicken industry. Methods LAB strains were isolated from 58 pooled fresh fecal samples collected from chicken farms in various regions of Thailand, including commercial and backyard farms. Gram-positive rods or cocci with catalase-negative characteristics from colonies showing a clear zone on MRS agar supplemented with 0.5% CaCO3 were identified using MALDI-TOF mass spectrometry. The LAB isolates were evaluated for acid (pH 2.5 and pH 4.5) and bile salt (0.3% and 0.7%) tolerance. Additionally, their cell surface properties, resistance to phenol, antimicrobial activity, hemolytic activity, and presence of antimicrobial resistance genes were determined. Results A total of 91 LAB isolates belonging to the Pediococcus, Ligilactobacillus, Limosilactobacillus, and Lactobacillus genera were obtained from chicken feces samples. Backyard farm feces exhibited a greater LAB diversity compared to commercial chickens. Five strains, including Ligilactobacillus salivarius BF12 and Pediococcus acidilactici BF9, BF14, BYF20, and BYF26, were selected based on their high tolerance to acid, bile salts, and phenol. L. salivarius BF12 and P. acidilactici BF14 demonstrated strong adhesion ability. The five LAB isolates exhibited significant cell-cell interactions (auto-aggregation) and co-aggregation with Salmonella. All five LAB isolates showed varying degrees of antimicrobial activity against Salmonella strains, with P. acidilactici BYF20 displaying the highest activity. None of the LAB isolates exhibited beta-hemolytic activity. Whole genome analysis showed that L. salivarius BF12 contained ermC, tetL, and tetM, whereas P. acidilactici strains BF9 and BF14 carried ermB, lnuA, and tetM. Conclusion The selected LAB isolates exhibited basic probiotic characteristics, although some limitations were observed in terms of adhesion ability and the presence of antibiotic resistance genes, requiring further investigation into their genetic location. Future studies will focus on developing a probiotic prototype encapsulation for application in the chicken industry, followed by in vivo evaluations of probiotic efficacy.
Collapse
Affiliation(s)
- Benjamas Khurajog
- Department of Veterinary Microbiology, Faculty of Veterinary Science., Chulalongkorn University, Bangkok, Thailand
| | - Yuda Disastra
- Department of Veterinary Microbiology, Faculty of Veterinary Science., Chulalongkorn University, Bangkok, Thailand
| | - Lum Dau Lawwyne
- Department of Veterinary Microbiology, Faculty of Veterinary Science., Chulalongkorn University, Bangkok, Thailand
| | - Wandee Sirichokchatchawan
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Chulalongkorn University, Bangkok, Thailand
| | - Waree Niyomtham
- Department of Veterinary Microbiology, Faculty of Veterinary Science., Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Chulalongkorn University, Bangkok, Thailand
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science., Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Chulalongkorn University, Bangkok, Thailand
| | - David John Hampson
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science., Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Nguyen NHK, Giang BL, Truc TT. Isolation and Evaluation of the Probiotic Activity of Lactic Acid Bacteria Isolated from Pickled Brassica juncea (L.) Czern. et Coss. Foods 2023; 12:3810. [PMID: 37893703 PMCID: PMC10606517 DOI: 10.3390/foods12203810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The naturally occurring lactic acid bacteria can be isolated from various sources. Pickled Brassica juncea (L.) Czern. et Coss. was used to isolate lactic acid bacteria (LAB). This study was conducted to compare the probiotic properties of probiotics isolated from pickled Vietnamese cabbage with some commercial strains of probiotics available on the Vietnamese market. The results showed that two strains (Lactobacillus fermentum and Lactiplantibacillus plantarum) isolated from pickled Vietnamese cabbage and three commercial strains of probiotics (Bacillus subtilis, Bacillus clausii, Lactobacillus acidophilus) all showed probiotic properties. Probiotic properties were evaluated through the ability to survive in low pH, pepsin, pancreatin, and bile salt media, the hydrophobicity of the bacteria, the antibiotic resistance, and the resistance to pathogenic bacteria. The isolated strain Lactiplantibacillus plantarum had fewer probiotic properties than Bacillus subtilis but more than the two commercial strains Bacillus clausii and Lactobacillus acidophilus, and the isolated Lactobacillus fermentum showed the fewest probiotic properties of the five strains.
Collapse
Affiliation(s)
- Nguyen Hong Khoi Nguyen
- Institute of Food and Biotechnology, Can Tho University, Can Tho 900000, Vietnam;
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Bach Long Giang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Tran Thanh Truc
- Institute of Food and Biotechnology, Can Tho University, Can Tho 900000, Vietnam;
- School of Graduate, Can Tho University, Can Tho 900000, Vietnam
| |
Collapse
|
4
|
Amieva-Balmori M, García-Mazcorro JF, Martínez-Conejo A, Hernández-Ramírez GA, García-Zermeño KR, Rodríguez-Aguilera O, Aja-Cadena M, Barradas-Cortés M, Quigley EMM, Remes-Troche JM. Fecal bacterial microbiota in constipated patients before and after eight weeks of daily Bifidobacterium infantis 35624 administration. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2023; 88:369-380. [PMID: 35810091 DOI: 10.1016/j.rgmxen.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION AND AIM In recent years, probiotics have been used in functional gastrointestinal disorders, including chronic constipation (CC). The effect of Bifidobacterium infantis strain 35624 on the gut microbiota of CC patients has not been previously studied. Our aim was to analyze the fecal microbiota of constipated patients, before and after consuming a single-strain probiotic (B. infantis strain 35624). MATERIALS AND METHODS We used 16S rRNA gene high-throughput sequencing to analyze the fecal microbiota of female patients (n=13) with CC. Patients were instructed to ingest one capsule of Alflorex® (containing 1×109 CFUs/g B. infantis strain 35624) daily for eight weeks. Fecal samples were obtained at the baseline and end (final) of probiotic administration. RESULTS Alpha diversity metrics did not differ between the baseline and final periods. The butyrate producer, Oscillospira, was the taxon most strongly correlated with amplicon sequence variants (R2=0.55, p<0.0001). Except for a few bacterial taxa, there were no significant differences in relative abundance between the baseline and final periods. Beta-diversity measures also showed limited evidence for the differences between the two time periods. CONCLUSIONS The results suggest that the fecal bacterial microbiota remains stable in constipated women consuming a single-strain probiotic. Those findings may be helpful in better understanding probiotic functioning in patients with digestive disorders.
Collapse
Affiliation(s)
- M Amieva-Balmori
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - J F García-Mazcorro
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - A Martínez-Conejo
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - G A Hernández-Ramírez
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - K R García-Zermeño
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - O Rodríguez-Aguilera
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - M Aja-Cadena
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - M Barradas-Cortés
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - E M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - J M Remes-Troche
- Laboratorio de Fisiología Digestiva y Motilidad Gastrointestinal, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México.
| |
Collapse
|
5
|
Khalifa A, Ibrahim HIM, Sheikh A, Khalil HE. Attenuation of Immunogenicity in MOG-Induced Oligodendrocytes by the Probiotic Bacterium Lactococcus Sp. PO3. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1731. [PMID: 37893449 PMCID: PMC10608413 DOI: 10.3390/medicina59101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Milk is healthy and includes several vital nutrients and microbiomes. Probiotics in milk and their derivatives modulate the immune system, fight inflammation, and protect against numerous diseases. The present study aimed to isolate novel bacterial species with probiotic potential for neuroinflammation. Materials and Methods: Six milk samples were collected from lactating dairy cows. Bacterial isolates were obtained using standard methods and were evaluated based on probiotic characteristics such as the catalase test, hemolysis, acid/bile tolerance, cell adhesion, and hydrophobicity, as well as in vitro screening. Results: Nine morphologically diverse bacterial isolates were found in six different types of cow's milk. Among the isolates, PO3 displayed probiotic characteristics. PO3 was a Gram-positive rod cell that grew in an acidic (pH-2) salty medium containing bile salt and salinity (8% NaCl). PO3 also exhibited substantial hydrophobicity and cell adhesion. The sequencing comparison of the 16S rRNA genes revealed that PO3 was Lactococcus raffinolactis with a similarity score of 99.3%. Furthermore, PO3 was assessed for its neuroanti-inflammatory activity on human oligodendrocyte (HOG) cell lines using four different neuroimmune markers: signal transducer and activator of transcription (STAT-3), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and GLAC in HOG cell lines induced by MOG. Unlike the rest of the evaluated neuroimmune markers, STAT-3 levels were elevated in the MOG-treated HOG cell lines compared to the untreated ones. The expression level of STAT-3 was attenuated in both PO3-MOG-treated and only PO3-treated cell lines. On the contrary, in PO3-treated cell lines, MBP, GFAP, and GLAC were significantly expressed at higher levels when compared with the MOG-treated cell lines. Conclusions: The findings reported in this article are to be used as a foundation for further in vivo research in order to pave the way for the possible use of probiotics in the treatment of neuroinflammatory diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hairul-Islam Mohamed Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605004, India
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
6
|
Çelik Doğan C, Yüksel Dolgun HT, İkiz S, Kırkan Ş, Parın U. Detection of the Microbial Composition of Some Commercial Fermented Liquid Products via Metagenomic Analysis. Foods 2023; 12:3538. [PMID: 37835192 PMCID: PMC10572611 DOI: 10.3390/foods12193538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The fermented liquid sector is developing all over the world due to its contribution to health. Our study has contributed to the debate about whether industrially manufactured fermented liquids live up to their claims by analyzing pathogens and beneficial bacteria using a 16S rRNA sequencing technique called metagenomic analysis. Paenibacillus, Lentibacillus, Bacillus, Enterococcus, Levilactobacillus, and Oenococcus were the most abundant bacterial genera observed as potential probiotics. Pseudomonas stutzeri, Acinetobacter, and Collimonas, which have plant-growth-promoting traits, were also detected. The fact that we encounter biocontroller bacteria that promote plant growth demonstrates that these organisms are widely used in foods and emphasizes the necessity of evaluating them in terms of public health. Their potential applications in agriculture may pose a danger to food hygiene and human health in the long term, so our data suggest that this should be evaluated.
Collapse
Affiliation(s)
- Cansu Çelik Doğan
- Food Technology Program, Food Processing Department, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye
| | - Hafize Tuğba Yüksel Dolgun
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| | - Serkan İkiz
- Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye;
| | - Şükrü Kırkan
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| | - Uğur Parın
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| |
Collapse
|
7
|
Ghelardi E, Mazzantini D, Celandroni F, Calvigioni M, Panattoni A, Lupetti A, Bois De Fer B, Perez M. Analysis of the microbial content of probiotic products commercialized worldwide and survivability in conditions mimicking the human gut environment. Front Microbiol 2023; 14:1127321. [PMID: 37234535 PMCID: PMC10208119 DOI: 10.3389/fmicb.2023.1127321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/23/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Probiotics are living microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Adequate number of living microbes, the presence of specific microorganisms, and their survival in the gastrointestinal (GI) environment are important to achieve desired health benefits of probiotic products. In this in vitro study, 21 leading probiotic formulations commercialized worldwide were evaluated for their microbial content and survivability in simulated GI conditions. Methods Plate-count method was used to determine the amount of living microbes contained in the products. Culture-dependent Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry and culture-independent metagenomic analysis through 16S and 18S rDNA sequencing were applied in combination for species identification. To estimate the potential survivability of the microorganisms contained in the products in the harsh GI environment, an in vitro model composed of different simulated gastric and intestinal fluids was adopted. Results The majority of the tested probiotic products were concordant with the labels in terms of number of viable microbes and contained probiotic species. However, one product included fewer viable microbes than those displayed on the label, one product contained two species that were not declared, and another product lacked one of the labeled probiotic strains. Survivability in simulated acidic and alkaline GI fluids was highly variable depending on the composition of the products. The microorganisms contained in four products survived in both acidic and alkaline environments. For one of these products, microorganisms also appeared to grow in the alkaline environment. Conclusion This in vitro study demonstrates that most globally commercialized probiotic products are consistent with the claims described on their labels with respect to the number and species of the contained microbes. Evaluated probiotics generally performed well in survivability tests, although viability of microbes in simulated gastric and intestinal environments showed large variability. Although the results obtained in this study indicate a good quality of the tested formulations, it is important to stress that stringent quality controls of probiotic products should always be performed to provide optimal health benefits for the host.
Collapse
Affiliation(s)
- Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
8
|
Dawadi P, Odari R, Poudel RC, Pokhrel LR, Bhatt LR. Isolation of Lactococcus garvieae NEP21 from raw cow (Bos indicus) milk in Nepal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160641. [PMID: 36470377 DOI: 10.1016/j.scitotenv.2022.160641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Lactococcus garvieae is an emerging zoonotic pathogen impacting both humans and animals. Infection of this bacterium is known to cause mastitis in cattle, and endocarditis, osteomyelitis, liver abscess, and gastrointestinal problems are reported in immunocompromised and elderly people that regularly consume or handle raw meat, milk, dairy products, and seafood. This study aimed at investigating and detecting lactic acid bacteria in raw cow (Bos indicus) milk samples from a smallholder farm in Nepal. Based on the plate culture, biochemical tests, and molecular sequencing of 16 s ribosomal RNA coding nuclear DNA region followed by phenotypic and genotypic analyses, L. garvieae NEP21 was detected and identified for the first time in Nepal in raw cow milk samples. This finding suggests the prevalence of L. garvieae NEP21 in raw cow milk and recommends further research and surveillance for understanding the extent of its presence in Nepal and globally for informed management of its infection in cattle and humans.
Collapse
Affiliation(s)
- Prabin Dawadi
- Biological Resource Unit, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Ranjeeta Odari
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Ram Chandra Poudel
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Lok Ranjan Bhatt
- Biological Resource Unit, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.
| |
Collapse
|
9
|
Elemanova R, Musulmanova M, Ozbekova Z, Usubalieva A, Akai RA, Deidiev A, Smanalieva J. Rheological, microbiological and sensory properties of fermented khainak milk fermented with different starter cultures. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Anti-Influenza Virus Potential of Probiotic Strain Lactoplantibacillus plantarum YML015 Isolated from Korean Fermented Vegetable. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lactic acid bacteria are one of the potential natural remedies used worldwide, commonly known as probiotics. Here, the aim of this research investigation was to isolate a probiotic Lactobacilli strain, YLM015, from the popular Korean fermented vegetable “Kimchi” and to evaluate its anti-viral potential against influenza virus A (IFVA) H1N1 using the MDCK cell line in vitro, and in embryonated eggs in ovo. The YML015 strain was selected from among the 1200 Lactobacilli isolates for further studies based on its potent anti-viral efficacy. YML015 was identified and characterized as Lactoplantibacillus plantarum YML015 based on the 16S rRNA gene sequencing and biochemically with an API 50 CHL Kit. In ovo assay experienced with embryonated eggs and the hemagglutination inhibition method, as well as cytopathogenic reduction assay, was performed individually to observe anti-influenza viral activity of YML015 against influenza virus A H1N1. Additionally, YML015 was classified for its non-resistance nature as safe for humans and animals as confirmed by the antibiotic susceptibility (MIC) test, cell viability, and hemolysis assay. The heat stability test was also experienced by using different heat-treated cell-free supernatant (CFS) samples of YML015. As a result, YML015 showed highly potent anti-viral activity against influenza virus A H1N1 in vitro in the MDCK cell line. Overall findings suggest that anti-influenza viral activity of L. plantarum YML015 makes it a potential candidate of choice for use as an influential probiotic in pharmacological preparations to protect humans and animals from flu and viral infection.
Collapse
|
11
|
Study of Fermentation Strategies by Lactobacillus gasseri for the Production of Probiotic Food Using Passion Fruit Juice Combined with Green Tea as Raw Material. Foods 2022; 11:foods11101471. [PMID: 35627041 PMCID: PMC9141917 DOI: 10.3390/foods11101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
Foods fermented by Lactobacillus with probiotic properties convey health benefits to consumers, in addition to fulfilling the basic function of nourishing. This work aimed to evaluate the growth characteristics of L. gasseri in passion fruit juice and passion fruit added with green tea. Fermentation under evaluation of different pH (3.5–7.5), temperature (30–44 °C), and with the addition of green tea (7.5–15%), took place for 48 h. The results showed that a pH of 7.5 and temperature of 44 °C showed higher cell production, and it was also verified that the addition of 15% of green tea induced the growth of L. gasseri in passion fruit juice. The concentrations of probiotic cells observed were above 9 Log CFU.mL−1 and, therefore, they are promising products for consumption as a functional food and application in the food industry with potential health benefits.
Collapse
|
12
|
Lactiplantibacillus plantarum 299v as starter culture suppresses Enterobacteriaceae more efficiently than spontaneous fermentation of carrots. Food Microbiol 2022; 103:103952. [DOI: 10.1016/j.fm.2021.103952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022]
|
13
|
El-Saadony MT, Salem HM, El-Tahan AM, Abd El-Mageed TA, Soliman SM, Khafaga AF, Swelum AA, Ahmed AE, Alshammari FA, Abd El-Hack ME. The control of poultry salmonellosis using organic agents: an updated overview. Poult Sci 2022; 101:101716. [PMID: 35176704 PMCID: PMC8857471 DOI: 10.1016/j.psj.2022.101716] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Salmonellosis is a severe problem that threatens the poultry sector worldwide right now. Salmonella gallinarium and Salmonella pullorum (Fowl typhoid) are the most pathogenic serovars in avian species leading to systemic infection resulting in severe economic losses in the poultry industry. Nontyphoidal serotypes of Salmonella (Paratyphoid disease) constitute a public health hazard for their involvement in food poisoning problems in addition to their zoonotic importance. Also, Salmonella species distribution is particularly extensive. They resisted environmental conditions that made it difficult to control their spread for a long time. Therefore, the current review aimed to through light on Salmonellosis in poultry with particular references to its pathogenesis, economic importance, immune response to Salmonella, Salmonella antibiotics resistance, possible methods for prevention and control of such problems using promising antibiotics alternatives including probiotics, prebiotics, symbiotics, organic acids, essential oils, cinnamaldehyde, chitosan, nanoparticles, and vaccines.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University 12211, Giza, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Soliman M Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University 1221, Giza, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman A Swelum
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| | - Ahmed E Ahmed
- Biology Department, College of Science, King Khalid University 61413 Abha, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University 83523 Qena, Egypt
| | - Fahdah A Alshammari
- Department of Biology, College of Sciences and Literature, Northern Border University, Rafha 76312, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
14
|
Luca L, Oroian M. Oat Yogurts Enriched with Synbiotic Microcapsules: Physicochemical, Microbiological, Textural and Rheological Properties during Storage. Foods 2022; 11:foods11070940. [PMID: 35407027 PMCID: PMC8998009 DOI: 10.3390/foods11070940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the influence of synbiotic microcapsules on oat yogurt’s properties. For this study, four different microcapsules were added into the oat yogurt and the modifications were studied for 28 days. Microbiological analysis was used to analyze the effect of different factors on the microencapsulated probiotic population in the product. Those factors are: the technological process of obtaining microcapsules; the type of prebiotic chicory inulin (INU), oligofructose (OLI) and soluble potato starch (STH); the prebiotic concentrations in the encapsulation matrix; the technological process of obtaining yogurt; and the yogurt storage period, gastric juice action and intestinal juice action. The experimental data show that oat yogurt containing synbiotic microcapsules has similar properties to yogurt without microcapsules, which illustrates that the addition of synbiotic microcapsules does not change the quality, texture or rheological parameters of the product. Oat yogurt with the addition of synbiotic microcapsules can be promoted as a functional food product, which, in addition to other beneficial components (bioactive compounds), has in its composition four essential amino acids (glycine, valine, leucine and glutamine acids) and eight non-essential amino acids (alanine, serine, proline, asparagine, thioproline, aspartic acid, glutamic acid and α-aminopimelic acid). After 28 days of storage in refrigerated conditions, the cell viability of the microcapsules after the action of the simulated intestinal juice were: 9.26 ± 0.01 log10 cfu/g, I STH (oat yogurt with synbiotic microcapsules—soluble potato starch); 9.33 ± 0.01 log10 cfu/g, I INU, 9.18 ± 0.01 log10 cfu/g, I OIL and 8.26 ± 0.04 log10 cfu/g, IG (oat yogurt with microcapsules with glucose). The new functional food product provides consumers with an optimal number of probiotic cells which have a beneficial effect on intestinal health.
Collapse
|
15
|
Aziz G, Zaidi A, Tariq M. Compositional Quality and Possible Gastrointestinal Performance of Marketed Probiotic Supplements. Probiotics Antimicrob Proteins 2022; 14:288-312. [PMID: 35199309 DOI: 10.1007/s12602-022-09931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
The local pharmacies and shops are brimming with various probiotic products that herald a range of health benefits. The poor quality of probiotic products in both dosage and species is symptomatic of this multi-billion-dollar market making it difficult for consumers to single out reliable ones. This study aims to fill the potential gap in the labeling accuracy of probiotic products intended for human consumption. We describe a combinatorial approach using classical culture-dependent technique to quantify and molecular techniques (16 s rRNA gene sequencing, multilocus sequence, and ribotyping) for strain recognition of the microbial contents. The full gamut of probiotic characteristics including acid, bile and lysozyme tolerances, adhesiveness, anti-pathogenicity, and degree of safeness were performed. Their capacity to endure gastro-intestinal (GIT) stresses and select drugs was assessed in vitro. Our results forced us to declare that the local probiotic market is essentially unregulated. Almost none of the probiotic products tested met the label claim. Some (11%) have no viable cells, and a quarter (27%) showing significant inter-batch variation. A lower microbial count was typical with undesirables constituting a quarter of the total (~ 27%). Half of the products contained antibiotic-resistant strains; the unregulated use of these probiotics carries the risk of spreading antibiotic resistance to gut pathobionts. Poor tolerance to gut conditions and mediocre functionalism make the case worse. The current regulatory systems do not take this discrepancy into account. We recommend an evidence-based regular market surveillance of marketed probiotics to ensure the authenticity of the claims and product effectiveness.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan.
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| |
Collapse
|
16
|
Wang Y, Dong J, Wang J, Chi W, Zhou W, Tian Q, Hong Y, Zhou X, Ye H, Tian X, Hu R, Wong A. Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol 2022; 14:2019992. [PMID: 35024089 PMCID: PMC8745366 DOI: 10.1080/20002297.2021.2019992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Probiotic lozenges have been developed to harvest the benefits of probiotics for oral health, but their long-term consumption may encourage the transfer of resistance genes from probiotics to commensals, and eventually to disease-causing bacteria. Aim To screen commercial probiotic lozenges for resistance to antibiotics, characterize the resistance determinants, and examine their transferability in vitro. Results Probiotics of all lozenges were resistant to glycopeptide, sulfonamide, and penicillin antibiotics, while some were resistant to aminoglycosides and cephalosporins. High minimum inhibitory concentrations (MICs) were detected for streptomycin (>128 µg/mL) and chloramphenicol (> 512 µg/mL) for all probiotics but only one was resistant to piperacillin (MIC = 32 µg/mL). PCR analysis detected erythromycin (erm(T), ermB or mefA) and fluoroquinolone (parC or gyr(A)) resistance genes in some lozenges although there were no resistant phenotypes. The dfrD, cat-TC, vatE, aadE, vanX, and aph(3")-III or ant(2")-I genes conferring resistance to trimethoprim, chloramphenicol, quinupristin/dalfopristin, vancomycin, and streptomycin, respectively, were detected in resistant probiotics. The rifampicin resistance gene rpoB was also present. We found no conjugal transfer of streptomycin resistance genes in our co-incubation experiments. Conclusion Our study represents the first antibiotic resistance profiling of probiotics from oral lozenges, thus highlighting the health risk especially in the prevailing threat of drug resistance globally.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Jingya Dong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yue Hong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Immunostimulatory Activity of Synbiotics Using Lactococcus lactis SG-030 and Glucooligosaccharides from Weissella cibaria YRK005. Microorganisms 2021; 9:microorganisms9122437. [PMID: 34946039 PMCID: PMC8703668 DOI: 10.3390/microorganisms9122437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
Much attention has been recently paid to the health benefits of synbiotics, a combination of probiotics and prebiotics. In this study, synbiotics were prepared by combining lactic acid bacteria with potential as probiotics and purified glucooligosaccharides, and their immunostimulatory activity was evaluated using RAW 264.7 macrophage cells. A lactic acid bacteria strain with high antioxidant activity, acid and bile salt tolerance, adhesion to Caco-2 cells, and nitric oxide (NO) production was selected as a potential probiotic strain. The selected strain, isolated from forsythia, was identified as Lactococcus lactis SG-030. The purified glucooligosaccharides produced from Weissella cibaria YRK005 were used as prebiotics. RAW 264.7 cells were treated with synbiotics in two ways. One way was a simultaneous treatment with lactic acid bacteria and glucooligosaccharides. The other way was to pre-culture the lactic acid bacteria with glucooligosaccharides followed by treatment with synbiotic culture broth or synbiotic culture supernatant. In both cases, synbiotics synergistically increased NO production in RAW 264.7 cells. In addition, synbiotics treatment increased the expression of tissue necrosis factor-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase genes. Synbiotics also increased the expression of P38, extracellular signal-regulated kinases, c-Jun N-terminal kinases, phosphoinositide 3-kinase, and Akt proteins. The results confirmed that the synbiotics prepared in this study exhibited synergistic immunostimulatory activity.
Collapse
|
18
|
Taye Y, Degu T, Fesseha H, Mathewos M. Isolation and Identification of Lactic Acid Bacteria from Cow Milk and Milk Products. ScientificWorldJournal 2021; 2021:4697445. [PMID: 34421398 PMCID: PMC8371643 DOI: 10.1155/2021/4697445] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
Lactic acid bacteria (LAB) have long been consumed by people in several fermented foods such as dairy products. A study was conducted on lactating dairy cows to isolate and characterize LAB from dairy products found in and around Bahir-Dar city, North Western Ethiopia. Milk and milk products were randomly collected from dairy farms, milk vending shops, individual households, and supermarkets for bacteriological investigations. A total of sixteen samples were taken from different sources and cultured on different selective media: de Man, Rogosa, and Sharpe (MRS) agar for Lactobacillus spp.; M17 agar for Lactococcus spp.; Rogasa SL agar for Streptococci spp.; and MRS supplemented with cysteine (0.5%) for Bifidobacteria spp. Different laboratory techniques were implemented for LAB isolation and identification. A total of 41 bacterial isolates were grouped under five different genera of LAB and Bifidobacteria spp. were identified based on the growth morphology on the selective media, growth at a different temperature, gas production from glucose, carbohydrate fermentation, and other biochemical tests. LAB genera such as Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Streptococcus, and Bifidobacterium spp. were isolated and identified from raw milk, cheese, and yogurt. Based on the current study, the majority of the LAB (24.38%) was isolated from cheese and yogurt. Among these, Lactobacillus, Lactococcus (21.94%), Streptococcus (19.51%), Leuconostoc (14.64%), Bifidobacteria (12.19%), and Pediococcus (7.31%) spp. were also identified from these products. Furthermore, based on the bacterial load count and different identification methodologies, our study revealed that Lactobacillus spp. were the dominant LAB isolated from milk and milk products. As a result, since there are few studies on the isolation and identification of lactic acid bacteria from dairy products in Ethiopia, more research studies are needed to complete the identification and characterization to species level and their possible role as probiotics.
Collapse
Affiliation(s)
- Yeshambel Taye
- Raya Kobo Woreda Animal Health Disease Surveillance and Control Expert, Kobo, Ethiopia
| | - Tadesse Degu
- Raya Kobo Woreda Animal Health Expert, Kobo, Ethiopia
| | - Haben Fesseha
- School of Veterinary Medicine, Wolaita Sodo University, P.O Box: 138, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wolaita Sodo University, P.O Box: 138, Wolaita Sodo, Ethiopia
| |
Collapse
|
19
|
Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. Spotlight on the Compositional Quality of Probiotic Formulations Marketed Worldwide. Front Microbiol 2021; 12:693973. [PMID: 34354690 PMCID: PMC8329331 DOI: 10.3389/fmicb.2021.693973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
On the worldwide market, a great number of probiotic formulations are available to consumers as drugs, dietary supplements, and functional foods. For exerting their beneficial effects on host health, these preparations should contain a sufficient amount of the indicated living microbes and be pathogen-free to be safe. Therefore, the contained microbial species and their amount until product expiry are required to be accurately reported on the labels. While commercial formulations licensed as drugs are subjected to rigorous quality controls, less stringent regulations are generally applied to preparations categorized as dietary supplements and functional foods. Many reports indicated that the content of several probiotic formulations does not always correspond to the label claims in terms of microbial identification, number of living organisms, and purity, highlighting the requirement for more stringent quality controls by manufacturers. The main focus of this review is to provide an in-depth overview of the microbiological quality of probiotic formulations commercialized worldwide. Many incongruences in the compositional quality of some probiotic formulations available on the worldwide market were highlighted. Even if manufacturers carry at least some of the responsibility for these inconsistencies, studies that analyze probiotic products should be conducted following recommended and up-to-date methodologies.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Mohar Lorbeg P, Golob M, Kramer M, Treven P, Bogovič Matijašić B. Evaluation of Dietary Supplements Containing Viable Bacteria by Cultivation/MALDI-TOF Mass Spectrometry and PCR Identification. Front Microbiol 2021; 12:700138. [PMID: 34349743 PMCID: PMC8326757 DOI: 10.3389/fmicb.2021.700138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
The insufficient quality of products containing beneficial live bacteria in terms of content and viability of labelled microorganisms is an often-reported problem. The aim of this work was to evaluate the quality of dietary supplements containing viable bacteria available in Slovenian pharmacies using plate counting, matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and species- or subspecies-specific PCR with DNA isolated from consortia of viable bacteria, from individual isolates, or directly from the products. Twelve percent of the products (3 of 26) contained insufficient numbers of viable bacteria. Eighty-three of the labelled species (111 in total) were confirmed by PCR with DNA from the product; 74% of these were confirmed by PCR with DNA from viable consortium, and 65% of these were confirmed by MALDI-TOF MS analysis of colonies. Certain species in multi-strain products were confirmed by PCR with DNA from viable consortia but not by MALDI-TOF MS, suggesting that the number of isolates examined (three per labelled strain) was too low. With the exception of Lacticaseibacillus casei and closely related species (Lacticaseibacillus rhamnosus and Lacticaseibacillus zeae), PCR and MALDI-TOF identification results agreed for 99% of the isolates examined, although several MALDI-TOF results had lower score values (1.700-1.999), indicating that the species identification was not reliable. The species L. zeae, which appeared in 20 matches of the Biotyper analysis, was identified as L. rhamnosus by PCR. The MALDI-TOF MS analysis was also unsuccessful in detecting Lactobacillus acidophilus La-5 and Bacillus coagulans due to missing peaks and unreliable identification, respectively. Mislabelling was detected by both methods for two putative L. casei strains that turned out to belong to the species Lacticaseibacillus paracasei. PCR remains more successful in subspecies-level identification as long as the database of MALDI-TOF MS spectra is not expanded by building in-house databases. The lack of positive PCR results with viable consortia or colonies, but positive PCR results with DNA isolated directly from the products observed in 10% (11/112) of the labelled strains, suggests the presence of non-culturable bacteria in the products. MALDI-TOF MS is a faster and simpler alternative to PCR identification, provided that a sufficient number of colonies are examined. Generation of in-house library may further improve the identification accuracy at the species and sub-species level.
Collapse
Affiliation(s)
- Petra Mohar Lorbeg
- Department of Animal Science, Biotechnical Faculty, Institute of Dairy Science and Probiotics, University of Ljubljana, Ljubljana, Slovenia
| | - Majda Golob
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Kramer
- Global Drug Development, Technical Research & Development, Biologics and Cell & Gene Therapy, Novartis, Global Project Management Office, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Primož Treven
- Department of Animal Science, Biotechnical Faculty, Institute of Dairy Science and Probiotics, University of Ljubljana, Ljubljana, Slovenia
| | - Bojana Bogovič Matijašić
- Department of Animal Science, Biotechnical Faculty, Institute of Dairy Science and Probiotics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Pupa P, Apiwatsiri P, Sirichokchatchawan W, Pirarat N, Muangsin N, Shah AA, Prapasarakul N. The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Sci Rep 2021; 11:13753. [PMID: 34215824 PMCID: PMC8253736 DOI: 10.1038/s41598-021-93263-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/09/2021] [Indexed: 12/04/2022] Open
Abstract
Lactic acid bacteria (LAB) are used as a probiotic alternative to antibiotics in livestock production. Microencapsulation technology is widely used for probiotic preservation. A variety of microencapsulation protocols have been proposed and compared based on chemicals and mechanical procedures. This study aimed to develop a double-encapsulated coating from alginate (1.5%) and chitosan (0.5%) by extrusion, emulsion, and spray drying methods using the LAB strains Lactobacillus plantarum strains 31F, 25F, 22F, Pediococcus pentosaceus 77F, and P. acidilactici 72N, and to monitor the basic probiotic properties of the encapsulated prototypes. The final products from each microencapsulation protocol were analysed for their appearance, probiotic properties and viable cell count. Using the spray drying method, particles smaller than 15 μm in diameter with a regular spherical shape were obtained, whereas the other methods produced larger (1.4–52 mm) and irregularly shaped microcapsules. After storage for 6 months at room temperature, the LAB viability of the spray-dried particles was the highest among the three methods. In all the LAB strains examined, the encapsulated LAB retained their probiotic properties in relation to acid-bile tolerance and antibacterial activity. This study highlights the efficacy of double-coating microencapsulation for preserving LAB properties and survival rate, and demonstrates its potential for probiotic application in livestock farms.
Collapse
Affiliation(s)
- Pawiya Pupa
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasert Apiwatsiri
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Nopadon Pirarat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asad Ali Shah
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuvee Prapasarakul
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Diagnosis and Monitoring Animal Pathogens Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Park WJ, Kong SJ, Park JH. Kimchi bacteriophages of lactic acid bacteria: population, characteristics, and their role in watery kimchi. Food Sci Biotechnol 2021; 30:949-957. [PMID: 34395026 PMCID: PMC8302715 DOI: 10.1007/s10068-021-00930-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
The bacteriophages (phages) in the watery kimchis (Baek-kimchi and Dongchimi) were characterized to determine the phage ecology of lactic acid bacteria (LAB). Kimchi obtained from the Seoul markets had an average of 2.1 log phage particles/mL, corresponding to 28% of the bacterial counts on a log scale. High counts of 5.5-6.5 log particles/mL of phages were noted in the early phase of fermentation (reaching pH 4), and 2.1-3.0 log phage particles/mL were found in the later phase, with some fluctuation in numbers. The LAB hosts changed from Weissella and Leuconostoc to Lactobacillus during Dongchimi fermentation. Fifteen phages, except for those of Lactobacillus, were isolated from diverse strains in the early phase. Five Weissella phages were Podoviridae, and all 10 Leuconostoc phages were Myoviridae. Phages had narrow and different host infection spectra to strains of the same species and high acidic stability. Therefore, the mortality and diversity of LAB during natural kimchi fermentation may be related to the specific phages of the hosts. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00930-y.
Collapse
Affiliation(s)
- Won-Jeong Park
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Se-Jin Kong
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
23
|
Salama HH, El‐Sayed HS, Abd‐Rabou NS, Hassan ZMR. Production and use of eco‐friendly selenium nanoparticles in the fortification of yoghurt. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Heba H. Salama
- Food Industry and Nutrition Research Division Dairy Department National Research Centre Giza Egypt
| | - Hoda S. El‐Sayed
- Food Industry and Nutrition Research Division Dairy Department National Research Centre Giza Egypt
| | - Nabil S. Abd‐Rabou
- Food Industry and Nutrition Research Division Dairy Department National Research Centre Giza Egypt
| | | |
Collapse
|
24
|
Kauser-Ul-Alam M, Hayakawa T, Kumura H, Wakamatsu JI. High ZnPP-forming food-grade lactic acid bacteria as a potential substitute for nitrite/nitrate to improve the color of meat products. Meat Sci 2021; 176:108467. [PMID: 33640646 DOI: 10.1016/j.meatsci.2021.108467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/29/2022]
Abstract
Zinc protoporphyrin IX (ZnPP)-forming food-grade lactic acid bacteria (LAB) were screened from various sources for their ability to improve the color of meat products. The effects of salt and nitrite on the ZnPP-forming ability of these bacteria were also investigated. Finally, these bacteria were applied in salt-added minced meat to assess their ability to improve the color. Twenty-five LAB were screened for their ZnPP-forming ability in pork. Most of the strains exhibited maximum growth anaerobically in 3% salt at 30 °C and grew well at pH 5.5 and 6.5. Moreover, 3% salt slightly retarded ZnPP formation; however, nitrite completely inhibited ZnPP formation in all the ZnPP-forming LAB. Thirteen LAB (avoiding duplication and non-food-grade) could form ZnPP in salt-added minced meat, resulting in improvement of the bright red color, high ZnPP autofluorescence, and increased fluorescence intensity. Finally, considering the safety, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris, and Leuconostoc lactis were suggested as promising candidates to improve the color of meat products.
Collapse
Affiliation(s)
- Md Kauser-Ul-Alam
- Laboratory of Applied Food Science, Graduate School of Agriculture, Hokkaido University, Japan
| | - Toru Hayakawa
- Laboratory of Applied Food Science, Graduate School of Agriculture, Hokkaido University, Japan
| | - Haruto Kumura
- Laboratory of Applied Food Science, Graduate School of Agriculture, Hokkaido University, Japan
| | - Jun-Ichi Wakamatsu
- Laboratory of Applied Food Science, Graduate School of Agriculture, Hokkaido University, Japan.
| |
Collapse
|
25
|
Tenea GN, Suárez J. Probiotic Potential and Technological Properties of Bacteriocinogenic Lactococcus lactis Subsp. Lactis UTNGt28 from a Native Amazonian Fruit as a Yogurt Starter Culture. Microorganisms 2020; 8:E733. [PMID: 32422963 PMCID: PMC7285064 DOI: 10.3390/microorganisms8050733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 11/25/2022] Open
Abstract
A native Lactococcus lactis subsp. lactis UTNGt28 (GenBank accession no: MG675576.1) isolated from Amazonian fruit of the tropical Caimitillo (Chrysophyllum oliviforme) tree and the commercial strain Lactococcus lactis subsp lactis ATCC11454 (LacAT) were targeted ex vitro in whole milk in combination with Streptococcus thermophilus ATCC19258 to obtain a fermented probiotic beverage. Concomitant with cell viability determination during storage (28 days), the pH, titratable acidity, syneresis, protein and fat were evaluated. The results indicated that neither UTNGt28 nor LacAT displayed a high capacity to ferment whole milk and survive during storage; a statistically significant difference (p < 0.05) in cell viability was registered for UTNGt28 compared with LacAT when inoculated alone or in combination with S. thermophilus. A principal component analysis showed a clear difference between the yogurt formulations at day 1 and 28 of storage. The PC 1 explained 46.8% of the total variance (day 28), was loaded in the negative (-) direction with titratable acidity (% lactic acid), while the PC 2 explained 22.5% (day 1) with pH. PC 1 was loaded in the positive (+) direction with pH, cell viability, syneresis, fat and protein. Overall results indicated that UTNGt28 has the technological properties for further development of a new probiotic product.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Av. 17 de Julio s-21 Barrio El Olivo, Ibarra 100150, Ecuador
| | - Jimena Suárez
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Av. 17 de Julio s-21 Barrio El Olivo, Ibarra 100150, Ecuador
| |
Collapse
|
26
|
Xu Y, Zhou T, Tang H, Li X, Chen Y, Zhang L, Zhang J. Probiotic potential and amylolytic properties of lactic acid bacteria isolated from Chinese fermented cereal foods. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Grispoldi L, Giglietti R, Traina G, Cenci-Goga B. How to Assess in vitro Probiotic Viability and the Correct Use of Neutralizing Agents. Front Microbiol 2020; 11:204. [PMID: 32194517 PMCID: PMC7062668 DOI: 10.3389/fmicb.2020.00204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
Probiotic viability is generally determined by quantifying its resistance to simulated gastric juice or to simulated intestinal fluid in in vitro tests, which measure microbial survival after given periods of contact. The use of a neutralizing agent is needed to avoid a carry-over of gastric or intestinal juice into the culture media of the subsequent analysis and to avoid any antimicrobial effect extended over the defined period of contact of the test. Neutralization of gastric juice and intestinal juice are of the utmost importance to present data accurately. Failing to do so determines a carry-over of bactericidal activity to the plates used for the enumeration, which further reduces the number of surviving cells. Examples of such incorrect adaptation of the test are available in literature. The purpose of this perspective stems from the discovery that many studies do not adhere to internationally recognized standards, e.g., EN 1040:2005 (European Committee for Standardization [ECS], 2005), to evaluate the basic, bactericidal activity of compounds, especially for the neutralization step.
Collapse
Affiliation(s)
- Luca Grispoldi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Riccardo Giglietti
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
28
|
Li W, Zhang Y, Li H, Zhang C, Zhang J, Uddin J, Liu X. Effect of soybean oligopeptide on the growth and metabolism of Lactobacillus acidophilus JCM 1132. RSC Adv 2020; 10:16737-16748. [PMID: 35498845 PMCID: PMC9053066 DOI: 10.1039/d0ra01632b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 01/05/2023] Open
Abstract
Soybean protein (Pro) and soybean oligopeptide (Pep) were subjected to simulated digestion in vitro to study the effect of Pep on the growth and metabolism of Lactobacillus acidophilus JCM 1132. First, the molecular weight distribution differences of samples before and after digestion were compared, and the samples were used to replace the nitrogen source components in the culture media. Then, the viable cell numbers, lactic acid and acetic acid content, differential metabolites, and metabolic pathways during the culturing process were measured. Results showed that the digested soybean oligopeptide (dPep) was less efficient than MRS medium in promoting the growth, but by increasing the content of the intermediates during the tricarboxylic acid (TCA) cycle, its metabolic capacity was significantly improved. Besides, due to the low molecular weight of dPep, it can be better transported and utilized. And dPep significantly strengthened the amino acid metabolism and weakened the glycerol phospholipid metabolism, so the ability of dPep in promoting the growth and metabolism of Lactobacillus acidophilus JCM 1132 is higher than the digested soybean protein (dPro). Exploring the effect of soybean oligopeptide on the growth and metabolism of Lactobacillus acidophilus JCM 1132 by metabolomics.![]()
Collapse
Affiliation(s)
- Wenhui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Yinxiao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Chi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Jalal Uddin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Engineering and Technology Research Center of Food Additives
- Beijing Technology and Business University
- Beijing 100048
- China
| |
Collapse
|
29
|
Chi F, Liu T, Liu L, Tan Z, Gu X, Yang L, Luo Z. Optimization of Antioxidant Hydrolysate Produced from Tibetan Egg White with Papain and Its Application in Yak Milk Yogurt. Molecules 2019; 25:molecules25010109. [PMID: 31892148 PMCID: PMC6983162 DOI: 10.3390/molecules25010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022] Open
Abstract
The objective of the present study was to produce antioxidant hydrolysate from Tibetan egg white protein hydrolyzed with papain, and to investigate the effect of added papain egg white hydrolysate (PEWH) on the quality characteristics and amino acid profiles of yak milk yogurt. A response surface methodology (RSM) was utilized to analyze the effects of hydrolysis time (X1), the ratio of enzymes to substrates, and enzyme dosage (X3) on the superoxide anion radical (O2−) scavenging activity of hydrolysates. The predicted maximum value of O2− scavenging activity (89.06%) was obtained an X1 of 2.51 h, X2 of 4.13%, and X3 of 4500 U/g of substrate, almost approaching the experimental value (88.05 ± 1.2%). Furthermore, it was found that the addition of PEWH to yak milk can enhance acidification, sensory score, the number of lactic acid bacteria (LAB), and the amino acid content in yak milk yogurt. The results suggested that PEWH displayed an exceptional potential to be developed as a functional food ingredient that could be applied during the manufacturing process of yak milk yogurt.
Collapse
Affiliation(s)
- Fumin Chi
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Z.T.); (X.G.); (L.Y.); (Z.L.)
- Correspondence: (F.C.); (L.L.); Tel.: +86-187-0804-3500 (F.C.); Tel./Fax: +86-029-85310517 (L.L.); Fax: +86-0894-5822924 (F.C.)
| | - Ting Liu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China;
| | - Liu Liu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China;
- Correspondence: (F.C.); (L.L.); Tel.: +86-187-0804-3500 (F.C.); Tel./Fax: +86-029-85310517 (L.L.); Fax: +86-0894-5822924 (F.C.)
| | - Zhankun Tan
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Z.T.); (X.G.); (L.Y.); (Z.L.)
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Z.T.); (X.G.); (L.Y.); (Z.L.)
| | - Lin Yang
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Z.T.); (X.G.); (L.Y.); (Z.L.)
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Z.T.); (X.G.); (L.Y.); (Z.L.)
| |
Collapse
|
30
|
Aziz G, Zaidi A, Bakht U, Parveen N, Ahmed I, Haider Z, Muhammad T. Microbial safety and probiotic potential of packaged yogurt products in Pakistan. J Food Saf 2019. [DOI: 10.1111/jfs.12741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghazal Aziz
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| | - Arsalan Zaidi
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| | - Urooj Bakht
- Institute of Biotechnology and Molecular BiologyUniversity of Lahore (UoL) Lahore Punjab Pakistan
| | - Naila Parveen
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
| | - Ibrar Ahmed
- R&D Section, Alpha Genomics (Pvt) Ltd Islamabad Pakistan
| | - Zeeshan Haider
- Institute of Biotechnology and Molecular BiologyUniversity of Lahore (UoL) Lahore Punjab Pakistan
| | - Tariq Muhammad
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| |
Collapse
|
31
|
Mora D, Filardi R, Arioli S, Boeren S, Aalvink S, de Vos WM. Development of omics-based protocols for the microbiological characterization of multi-strain formulations marketed as probiotics: the case of VSL#3. Microb Biotechnol 2019; 12:1371-1386. [PMID: 31402586 PMCID: PMC6801179 DOI: 10.1111/1751-7915.13476] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
The growing commercial interest in multi-strain formulations marketed as probiotics has not been accompanied by an equal increase in the evaluation of quality levels of these biotechnological products. The multi-strain product VSL#3 was used as a model to setup a microbiological characterization that could be extended to other formulations with high complexity. Shotgun metagenomics by deep Illumina sequencing was applied to DNA isolated from the commercial VSL#3 product to confirm strains identity safety and composition. Single-cell analysis was used to evaluate the cell viability, and β-galactosidase and urease activity have been used as marker to monitor the reproducibility of the production process. Similarly, these lots were characterized in detail by a metaproteomics approach for which a robust protein extraction protocol was combined with advanced mass spectrometry. The results identified over 1600 protein groups belonging to all strains present in the VSL#3 formulation. Of interest, only 3.2 % proteins showed significant differences mainly related to small variations in strain abundance. The protocols developed in this study addressed several quality criteria that are relevant for marketed multi-strain products and these represent the first efforts to define the quality of complex probiotic formulations such as VSL#3.
Collapse
Affiliation(s)
- Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Rossella Filardi
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Steven Aalvink
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
| | - Willem M. de Vos
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
- Human Microbiome Research Program Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
32
|
Zimmer C, Dorea C. Enumeration of Escherichia coli in Probiotic Products. Microorganisms 2019; 7:microorganisms7100437. [PMID: 31614460 PMCID: PMC6843337 DOI: 10.3390/microorganisms7100437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023] Open
Abstract
Probiotic products typically take the form of oral supplements or food-based products containing microorganisms, typically bacteria. The number of bacteria present in a dose of probiotic can be several orders of magnitude lower than the label claims, and in some cases, undetectable. The objective of this study was to assess probiotic products containing Escherichia coli to verify manufacturer claims, which have not yet been independently assessed, regarding the number of viable E. coli per suggested dose. It was found that the products tested contained E. coli in numbers several orders of magnitude less than claimed, and when subjected to simulated stomach conditions, the number of viable E. coli was significantly reduced.
Collapse
Affiliation(s)
- Camille Zimmer
- Department of Civil Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Caetano Dorea
- Department of Civil Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
33
|
Talib N, Mohamad NE, Yeap SK, Hussin Y, Aziz MNM, Masarudin MJ, Sharifuddin SA, Hui YW, Ho CL, Alitheen NB. Isolation and Characterization of Lactobacillus spp. from Kefir Samples in Malaysia. Molecules 2019; 24:molecules24142606. [PMID: 31319614 PMCID: PMC6680525 DOI: 10.3390/molecules24142606] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Kefir is a homemade, natural fermented product comprised of a probiotic bacteria and yeast complex. Kefir consumption has been associated with many advantageous properties to general health, including as an antioxidative, anti-obesity, anti-inflammatory, anti-microbial, and anti-tumor moiety. This beverage is commonly found and consumed by people in the United States of America, China, France, Brazil, and Japan. Recently, the consumption of kefir has been popularized in other countries including Malaysia. The microflora in kefir from different countries differs due to variations in culture conditions and the starter media. Thus, this study was aimed at isolating and characterizing the lactic acid bacteria that are predominant in Malaysian kefir grains via macroscopic examination and 16S ribosomal RNA gene sequencing. The results revealed that the Malaysian kefir grains are dominated by three different strains of Lactobacillus strains, which are Lactobacillus harbinensis, Lactobacillusparacasei, and Lactobacillus plantarum. The probiotic properties of these strains, such as acid and bile salt tolerances, adherence ability to the intestinal mucosa, antibiotic resistance, and hemolytic test, were subsequently conducted and extensively studied. The isolated Lactobacillus spp. from kefir H maintained its survival rate within 3 h of incubation at pH 3 and pH 4 at 98.0 ± 3.3% and 96.1 ± 1.7% of bacteria growth and exhibited the highest survival at bile salt condition at 0.3% and 0.5%. The same isolate also showed high adherence ability to intestinal cells at 96.3 ± 0.01%, has antibiotic resistance towards ampicillin, penicillin, and tetracycline, and showed no hemolytic activity. In addition, the results of antioxidant activity tests demonstrated that isolated Lactobacillus spp. from kefir G possessed high antioxidant activities for total phenolic content (TPC), total flavonoid content (TFC), ferric reducing ability of plasma (FRAP), and 1,1-diphenyl-2-picryl-hydrazine (DPPH) assay compared to other isolates. From these data, all Lactobacillus spp. isolated from Malaysian kefir serve as promising candidates for probiotics foods and beverage since they exhibit potential probiotic properties and antioxidant activities.
Collapse
Affiliation(s)
- Noorshafadzilah Talib
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
| | - Yazmin Hussin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia
| | - Muhammad Nazirul Mubin Aziz
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia
| | - Shaiful Adzni Sharifuddin
- Department of Bioprocess Biotechnology, Malaysian Agriculture Research Development Institute, Serdang, Selangor 43400, Malaysia
| | - Yew Woh Hui
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
34
|
Valente GLC, Acurcio LB, Freitas LPV, Nicoli JR, Silva AM, Souza MR, Penna CFAM. Short communication: In vitro and in vivo probiotic potential of Lactobacillus plantarum B7 and Lactobacillus rhamnosus D1 isolated from Minas artisanal cheese. J Dairy Sci 2019; 102:5957-5961. [PMID: 31128873 DOI: 10.3168/jds.2018-15938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/23/2019] [Indexed: 12/15/2022]
Abstract
Some Lactobacillus strains may contribute to the health of the host when administered in adequate concentrations, demonstrating their probiotic potential. In contrast, Listeria monocytogenes is a foodborne pathogen that can cause enteropathy, meningoencephalitis, abortion, and septicemia. The aim of this survey was to evaluate the in vitro and in vivo probiotic potential of Lactobacillus plantarum B7 and Lactobacillus rhamnosus D1, isolated from Minas artisanal cheese of the Serra da Canastra (Minas Gerais, Brazil), against Lis. monocytogenes. We submitted B7 and D1 to in vitro testing (antibiogram, tolerance to bile salts and artificial gastric fluid, and spot-on-lawn) and in vivo testing (relative weight gain in mice). Both Lactobacillus strains demonstrated in vitro inhibitory activity against Lis. monocytogenes, as well as sensitivity to antimicrobials and resistance to gastric acids and bile salts. In the in vivo assays, mice treated with D1 gained more weight than mice in the other groups. These results indicate that D1 could have higher probiotic potential than B7 because improvements in feed conversion may help animals fight infection.
Collapse
Affiliation(s)
- G L C Valente
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - L B Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - L P V Freitas
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - J R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - A M Silva
- Departamento de Engenharia de Alimentos, Universidade Federal de São João del-Rei, Sete Lagoas, 35701-970, Brazil
| | - M R Souza
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - C F A M Penna
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
35
|
Celandroni F, Vecchione A, Cara A, Mazzantini D, Lupetti A, Ghelardi E. Identification of Bacillus species: Implication on the quality of probiotic formulations. PLoS One 2019; 14:e0217021. [PMID: 31107885 PMCID: PMC6527297 DOI: 10.1371/journal.pone.0217021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022] Open
Abstract
Spores of several Bacillus species have long history of consumption and safe use as probiotics and a variety of formulations containing these organisms are available in the global market. Considering the difficulties in the identification of Bacillus species and the poor microbiological quality of many probiotic formulations, we used three up-to-date methodological approaches for analyzing the content of ten formulations marketed in Italy and labeled to contain Bacillus spores. We compared the performance of biochemical tests based on the BCL Vitek2 card and MALDI-TOF mass spectrometry, using 16S rDNA sequencing as the reference technique. The BCL card performed well in identifying all Bacillus probiotic strains as well as the Bruker’s MALDI Biotyper. Nevertheless, the MALDI score values were sometimes lower than those indicated by the manufacturer for correct species identification. Contaminant bacteria (Lysinibacillus fusiformis, Acinetobacter baumannii, Bacillus cereus, Brevibacillus choshinensis, Bacillus licheniformis, Bacillus badius) were detected in some formulations. Characterization of the B. cereus contaminant showed the potential pathogenicity of this strain. Microbial enumeration performed by the plate count method revealed that the number of viable cells contained in many of the analyzed products differed from the labeled amount. Overall, our data show that only two of the ten analyzed formulations qualitatively and quantitatively respect what is on the label. Since probiotic properties are most often strain specific, molecular typing of isolates of the two most common Bacillus species, B. clausii and B. coagulans, was also performed. In conclusion, the majority of the analyzed products do not comply with quality requirements, most likely leading to reduced/absent efficacy of the preparation and representing a potential infective risk for consumers.
Collapse
Affiliation(s)
- Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Vecchione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alice Cara
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
36
|
Jiang B, Li Z, Ou B, Duan Q, Zhu G. Targeting ideal oral vaccine vectors based on probiotics: a systematical view. Appl Microbiol Biotechnol 2019; 103:3941-3953. [PMID: 30915504 DOI: 10.1007/s00253-019-09770-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
Probiotics have great potential to be engineered into oral vaccine delivery systems, which can facilitate elicitation of mucosal immunity without latent risks of pathogenicity. Combined with the progressive understanding of probiotics and the mucosal immune system as well as the advanced biotechniques of genetic engineering, the development of promising oral vaccine vectors based on probiotics is available while complicated and demanding. Therefore, a systematical view on the design of practical probiotic vectors is necessary, which will help to logically analyze and resolve the problems that might be neglected during our exploration. Here, we attempt to systematically summarize several fundamental issues vital to the effectiveness of the vector of probiotics, including the stability of the engineered vectors, the optimization of antigen expression, the improvement of colonization, and the enhancement of immunoreactivity. We also compared the existent strategies and some developing ones, attempting to figure out an optimal strategy that might deserve to be referred in the future development of oral vaccine vectors based on probiotics.
Collapse
Affiliation(s)
- Boyu Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Zhendong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.,College of Life Science, Zhaoqing University, Zhaoqing, 526061, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| |
Collapse
|
37
|
Sirichokchatchawan W, Temeeyasen G, Nilubol D, Prapasarakul N. Protective Effects of Cell-Free Supernatant and Live Lactic Acid Bacteria Isolated from Thai Pigs Against a Pandemic Strain of Porcine Epidemic Diarrhea Virus. Probiotics Antimicrob Proteins 2019; 10:383-390. [PMID: 28434154 PMCID: PMC7091344 DOI: 10.1007/s12602-017-9281-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus which causes severe diarrhea and fatal dehydration in piglets. In general, probiotic supplements could enhance recovery and protect piglets against enteric pathogens. Seven local lactic acid bacteria (LAB), (Ent. faecium 79N and 40N, Lact. plantarum 22F, 25F and 31F, Ped. acidilactici 72N and Ped. pentosaceus 77F) from pig feces were well-characterized as high potential probiotics. Cell-free supernatants (CFS) and live LAB were evaluated for antiviral activities by co-incubation on Vero cells and challenged with a pandemic strain of PEDV isolated from pigs in Thailand. Cell survival and viral inhibition were determined by cytopathic effect (CPE) reduction assay and confirmed by immunofluorescence. At 1:16, CFS dilution (pH 6.3–6.8) showed no cytotoxicity in Vero cells and was therefore used as the dilution for antiviral assays. The diluted CFS of all Lact. plantarum showed the antiviral effect against PEDV; however, the same antiviral effect could not be observed in Ent. faecium and Pediococcus strains. In competitive experiment, only live Lact. plantarum 25F and Ped. pentosaceus 77F showed CPE reduction in the viral infected cells to <50% observed field area. This study concluded that the CFS of all tested lactobacilli, and live Lact. plantarum (22F and 25F) and Pediococcus strains 72N and 77F could reduce infectivity of the pandemic strain of PEDV from pigs in Thailand on the target Vero cells.
Collapse
Affiliation(s)
- Wandee Sirichokchatchawan
- Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Gun Temeeyasen
- Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dachrit Nilubol
- Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuvee Prapasarakul
- Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
38
|
Aragón-Rojas S, Ruiz-Pardo RY, Hernández-Sánchez H, Quintanilla-Carvajal MX. Optimization of the production and stress resistance of the probioticLactobacillus fermentumK73 in a submerged bioreactor using a whey-based culture medium. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1527785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Stephanía Aragón-Rojas
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente Común, Chía, Colombia
| | - Ruth Y. Ruiz-Pardo
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente Común, Chía, Colombia
| | - Humberto Hernández-Sánchez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Zacatenco, Ciudad de México, México
| | | |
Collapse
|
39
|
Tang H, Qian B, Xia B, Zhuan Y, Yao Y, Gan R, Zhang J. Screening of lactic acid bacteria isolated from fermented
Cornus officinalis
fruits for probiotic potential. J Food Saf 2018. [DOI: 10.1111/jfs.12565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Huiqin Tang
- Bor S. Luh Food Safety Research Center, School of Agriculture and BiologyShanghai Jiao Tong University Shanghai China
| | - Bingjun Qian
- Bor S. Luh Food Safety Research Center, School of Agriculture and BiologyShanghai Jiao Tong University Shanghai China
- Department of Preventive MedicineJiangsu Vocational College of Medicine Yancheng Jiangsu China
| | - Bei Xia
- Bor S. Luh Food Safety Research Center, School of Agriculture and BiologyShanghai Jiao Tong University Shanghai China
| | - Yi Zhuan
- Bor S. Luh Food Safety Research Center, School of Agriculture and BiologyShanghai Jiao Tong University Shanghai China
| | - Yunqiu Yao
- Bor S. Luh Food Safety Research Center, School of Agriculture and BiologyShanghai Jiao Tong University Shanghai China
| | - Renyou Gan
- Bor S. Luh Food Safety Research Center, School of Agriculture and BiologyShanghai Jiao Tong University Shanghai China
| | - Jianhua Zhang
- Bor S. Luh Food Safety Research Center, School of Agriculture and BiologyShanghai Jiao Tong University Shanghai China
| |
Collapse
|
40
|
Reyes V, Chotiko A, Chouljenko A, Sathivel S. Viability of Lactobacillus acidophilus NRRL B-4495 encapsulated with high maize starch, maltodextrin, and gum arabic. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Aragón-Rojas S, Quintanilla-Carvajal MX, Hernández-Sánchez H. Multifunctional Role of the Whey Culture Medium in the Spray Drying Microencapsulation of Lactic Acid Bacteria. Food Technol Biotechnol 2018; 56:381-397. [PMID: 30510482 PMCID: PMC6233008 DOI: 10.17113/ftb.56.03.18.5285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/20/2018] [Indexed: 01/03/2023] Open
Abstract
This study aims to evaluate the multifunctional role of whey culture medium during the spray drying microencapsulation of Lactobacillus fermentum K73. Whey culture medium containing growing microorganisms served to hydrate different mixtures (gum arabic, maltodextrin and whey). We evaluated the use of these mixtures as carbon sources and their protective effects on simulated gastrointestinal conditions. The optimal mixture was spray-dried while varying the outlet temperature and atomizing pressure using a response surface design. These conditions served to evaluate microorganism survival, tolerance to gastrointestinal conditions in vitro, physicochemical properties, morphometric features and stability at 4, 25 and 37 °C. Lactobacillus fermentum K73 replicated in the carrier material. Bacterial change cycles were (-1.97±0.16) log CFU/g after the drying process and
(-0.61±0.08) and (-0.23±0.00) log CFU/g after exposure of the capsules to simulated gastric pH and bile salt content, respectively. The physicochemical properties and morphometric features were within the normal ranges for a powder product. The powder was stable at a storage temperature of 4 °C. The spray drying of the whey culture medium with growing microorganisms using the optimized drying conditions was successful. This study demonstrates the use of whey culture medium as a component of carrier material or as the carrier material itself, as well as its protective effects during drying, under simulated gastrointestinal conditions, and at varied storage temperatures.
Collapse
Affiliation(s)
- Stephania Aragón-Rojas
- Biosciences Doctoral Program, Faculty of Engineering, University of La Sabana, Common Campus Bridge, Km. 7 Bogota North Freeway, Chía, 140013 Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Biosciences Doctoral Program, Faculty of Engineering, University of La Sabana, Common Campus Bridge, Km. 7 Bogota North Freeway, Chía, 140013 Cundinamarca, Colombia
| | - Humberto Hernández-Sánchez
- National School of Biological Sciences, National Polytechnic Institute, Av. Wilfrido Massieu esq. Cda. M. Stampa, UP Adolfo López Mateos, 07738 Ciudad de Mexico, Mexico
| |
Collapse
|
43
|
Lokapirnasari WP, Sahidu AM, Soepranianondo K, Supriyanto A, Yulianto AB, Al Arif A. Potency of lactic acid bacteria isolated from balinese bovine ( Bos sondaicus) intestinal waste from slaughterhouse to improve nutrient content of wheat pollard as animal feedstuff by fermentation process. Vet World 2018; 11:1127-1134. [PMID: 30250373 PMCID: PMC6141298 DOI: 10.14202/vetworld.2018.1127-1134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
Aim: The purpose of this study was to know the genetic and biochemical identification of isolated lactic acid bacteria (LAB) from Balinese bovine (Bos sondaicus) intestinal waste, acidity, and ox bile salts and to inhibit the growth pathogen of Staphylococcus aureus and Escherichia coli and the potential of those isolated to improve nutrient value of wheat pollard as animal feed ingredient by fermentation process. Materials and Methods: This research was divided into three stages. The first stage, isolated LAB were obtained from the bovine intestines at a slaughterhouse in Indonesia. Small intestinal samples were collected from 10 healthy Balinese beef cattle (B. sondaicus). The isolated LAB were identified by VITEK 2, polymerase chain reaction, and 16S rDNA. The basic local alignment search tool (BLAST) was performed to determine the phylogenetic tree. The second stage, the LAB were screened for their tolerance at pH 2, 3, and 4; bile salt, and antagonistic to enteric pathogen. In the third stage, to determine the potency of this isolate to increase nutrient content of wheat pollard by facultative anaerobe fermentation for 3 and 5 days. Results: The result of the first stage showed that the isolate could be identified as Lactobacilluscasei WPL 315. The result of the second stage showed that the isolate tolerance to low pH (pH 2, pH 3, and pH4) for 90 min and 24 h, and this isolate had viability tolerance in 0.3% bile salt. The isolate can inhibit S. aureus and E. coli. The result of the third stage by proximate analysis showed that crude protein increased by 23.08% after fermentation, while crude fiber decreased by 61.24% on the level 0.5% L. casei subsp. WPL 315 in the 3-day fermentation. Conclusion: Based on the results, it showed that L. casei WPL 315 derived from indigenous intestinal Balinese beef cattle (B. sondaicus) has tolerant characteristic on acidity and ox bile salts, has antagonistic effect against E. coli and S. aureus, and has the ability to increase crude protein and decrease crude fiber content of wheat pollard. It would be interesting to determine whether the strain has a probiotic candidate.
Collapse
Affiliation(s)
- Widya Paramita Lokapirnasari
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia
| | - Adriana Monica Sahidu
- Department of Marine, Faculty of Fisheries and Marine, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia
| | - Koesnoto Soepranianondo
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia
| | - Agus Supriyanto
- Department of Biology, Faculty of Science and Technology, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia
| | - Andreas Berny Yulianto
- Doctoral of Veterinary Science, Faculty of Veterinary Medicine, Jl. Mulyorejo, Campus C, Universitas Airlangga, Surabaya, Indonesia
| | - Anam Al Arif
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Jl. Mulyorejo, Kampus C, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
44
|
Dias PA, Silva DT, Timm CD. ATIVIDADE ANTIMICROBIANA DE MICRORGANISMOS ISOLADOS DE GRÃOS DE KEFIR. CIÊNCIA ANIMAL BRASILEIRA 2018. [DOI: 10.1590/1809-6891v19e-40548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.
Collapse
|
45
|
Sirichokchatchawan W, Pupa P, Praechansri P, Am-In N, Tanasupawat S, Sonthayanon P, Prapasarakul N. Autochthonous lactic acid bacteria isolated from pig faeces in Thailand show probiotic properties and antibacterial activity against enteric pathogenic bacteria. Microb Pathog 2018; 119:208-215. [PMID: 29678738 DOI: 10.1016/j.micpath.2018.04.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/08/2018] [Accepted: 04/16/2018] [Indexed: 11/19/2022]
Abstract
Lactic acid bacteria (LAB) play an important role in pig health and performance that arises from their beneficial impacts on the balance of gastrointestinal microbes, ability to fight enteric pathogens, and capacity to support the immune system. The aim of this study was to evaluate the functional and safety aspects of five previously isolated autochthonous LAB strains, (Lactobacillus plantarum 22F, 25F and 31F, Pediococcus acidilactici 72N and Pediococcus pentosaceus 77F) from pig faeces as potential probiotics for a pig feed supplement. The functional and safety properties of the strains were assessed by in vitro tests. The functional properties tested were their abilities in tolerating low pH values under simulated gastric conditions, their cell surface properties (hydrophobicity, auto- and co-aggregation), antibacterial activity against the common enteric pathogenic bacteria in pigs (such as pathogenic Escherichia coli, Salmonella Choleraesuis and Streptococcus suis), and diacetyl production. The safety of the strains was analyzed based on the absent of haemolysis on blood and bile salt hydrolase activity. Although all strains demonstrated diacetyl production, good survivability and antibacterial activities, L. plantarum 22F and 25F showed the best performance with the strongest antibacterial actions against the indicator pathogens. Of the strains, only P. pentosaceus 77F exhibited haemolysis or bile salt hydrolase activity. Furthermore, a principal component analysis revealed that L. plantarum 22F possessed superior functional and safety aspects compared to the other four autochthonous strains and to reference strains L. plantarum JCM 1149 and P. acidilactici DSM 20284. Further in vivo studies using oral administration of the strains are justified to assess their effectiveness as feed supplements for pigs.
Collapse
Affiliation(s)
- Wandee Sirichokchatchawan
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Puwiya Pupa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasert Praechansri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nutthee Am-In
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
46
|
Vecchione A, Celandroni F, Mazzantini D, Senesi S, Lupetti A, Ghelardi E. Compositional Quality and Potential Gastrointestinal Behavior of Probiotic Products Commercialized in Italy. Front Med (Lausanne) 2018; 5:59. [PMID: 29564327 PMCID: PMC5845905 DOI: 10.3389/fmed.2018.00059] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/19/2018] [Indexed: 01/21/2023] Open
Abstract
Recent guidelines indicate that oral probiotics, living microorganisms able to confer a health benefit on the host, should be safe for human consumption, when administered in a sufficient amount, and resist acid and bile to exert their beneficial effects (e.g., metabolic, immunomodulatory, anti-inflammatory, competitive). This study evaluated quantitative and qualitative aspects and the viability in simulated gastric and intestinal juices of commercial probiotic formulations available in Italy. Plate counting and MALDI-TOF mass spectrometry were used to enumerate and identify the contained organisms. In vitro studies with two artificial gastric juices and pancreatin-bile salt solution were performed to gain information on the gastric tolerance and bile resistance of the probiotic formulations. Most preparations satisfied the requirements for probiotics and no contaminants were found. Acid resistance and viability in bile were extremely variable depending on the composition of the formulations in terms of contained species and strains. In conclusion, this study indicates good microbiological quality but striking differences in the behavior in the presence of acids and bile for probiotic formulations marketed in Italy.
Collapse
Affiliation(s)
- Alessandra Vecchione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sonia Senesi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy,Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy,*Correspondence: Emilia Ghelardi,
| |
Collapse
|
47
|
Mancini A, Campagna F, Amodio P, Tuohy KM. Gut : liver : brain axis: the microbial challenge in the hepatic encephalopathy. Food Funct 2018; 9:1373-1388. [PMID: 29485654 DOI: 10.1039/c7fo01528c] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a debilitating neuropsychiatric condition often associated with acute liver failure or cirrhosis. Advanced liver diseases are characterized by a leaky gut and systemic inflammation. There is strong evidence that the pathogenesis of HE is linked to a dysbiotic gut microbiota and to harmful microbial by-products, such as ammonia, indoles, oxindoles and endotoxins. Increased concentrations of these toxic metabolites together with the inability of the diseased liver to clear such products is thought to play an important patho-ethiological role. Current first line clinical treatments target microbiota dysbiosis by decreasing the counts of pathogenic bacteria, blood endotoxemia and ammonia levels. This review will focus on the role of the gut microbiota and its metabolism in HE and advanced cirrhosis. It will critically assess data from different clinical trials measuring the efficacy of the prebiotic lactulose, the probiotic VSL#3 and the antibiotic rifaximin in treating HE and advanced cirrhosis, through gut microbiota modulation. Additionally data from Randomised Controlled Trials using pre-, pro- and synbiotic will be also considered by reporting meta-analysis studies. The large amount of existing data showed that HE is a clear example of how an altered gut microbiota homeostasis can influence and impact on physiological functions outside the intestine, with implication for host health at the systems level. Nevertheless, a strong effort should be made to increase the information on gut microbiota ecology and its metabolic function in liver diseases and HE.
Collapse
Affiliation(s)
- Andrea Mancini
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Trento, Italy.
| | - Francesca Campagna
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Piero Amodio
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Trento, Italy.
| |
Collapse
|
48
|
Camilletti AL, Ruíz FO, Pascual LM, Barberis IL. First Steps towards the Pharmaceutical Development of Ovules Containing Lactobacillus Strains: Viability and Antimicrobial Activity as Basic First Parameters in Vaginal Formulations. AAPS PharmSciTech 2018; 19:886-895. [PMID: 29043604 DOI: 10.1208/s12249-017-0895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
In the majority of Latin-American countries, including Argentina, there is a limited availability of vaginal bioproducts containing probiotics in the market. In addition, the conventional treatments of genital tract infections in women represent a high cost to the public health systems. The future development of this type of bioproducts that employ specific lactobacilli strains would not only have a meaningful impact on women's health but would also represent a significant challenge to the pharmaceutical industry. The aims of the work described in this paper were (i) to study different pharmaceutical formulations of vaginal ovules containing Lactobacillus fermentum L23 and L. rhamnosus L60, to determine in which formulation lactobacilli viability was sustained for longer time and (ii) to evaluate if probiotic strains maintained both the antimicrobial activity and biofilm-producing ability after being recovered from the ovules. In this study, we developed and characterized three pharmaceutical formulations containing different glycerol amounts and specific lactobacilli strains. Three relevant parameters, cell viability, antimicrobial activity, and biofilm production, by lactobacilli recovered from the ovules were tested. Although the viability of L23 and L60 strains was mainly influenced by high ovule's glycerol proportion, they survived at 4 °C during the 180 days. Both lactobacilli's antimicrobial activity and biofilm-producing ability were maintained for all treatments. In conclusion, employing a much reduced number of components, we were able to select the most suitable pharmaceutical formulation which maintained not only lactobacilli viability for a long period of time but also their antimicrobial activity and biofilm-producing ability.
Collapse
|
49
|
Gómez-Mascaraque LG, Fabra MJ, Castro-Mayorga JL, Sánchez G, Martínez-Sanz M, López-Rubio A. Nanostructuring Biopolymers for Improved Food Quality and Safety. BIOPOLYMERS FOR FOOD DESIGN 2018. [PMCID: PMC7150097 DOI: 10.1016/b978-0-12-811449-0.00002-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Food-grade biopolymers, apart from their inherent nutritional properties, can be tailored designed for improving food quality and safety, either serving as delivery vehicles for bioactive molecules, or as novel packaging components, not only improving the transport properties of biobased packaging structures, but also imparting active antibacterial and antiviral properties. In this chapter, the potential of different food-grade biopolymers (mainly proteins and carbohydrates but also some biopolyesters) to serve as encapsulating matrices for the protection of sensitive bioactives or as nanostructured packaging layers to improve transport properties and control the growth of pathogenic bacteria and viruses are described based on some developments carried out by the authors, as well as the most prominent works found in literature in this area.
Collapse
Affiliation(s)
| | - Maria J. Fabra
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
| | | | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain,University of Valencia, Valencia, Spain
| | - Marta Martínez-Sanz
- Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW, Australia
| | - Amparo López-Rubio
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
| |
Collapse
|
50
|
Shin HS, Yoo SH, Jang JA, Won JY, Kim CH. Probiotic Properties of Lactic Acid Bacteria isolated from Feces
and Kimchi. ACTA ACUST UNITED AC 2017. [DOI: 10.22424/jmsb.2017.35.4.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|