1
|
Wang Z, Li S, Zhao X, Liu Z, Shi R, Hao M. Applications of bacterial cellulose in the food industry and its health-promoting potential. Food Chem 2024; 464:141763. [PMID: 39467502 DOI: 10.1016/j.foodchem.2024.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Bacterial cellulose (BC) is a naturally occurring biomaterial with a wide range of potential applications in the food industry because of its exceptional mechanical qualities, unique nanofiber structure, high purity, and outstanding biocompatibility. Beyond its physical attributes, BC has gained interest recently due to research demonstrating its potential health benefits as a functional food ingredient. This article examines the many uses of BC in the food business, with a focus on how it may enhance food texture, operate as a bioactive carrier, and have promise in the packaging sector. Further research was done on the health-promoting properties of BC in functional foods, particularly with regard to its functions as a blood glucose regulator, and gastrointestinal health. This review seeks to bring fresh ideas for the study of bioactive components in the food industry by providing a summary of the existing research and demonstrating the possible role of BC in food. It also suggests future paths for research.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Shuangjun Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, PR China; National Engineering Laboratory of BioResource EcoUtilization, Harbin 150040, PR China.
| | - Zhicun Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Aulin Collage, Northeast Forestry University, Harbin 150040, PR China
| | - Ruyue Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Mengyuan Hao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| |
Collapse
|
2
|
Kho K, Kadar AD, Bani MD, Pramanda IT, Martin L, Chrisdianto M, Pratama F, Devanthi PVP. The Potential of Pediococcus acidilactici Cell-Free Supernatant as a Preservative in Food Packaging Materials. Foods 2024; 13:644. [PMID: 38472756 DOI: 10.3390/foods13050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
This study delves into the production and antimicrobial characteristics of cell-free supernatants from Pediococcus acidilactici (CFSs-Pa). Antimicrobial activity was initially observed in CFS-Pa harvested after 12 h of incubation and increased up to the late stationary phase at 48 h. The increase in antimicrobial activity did not align with total protein content, pointing to other factors linked to the accumulation of organic acids, particularly lactic acid. The SDS-PAGE analysis also indicated that the expected proteinaceous compound (pediocin) was not observed in CFS-Pa. Further investigations suggested that the antimicrobial properties of CFS-Pa were exclusively due to organic acids. The MIC values confirmed potent antimicrobial activity, particularly at a 10% dilution of CFS-Pa in MRS broth. The time-kill assays demonstrated bactericidal activity against EHEC, Listeria monocytogenes, and Staphylococcus aureus by 12 h, 18 h, and 24 h using a 10% dilution of CFS-Pa. Additionally, CFS-Pa exhibited dose-dependent antioxidant activity, requiring a 70% (v/v) concentration to inhibit DPPH scavenging activity by 50%. All the experimental results suggested potential applications of CFS-Pa in food preservation. An attempt to incorporate CFS-Pa into bacterial cellulose (BC) for edible food packaging demonstrated promising antimicrobial results, particularly against L. monocytogenes and S. aureus, with room for optimization.
Collapse
Affiliation(s)
- Katherine Kho
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Adinda Darwanti Kadar
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Mario Donald Bani
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Ihsan Tria Pramanda
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Leon Martin
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Matthew Chrisdianto
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Ferren Pratama
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Putu Virgina Partha Devanthi
- Department of Biotechnology, Faculty of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| |
Collapse
|
3
|
Cybulska J, Cieśla J, Kurzyna-Szklarek M, Szymańska-Chargot M, Pieczywek PM, Zdunek A. Influence of pectin and hemicelluloses on physical properties of bacterial cellulose. Food Chem 2023; 429:136996. [PMID: 37506661 DOI: 10.1016/j.foodchem.2023.136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
The properties of bacterial cellulose (BC)-based films produced by in situ biosynthesis with various polysaccharides (water-soluble pectin, arabinan, rhamnogalacturonan I, arabinoxylan, xyloglucan, glucomannan) were investigated. The addition of the polysaccharides to the bacterial growth environment changed the composition of the films by incorporating characteristic monosaccharides. BC-based films contained up to 26.7 % of non-cellulosic polysaccharides. The applied modification had a clear impact on water sorption and caused a decrease in the thermal stability of most BC films, which was connected with the depletion of geometrical dimensions of cellulose nanofibers observed with AFM. The FT-IR and Raman spectra demonstrated a decrease in % Iα of cellulose films, most notably for xyloglucan and glucomannan, as well as a change in their degree of crystallinity and the length of cellulose chains. The addition of xyloglucan had the most pronounced effect on film hardening; the other additives had a similar but lesser effect.
Collapse
Affiliation(s)
- Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Jolanta Cieśla
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | | | | - Piotr M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
4
|
Elbanna AM, Sabala RF, Abd-Elghany SM, Imre K, Morar A, Herman V, Sallam KI. Nisin and Organic Acid Salts Improved the Microbial Quality, Extended the Shelf Life, and Maintained the Sensory Attributes of Semidry Beef Luncheon Marketed at Adverse (35-40 °C) Ambient Summer Temperatures. Foods 2023; 12:4283. [PMID: 38231702 DOI: 10.3390/foods12234283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Semidry beef luncheon may undergo deteriorative changes during storage at ambient temperatures in tropical and subtropical regions including Egypt. This study was conducted in a meat plant in Egypt with the aim of overcoming the economic losses from the returns of spoiled unsold beef luncheon displayed in grocery stores at adverse summer temperatures of 37 °C or more. Ten approaches were applied using different preservatives, comprising sodium nitrite, nisin, potassium sorbate, and organic acid salts (a combination of sodium lactate, sodium acetate, and sodium diacetate). In addition, the product was cooked at different temperatures and was stored for 21 days at 37 °C, during which time the shelf life, microbial quality, pH, and sensory attributes were investigated. By Day 21 of storage, the luncheon contained 50 mg/kg sodium nitrite, 25 mg/kg nisin, and 1000 mg/kg organic acid salts and, when cooked at a final core temperature of 92 °C, exhibited reductions in aerobic plate count, anaerobic plate count, lactic acid bacterial count, and mold and yeast counts by 4.32, 3.54, 3.47, and 1.89 log10 CFU/g, respectively, when compared with the control. The sensory attributes and pH were also maintained in the final products of such treatment, with no product return and the avoidance of economic loss. This study presents a novel approach for solving the major problem of the deteriorative changes that occur in semidry luncheon sausage and similar meat products which require rejection with a huge economic loss, especially in tropical and semitropical areas of the world that have similar problems of high climatic temperatures and a low availability of energy or technological resources.
Collapse
Affiliation(s)
- Ahmed Medhat Elbanna
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Fahmi Sabala
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samir Mohammed Abd-Elghany
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timișoara, 300645 Timișoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timișoara, 300645 Timișoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Mardawati E, Rahmah DM, Rachmadona N, Saharina E, Pertiwi TYR, Zahrad SA, Ramdhani W, Srikandace Y, Ratnaningrum D, Endah ES, Andriani D, Khoo KS, Pasaribu KM, Satoto R, Karina M. Pineapple core from the canning industrial waste for bacterial cellulose production by Komagataeibacter xylinus. Heliyon 2023; 9:e22010. [PMID: 38034652 PMCID: PMC10682637 DOI: 10.1016/j.heliyon.2023.e22010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
To address the high production cost associated with bacterial cellulose (BC) production using the Hestrin-Schramm (HS) medium, alternative agricultural wastes have been investigated as potential low-cost resources. This study aims to utilize pineapple core from pineapple canning industry waste as a carbon source to enhance the bacterial growth of Komagataeibacter xylinus and to characterize the physical and mechanical properties of the resulting BC. To assess growth performance, commercial sugar at concentrations of 0, 2.5, and 5.0 % (w/v) was incorporated into the medium. Fermentation was conducted under static conditions at room temperature for 5, 10, and 15 days. The structural and physical properties of BC were characterized using SEM, FTIR, XRD, and DSC. With the exception of crystallinity, BC produced from the pineapple core medium exhibited comparable characteristics to BC produced in the HS medium. These findings highlight the potential of utilizing pineapple core, a byproduct of the canning industry, as an economically viable nutrient source for BC production.
Collapse
Affiliation(s)
- Efri Mardawati
- Department of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Devi Maulida Rahmah
- Department of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Nova Rachmadona
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Elen Saharina
- Department of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, 45365, Indonesia
| | - Tanti Yulianti Raga Pertiwi
- Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha No.10, Bandung, 40132, Indonesia
| | - Siti Aisyah Zahrad
- School of Life Sciences and Technology ITB, Bandung Institute of Technology, Jl. Ganesha No.10, Bandung, 40132, Indonesia
| | - Wahyu Ramdhani
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Kompleks BRIN, Jalan Sangkuriang-Cisitu, Bandung, 40135, Indonesia
| | - Yoice Srikandace
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Kompleks BRIN, Jalan Sangkuriang-Cisitu, Bandung, 40135, Indonesia
| | - Diah Ratnaningrum
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong Science Center, Jl. Raya Bogor Km. 46, Bogor, Indonesia
| | - Een Sri Endah
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong Science Center, Jl. Raya Bogor Km. 46, Bogor, Indonesia
| | - Dian Andriani
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong Science Center, Jl. Raya Bogor Km. 46, Bogor, Indonesia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Khatarina Meldawati Pasaribu
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
- Research Center for Biomass and Bio-product, National Research and Innovation Agency, Jalan Raya Jakarta-Bogor, Km. 46, Cibinong, 16911, Indonesia
| | - Rahmat Satoto
- Research Center for Biomass and Bio-product, National Research and Innovation Agency, Jalan Raya Jakarta-Bogor, Km. 46, Cibinong, 16911, Indonesia
| | - Myrtha Karina
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
- Research Center for Biomass and Bio-product, National Research and Innovation Agency, Jalan Raya Jakarta-Bogor, Km. 46, Cibinong, 16911, Indonesia
- Research Collaboration Center for Nanocellulose, BRIN - Andalas University, Padang, 25163, Indonesia
| |
Collapse
|
6
|
Heydari-Majd M, Shadan MR, Rezaeinia H, Ghorani B, Bameri F, Sarabandi K, Khoshabi F. Electrospun plant protein-based nanofibers loaded with sakacin as a promising bacteriocin source for active packaging against Listeria monocytogenes in quail breast. Int J Food Microbiol 2023; 391-393:110143. [PMID: 36863307 DOI: 10.1016/j.ijfoodmicro.2023.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
The main objective of this study was to fabricate nanofibers from zein incorporated with two concentrations of sakacin (9 and 18 AU/mL) with anti-Listeria properties by electrospinning technique. The efficacies of the resulting active nanofibers against L. innocua, in quail breast during 24 days of refrigerated storage (4 ± 1 °C) were evaluated. The minimum inhibitory concentration (MIC) of bacteriocin against L. innocua was approximate 9 AU/mL. Fourier-transform infrared spectra of bacteriocin-loaded nanofibers indicated characteristic peaks of zein and sakacin and that the nanofibers showed an encapsulation efficiency close to 91.5 %. The thermal stability of sakacin increased by electrospinning. Scanning electron microscopy images showed that nanofibers prepared from electrospinning zein/sakacin solutions exhibited smooth and continuous nanofibers with no defects with an average diameter between 236 and 275 nm. The presence of sakacin led to decreased contact angle properties. Nanofibers with 18 AU/mL sakacin exhibited the highest zone of inhibition of 226.14 ± 8.05 mm. The lowest L. innocua (6.1 logs CFU/cm2) growth after 24 days at 4 °C were obtained in quail breast wrapped with zein containing 18 AU/mL sakacin. The results demonstrate an outlook for the potential use of zein nanofibers containing sakacin to reduce L. innocua contamination in ready-to-eat (RTE) products.
Collapse
Affiliation(s)
- Mojtaba Heydari-Majd
- Department of Nutrition, Research Centre for Clinical Immunology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Shadan
- Department of Nutrition, Research Centre for Clinical Immunology, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hassan Rezaeinia
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, P.O. Box: 91895/157/356, Mashhad, Iran.
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, P.O. Box: 91895/157/356, Mashhad, Iran
| | - Fereshteh Bameri
- Department of Food Science and Technology, Zabol University, Zabol, Iran
| | - Khashayar Sarabandi
- Department of Nutrition, Research Centre for Clinical Immunology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fahimeh Khoshabi
- Department of Nutrition Sciences, School of Public Health, Zabol University of Medical Sciences and Health Services, Zabol, Iran
| |
Collapse
|
7
|
Charoenrak S, Charumanee S, Sirisa-Ard P, Bovonsombut S, Kumdhitiahutsawakul L, Kiatkarun S, Pathom-Aree W, Chitov T, Bovonsombut S. Nanobacterial Cellulose from Kombucha Fermentation as a Potential Protective Carrier of Lactobacillus plantarum under Simulated Gastrointestinal Tract Conditions. Polymers (Basel) 2023; 15:polym15061356. [PMID: 36987137 PMCID: PMC10054358 DOI: 10.3390/polym15061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Kombucha bacterial cellulose (KBC), a by-product of kombucha fermentation, can be used as a biomaterial for microbial immobilization. In this study, we investigated the properties of KBC produced from green tea kombucha fermentation on days 7, 14, and 30 and its potential as a protective carrier of Lactobacillus plantarum, a representative beneficial bacteria. The highest KBC yield (6.5%) was obtained on day 30. Scanning electron microscopy showed the development and changes in the fibrous structure of the KBC over time. They had crystallinity indices of 90-95%, crystallite sizes of 5.36-5.98 nm, and are identified as type I cellulose according to X-ray diffraction analysis. The 30-day KBC had the highest surface area of 19.91 m2/g, which was measured using the Brunauer-Emmett-Teller method. This was used to immobilize L. plantarum TISTR 541 cells using the adsorption-incubation method, by which 16.20 log CFU/g of immobilized cells was achieved. The amount of immobilized L. plantarum decreased to 7.98 log CFU/g after freeze-drying and to 2.94 log CFU/g after being exposed to simulated gastrointestinal tract conditions (HCl pH 2.0 and 0.3% bile salt), whereas the non-immobilized culture was not detected. This indicated its potential as a protective carrier to deliver beneficial bacteria to the gastrointestinal tract.
Collapse
Affiliation(s)
- Sonthirat Charoenrak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suporn Charumanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panee Sirisa-Ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sittisin Bovonsombut
- Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | | | - Suwalee Kiatkarun
- Amazing Tea Limited Partnership (Tea Gallery Group), Chiang Mai 50000, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thararat Chitov
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sakunnee Bovonsombut
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
9
|
Wu M, Dong Q, Song X, Xu L, Xia X, Aslam MZ, Ma Y, Qin X, Wang X, Liu Y, Xu B, Liu H, Cai H, Hirata T, Li Z. Effective combination of nisin and sesamol against Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Maresca D, Mauriello G. Development of Antimicrobial Cellulose Nanofiber-Based Films Activated with Nisin for Food Packaging Applications. Foods 2022; 11:foods11193051. [PMID: 36230127 PMCID: PMC9564163 DOI: 10.3390/foods11193051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
The cellulose nanofiber (CNF) is characterized by the nano-sized (fibers with a diameter between 5 and 20 nm and a length between 2 and 10 μm), flexible and cross-linked structure that confer enhanced mechanical and gas barrier properties to cellulosic fiber-based packaging materials. The purpose of this work was to develop an antimicrobial packaging film by direct mixing nisin with CNF, followed by coating it onto polyethylene (PE), polypropylene (PP), and polylactic acid (PLA) films. The antimicrobial effectiveness of CNF-Nis+PE, CNF-Nis+PP, and CNF-Nis+PLA was investigated both in vitro end in ex vivo tests. In the latter case, challenge test experiments were carried out to investigate the antimicrobial activity of the coupled films of CNF-Nisin+PLA to inhibit the growth of Listeria innocua 1770 during the storage of a meat product. The films were active against the indicator microorganisms Brochothrix thermosphacta and Listeria innocua in in vitro test. Moreover, a reduction in the Listeria population of about 1.3 log cycles was observed immediately after the contact (T0) of the active films with hamburgers. Moreover, when the hamburgers were stored in active films, a further reduction of the Listeria population of about 1.4 log cycles was registered after 2 days of storage. After this time, even though an increase in Listeria load was observed, the trend of the Listeria population in hamburgers packed with active films was maintained significantly lower than the meat samples packed with control films during the whole storage period.
Collapse
|
11
|
Kamal T, Ul-Islam M, Fatima A, Ullah MW, Manan S. Cost-Effective Synthesis of Bacterial Cellulose and Its Applications in the Food and Environmental Sectors. Gels 2022; 8:552. [PMID: 36135264 PMCID: PMC9498321 DOI: 10.3390/gels8090552] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial cellulose (BC), also termed bio-cellulose, has been recognized as a biomaterial of vital importance, thanks to its impressive structural features, diverse synthesis routes, high thermomechanical properties, and its ability to combine with multiple additives to form composites for a wide range of applications in diversified areas. Its purity, nontoxicity, and better physico-mechanical features than plant cellulose (PC) make it a better choice for biological applications. However, a major issue with the use of BC instead of PC for various applications is its high production costs, mainly caused by the use of expensive components in the chemically defined media, such as Hestrin-Schramm (HS) medium. Furthermore, the low yield of BC-producing bacteria indirectly accounts for the high cost of BC-based products. Over the last couple of decades, extensive efforts have been devoted to the exploration of low-cost carbon sources for BC production, besides identifying efficient bacterial strains as well as developing engineered strains, developing advanced reactors, and optimizing the culturing conditions for the high yield and productivity of BC, with the aim to minimize its production cost. Considering the applications, BC has attracted attention in highly diversified areas, such as medical, pharmaceutics, textile, cosmetics, food, environmental, and industrial sectors. This review is focused on overviewing the cost-effective synthesis routes for BC production, along with its noteworthy applications in the food and environmental sectors. We have made a comprehensive review of recent papers regarding the cost-effective production and applications of BC in the food and environmental sectors. This review provides the basic knowledge and understanding for cost-effective and scaleup of BC production by discussing the techno-economic analysis of BC production, BC market, and commercialization of BC products. It explores BC applications as food additives as its functionalization to minimize different environmental hazards, such as air contaminants and water pollutants.
Collapse
Affiliation(s)
- Tahseen Kamal
- Center of Excellence for Advanced Materials and Research, King Abdulaziz University, Jeddah 22230, Saudi Arabia
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Recent advances in the study of modified cellulose in meat products: Modification method of cellulose, meat quality improvement and safety concern. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Barbosa M, Simões H, Pinto SN, Macedo AS, Fonte P, Prazeres DMF. Fusions of a Carbohydrate Binding Module with the Small Cationic Hexapeptide RWRWRW Confer Antimicrobial Properties to Cellulose-based Materials. Acta Biomater 2022; 143:216-232. [PMID: 35257951 DOI: 10.1016/j.actbio.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The emergence of antibiotic-resistant bacteria is a critical worldwide healthcare problem. In the specific case of wound care, new and effective alternatives to currently available solutions are urgently needed. Cellulose-based dressings, for example, could be made more attractive if rendered antimicrobial. This work proposes a new strategy to modify cellulose-based materials with the short antimicrobial hexapeptide MP196 (RWRWRW-NH2) that relies on a biomolecular recognition approach based on carbohydrate binding modules (CBMs). Specifically, we focused on the modification of hydrogels, paper, and microfibrillated cellulose (MFC) with fusions of the CBM3 from Clostridium thermocellum (C. thermocellum) with derivatives of MP196. The fusions are prepared by promoting the formation of a disulfide bond between Cys-terminated derivatives of MP196 and a CBM3 that is pre-anchored in the materials. The CBM3-MP196-modified materials displayed antibacterial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) that was significantly higher when compared with the activity of materials prepared by physical adsorption of MP196. The biomolecular strategy provides a more favorable orientation, exposure, and distancing of the peptide from the matrix. This versatile concept provides a toolbox for the functionalization of cellulose materials of different origins and architectures with a broad choice in peptides. Functionalization under mild biological conditions avoids further purification steps, allowing for translational research and multiple applications as drug delivery systems, scaffolds for tissue engineering and biomaterials. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria is a critical worldwide healthcare problem. In the specific case of wound care, new and effective alternatives to currently available solutions are urgently needed. This work proposes a new strategy to modify cellulose-based materials with a short antimicrobial hexapeptide that relies on a biomolecular recognition approach based on carbohydrate binding modules. The modified materials displayed antibacterial activity against both Gram-negative and Gram-positive bacteria. The biomolecular strategy provides a favorable orientation, exposure, and distancing of the peptide from the matrix. This versatile concept offers a toolbox for the functionalization of different cellulose materials with a broad choice in peptides. Functionalization under mild biological conditions avoids further purification steps, allowing for translational research and multiple applications.
Collapse
Affiliation(s)
- Mariana Barbosa
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Hélvio Simões
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - D Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
14
|
van Rensburg W, Rautenbach M. Creating Robust Antimicrobial Materials with Sticky Tyrocidines. Antibiotics (Basel) 2022; 11:antibiotics11020174. [PMID: 35203778 PMCID: PMC8868332 DOI: 10.3390/antibiotics11020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
Modified antimicrobial and antifouling materials and surfaces can be used to limit the propagation of microorganisms on various surfaces and minimise the occurrence of infection, transfer, and spoilage. Increased demand for ‘green’ solutions for material treatment has pushed the focus towards to naturally produced antimicrobials. Tyrocidines, cyclo-decapeptides naturally produced by a soil bacterium Brevibacillus parabrevis, have a broad spectrum of activity against Gram-positive and Gram-negative bacteria, filamentous fungi, and yeasts. Continual losses in tyrocidine production highlighted the possible association of peptides to surfaces. It was found in this study that tyrocidines readily associates with many materials, with a selectivity towards polysaccharide-type materials, such as cellulose. Peptide-treated cellulose was found to remain active after exposure to a broad pH range, various temperatures, salt solutions, water washes, and organic solvents, with the sterilising activity only affected by 1% SDS and 70% acetonitrile. Furthermore, a comparison to other antimicrobial peptides showed the association between tyrocidines and cellulose to be unique in terms of antimicrobial activity. The robust association between the tyrocidines and various materials holds great promise in applications focused on preventing surface contamination and creating self-sterilising materials.
Collapse
|
15
|
Dirpan A, Djalal M, Kamaruddin I. Application of an Intelligent Sensor and Active Packaging System Based on the Bacterial Cellulose of Acetobacter xylinum to Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:544. [PMID: 35062505 PMCID: PMC8779248 DOI: 10.3390/s22020544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Combining intelligent and active packaging serves the dual purpose of detecting color changes in food that reflect changes in its quality and prolonging its shelf life. This study developed an intelligent and active packaging system made from the cellulose of Acetobacter xylinum and assessed its ability to detect changes in the quality and to increase shelf-life of packaged fresh beef. The properties of the intelligent packaging's sensor and active packaging films were determined. The application of this system to fresh beef stored at room temperature (28 ± 2 °C) for 24 h was tested. The color of the bromothymol blue (BTB) solution (pH 2.75) in the indicator of the intelligent packaging system changed from orange to dark green to indicate that beef quality changed from fresh to rotten. The meat treated with the active packaging with 10% and 15% garlic extract decayed on the 16th h. In contrast, the meat treated with the active packaging without the garlic extracts rotted on the 12th h. The shift in the indicator's color was linearly related to the total plate count (TPC), total volatile basic nitrogen (TVBN), and pH of the meat packaged using the active packaging system. Therefore, BTB solution (pH 2.75) can be used as an intelligent packaging indicator that will allow consumers to assess the quality of packaged meat easily. As an antimicrobial agent, the addition of 10-15% garlic extract to the active packaging films can help delay the spoilage of packaged beef.
Collapse
Affiliation(s)
- Andi Dirpan
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia
| | - Muspirah Djalal
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia
| | - Irma Kamaruddin
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
16
|
Jančič U, Gorgieva S. Bromelain and Nisin: The Natural Antimicrobials with High Potential in Biomedicine. Pharmaceutics 2021; 14:76. [PMID: 35056972 PMCID: PMC8778819 DOI: 10.3390/pharmaceutics14010076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases along with various cancer types are among the most significant public health problems and the leading cause of death worldwide. The situation has become even more complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently needed to curb the increasing spread of diseases in humans and livestock. Promising candidates are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from medicinal plants. This review highlights the structure and properties of plant origin bromelain and antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and recent applications in the field of biomedicine. Future perspectives towards the commercialization of new biomedical products, including these important bioactive compounds, have been highlighted.
Collapse
Affiliation(s)
- Urška Jančič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Selestina Gorgieva
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
17
|
Ecofriendly green biosynthesis and characterization of novel bacteriocin-loaded bacterial cellulose nanofiber from Gluconobacter cerinus HDX-1. Int J Biol Macromol 2021; 193:693-701. [PMID: 34737079 DOI: 10.1016/j.ijbiomac.2021.10.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/04/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022]
Abstract
A new strain of bacterial cellulose (BC)-producing Gluconobacter cerinus HDX-1 was isolated and identified, and a simple, low-cost complexation method was used to biosynthesis Lactobacillus paracasei 1∙7 bacteriocin BC (BC-B) nanofiber. The structure and antibacterial properties of the nanofibers were evaluated. Solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and x-ray diffraction (XRD) analysis showed that BC and BC-B nanofibers had typical crystalline form of the cellulose I. X-ray photoelectron spectrometer (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM) revealed that the bacteriocin and BC were successfully compounded, and the structure of BC-B nanofiber was tighter than BC nanofiber, with lower porosity, swelling ratio and water vapor transmission rate (WVTR). The tensile strength and Young's modulus of BC-B nanofibers were 13.28 ± 1.26 MPa and 132.10 ± 4.92 MPa, respectively, higher than that of BC nanofiber (6.12 ± 0.87 MPa and 101.59 ± 5.87 MPa), indicating that bacteriocin enhance the mechanical properties of BC nanofiber. Furthermore, the BC-B nanofibers exhibited significant thermal stability, antioxidant capacity and antibacterial activity than BC nanofiber. Therefore, bacteriocin-loaded BC nanofiber may be used as antimicrobial agents in active food packaging and medical material.
Collapse
|
18
|
Lu Q, Yu X, Yagoub AEA, Wahia H, Zhou C. Application and challenge of nanocellulose in the food industry. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Souza E, Gottschalk L, Freitas-Silva O. Overview of Nanocellulose in Food Packaging. Recent Pat Food Nutr Agric 2021; 11:154-167. [PMID: 31322079 DOI: 10.2174/2212798410666190715153715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/07/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The rising concern with environmental preservation has led to increasing interest in biodegradable polymer composites from renewable sources, such as cellulose and its derivatives. The use of nanocellulose is an innovative food packaging trend. DISCUSSION This paper presents an overview and discusses the state of the art of different nanocellulose materials used in food and food packaging, and identifies important patents related to them. It is important to consider that before marketing, new products must be proven safe for consumers and the environment. CONCLUSION Several packaging materials using nanocellulose have been developed and shown to be promising for use as active and intelligent materials for food packaging. Other nanocellulose products are under investigation for packaging and may enter the market in the near future. Many countries have been adjusting their regulatory frameworks to deal with nanotechnologies, including nanocellulose packaging.
Collapse
Affiliation(s)
- Erika Souza
- Embrapa Food Agroindustry. Av. Das Americas, 29501, 23020-470, Rio de Janeiro, Brazil
| | - Leda Gottschalk
- Embrapa Food Agroindustry. Av. Das Americas, 29501, 23020-470, Rio de Janeiro, Brazil
| | - Otniel Freitas-Silva
- Embrapa Food Agroindustry. Av. Das Americas, 29501, 23020-470, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Feng Y, Yin N, Zhou Z, Han Y. Physical and antibacterial properties of bacterial cellulose films supplemented with cell-free supernatant enterocin-producing Enterococcus faecium TJUQ1. Food Microbiol 2021; 99:103828. [PMID: 34119113 DOI: 10.1016/j.fm.2021.103828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023]
Abstract
In this study, a composite film was prepared with bacterial cellulose (BC) of Gluconacetobacter xylinus and cell-free supernatant (CFS) of Enterococcus faecium TJUQ1, which was named BC-E. The optimum conditions for the preparation of the composite film with a minimal antibacterial activity were the soak of BC in 80 AU/mL CFS for 6 h. By scanning electron microscope observation, the surface network structure of BC-E was denser than that of BC. The tensile strength of BC and BC-E was 4.65 ± 0.88 MPa and 16.30 ± 0.92 MPa, the elongation at break of BC and BC-E was 3.33 ± 0.89% and 31.60 ± 1.15%, respectively, indicating the mechanical properties of BC-E were significantly higher than that of BC (P < 0.05). The swelling ratio of BC-E (456.67 ± 7.20%) was lower than that of BC (1377.78 ± 9.07%), demonstrating BC-E films presented better water resistance. BC-E films were soaked with 320 AU/mL CFS, and then used to pack the ground meat with 6.55 log10 CFU/g of Listeria monocytogenes. After 8 days of storage, the number of bacteria decreased by 3.16 log10 CFU/g. Similarly, total mesophilic bacterial levels in the ground meat decreased by 2.41 log10 CFU/g compared to control groups.
Collapse
Affiliation(s)
- Yunshu Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Nan Yin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
21
|
Kaur R, Kaur L. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
|
23
|
|
24
|
Gao G, Fan H, Zhang Y, Cao Y, Li T, Qiao W, Wu M, Ma T, Li G. Production of nisin-containing bacterial cellulose nanomaterials with antimicrobial properties through co-culturing Enterobacter sp. FY-07 and Lactococcus lactis N8. Carbohydr Polym 2021; 251:117131. [DOI: 10.1016/j.carbpol.2020.117131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
|
25
|
Gedarawatte ST, Ravensdale JT, Al-Salami H, Dykes GA, Coorey R. Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydr Polym 2021; 251:117096. [DOI: 10.1016/j.carbpol.2020.117096] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
26
|
Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Ludwicka K, Kaczmarek M, Białkowska A. Bacterial Nanocellulose-A Biobased Polymer for Active and Intelligent Food Packaging Applications: Recent Advances and Developments. Polymers (Basel) 2020; 12:E2209. [PMID: 32993082 PMCID: PMC7601427 DOI: 10.3390/polym12102209] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this review is to provide an overview of recent findings related to bacterial cellulose application in bio-packaging industry. This constantly growing sector fulfils a major role by the maintenance of product safety and quality, protection against environmental impacts that affect the shelf life. Conventional petroleum-based plastic packaging are still rarely recyclable and have a number of harmful environmental effects. Herein, we discuss the most recent studies on potential good alternative to plastic packaging-bacterial nanocellulose (BNC), known as an ecological, safe, biodegradable, and chemically pure biopolymer. The limitations of this bio-based packaging material, including relatively poor mechanical properties or lack of antimicrobial and antioxidant activity, can be successfully overcome by its modification with a wide variety of bioactive and reinforcing compounds. BNC active and intelligent food packaging offer a new and innovative approach to extend the shelf life and maintain, improve, or monitor product quality and safety. Incorporation of different agents BNC matrices allows to obtain e.g., antioxidant-releasing films, moisture absorbers, antimicrobial membranes or pH, freshness and damage indicators, humidity, and other biosensors. However, further development and implementation of this kind of bio-packaging will highly depend on the final performance and cost-effectiveness for the industry and consumers.
Collapse
Affiliation(s)
- Karolina Ludwicka
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland; (M.K.); (A.B.)
| | | | | |
Collapse
|
28
|
Djenane D, Aboudaou M, Djenane F, García-Gonzalo D, Pagán R. Improvement of the Shelf-Life Status of Modified Atmosphere Packaged Camel Meat Using Nisin and Olea europaea Subsp. laperrinei Leaf Extract. Foods 2020; 9:foods9091336. [PMID: 32971898 PMCID: PMC7555406 DOI: 10.3390/foods9091336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The impact of combined biopreservation treatment with Olea europaea subsp. laperrinei leave extracts (laper.OLE) and nisin on the quality attributes of camel steaks packaged under high O2 (80%) and CO2 (20%) atmosphere was investigated during refrigerated (1 ± 1 °C) long-term storage. As measured by reversed phase HPLC/DAD analysis, oleuropein is the phenolic compound most present in the chemical composition of laper.OLE (63.03%). Camel steaks treated with laper.OLE had a lower concentration of thiobarbituric acid-reactive substances (TBA-RSs) in the course of 30 days of storage. Surface metmyoglobin (MetMb) increased at a reduced rate in laper.OLE-treated samples compared to control samples. Neither modified atmosphere packaging (MAP) nor biopreservation treatments significantly altered the tenderness of camel steaks, expressed in terms of Warner-Bratzler shear force (WBSF), as compared to control samples. After 30 days of storage, psychrotrophic bacteria and Pseudomonas spp. counts were significantly lower in camel steaks treated with a combination of laper.OLE and nisin than in untreated steaks. Moreover, samples treated with laper.OLE received higher scores on bitterness acceptability. In sum, the use of combined biopreservation methods could be a sustainable solution for the preservation and promotion of the quality characteristics of camel meat in arid regions.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science, Mouloud MAMMERI University, P.O. Box. 17, Tizi-Ouzou RP 15000, Algeria;
- Correspondence: ; Tel.: +213-779-001-384; Fax: +213-261-861-56
| | - Malek Aboudaou
- Département Recherche & Développement, Isser Délice SARL, ISO 9 International, BP 10, 35230 Isser, Algeria;
| | - Fatiha Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science, Mouloud MAMMERI University, P.O. Box. 17, Tizi-Ouzou RP 15000, Algeria;
- Département Recherche & Développement, Isser Délice SARL, ISO 9 International, BP 10, 35230 Isser, Algeria;
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (D.G.-G.); (R.P.)
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain; (D.G.-G.); (R.P.)
| |
Collapse
|
29
|
Singh M, Novoa Rama E, Kataria J, Leone C, Thippareddi H. Emerging Meat Processing Technologies for Microbiological Safety of Meat and Meat Products. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.11180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A consumer trend toward convenient, minimally processed meat products has exerted tremendous pressure on meat processors to ensure the safety of meat and meat products without compromising product quality and the meeting of consumer demands. This has led to challenges in developing and implementing novel processing technologies as the use of newer technologies may affect consumer choices and opinions of meat and meat products. Novel technologies adopted by the meat industry for controlling foodborne pathogens of significant public health implications, gaps in the technologies, and the need for scaling up technologies that have been proven to be successful in research settings or at the pilot scale will be discussed. Novel processing technologies in the meat industry warrant microbiological validation prior to becoming commercially viable options and enacting infrastructural changes. This review presents the advantages and shortcomings of such technologies and provides an overview of technologies that can be successfully implemented and streamlined in existing processing environments.
Collapse
|
30
|
Wan J, Pei Y, Hu Y, Ai T, Sheng F, Li J, Li B. Microencapsulation of Eugenol Through Gelatin-Based Emulgel for Preservation of Refrigerated Meat. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02502-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Gat P, Rafiq S, Vysakh T, Gat Y, Waghmare R. A Review on Approaches of Edible Coating as Potential Packaging for Meat, Poultry and Seafood. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190619110933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The World population is increasing continuously and to fulfil the requirement of future
generation food supply needs to be increased. Food availability and accessibility can be increased by
increasing production, improving distribution, and reducing the losses. To achieve the goal of improving
the quality of food products, the use of synthetic packaging films has increased and this has
led to serious ecological problems due to their non-biodegradability. Amongst other alternatives to
replace the use of synthetic packaging, the application of biodegradable films and coatings has shown
promising results. The aim of this article is to update the information about the effects of polysaccharide,
protein and lipid-based coatings, and antimicrobial and composite coatings on meat products. In the
future, this data will be helpful for the processors to select the best coating material which can
enhance the quality of different fresh, processed and frozen meat, poultry and seafood.
Collapse
Affiliation(s)
- Punam Gat
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara-144411, India
| | - Shafiya Rafiq
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara-144411, India
| | - Thelamparambath Vysakh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara-144411, India
| | - Yogesh Gat
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara-144411, India
| | - Roji Waghmare
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai-400614, India
| |
Collapse
|
32
|
Gedarawatte STG, Ravensdale JT, Johns ML, Azizi A, Al-Salami H, Dykes GA, Coorey R. Effectiveness of bacterial cellulose in controlling purge accumulation and improving physicochemical, microbiological, and sensorial properties of vacuum-packaged beef. J Food Sci 2020; 85:2153-2163. [PMID: 32572986 DOI: 10.1111/1750-3841.15178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023]
Abstract
The application of bacterial cellulose (BC) as a wrapping material for vacuum-packaged beef was studied and compared against unwrapped beef for up to 3 weeks. The impact of BC wrap on the weight loss, purge accumulation, and drip loss were assessed along with low-field nuclear magnetic resonance, physicochemical, microbiological, and sensorial evaluations. The BC wrap significantly (P < 0.05) reduced purge accumulation in vacuum packages which was confirmed by an increased swelling ratio and scanning electron microscopy images. Colorimetric measurements showed significantly (P < 0.05) increased redness and yellowness values in wrapped samples compared to unwrapped samples. BC wrap did not affect pH, tenderness, and odor of meat, but significantly (P < 0.05) increased lipid oxidation, and numbers of lactic acid bacteria and Brochothrix thermosphacta counts. This study shows that BC wrap has potential as a purge absorbent in vacuum packaged meat. PRACTICAL APPLICATION: Bacteria cellulose has good water holding capacity that can be utilized to absorb purge exudate from beef. It helps to improve the appearance and consequently consumer acceptance of vacuum packed beef.
Collapse
Affiliation(s)
- Shamika T G Gedarawatte
- School of Public Health, Faculty of Health Sciences, Curtin Univ., Bentley, Western Australia, 6102, Australia
| | - Joshua T Ravensdale
- School of Public Health, Faculty of Health Sciences, Curtin Univ., Bentley, Western Australia, 6102, Australia
| | - Michael L Johns
- Dept. of Chemical Engineering, School of Engineering, Univ. of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Azlinda Azizi
- Dept. of Chemical Engineering, School of Engineering, Univ. of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Inst., Biosciences Research Precinct, School of Pharmacy and Biomedical Sciences, Curtin Univ., Bentley, Western Australia, 6102, Australia
| | - Gary A Dykes
- School of Public Health, Faculty of Health Sciences, Curtin Univ., Bentley, Western Australia, 6102, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin Univ., Bentley, Western Australia, 6102, Australia
| |
Collapse
|
33
|
Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films. Int J Biol Macromol 2020; 161:627-635. [PMID: 32535206 DOI: 10.1016/j.ijbiomac.2020.06.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Bio-based nanomaterials with antimicrobial functions hold promise in replacing petroleum-based packaging for food preservation. A nanocellulose-based hybrid film with antimicrobial properties was developed from sugarcane bagasse and nisin. Cellulose nanofibrils (CNFs) were prepared from sugarcane bagasse pulp by mechanical grinding, and mixed with nisin to prepare CNFs/nisin nanohybrid films. The concentration of nisin has a remarkable influence on the mechanical, light transmission, gas barrier, and antimicrobial properties of these films. CNFs/nisin hybrid films with 1920 mg/L nisin exhibit good light transmission, relatively high tensile strength, low oxygen permeability, and low water vapor transmission rates. This hybrid film was used as a liner of low-density polyethylene plastic packaging for ready-to-eat ham; it completely inhibited Listeria monocytogenes during 7 days of storage at 4 °C. Such novel CNFs/nisin nanohybrid films are expected to expand the application of bagasse nanocellulose in active packaging for food preservation.
Collapse
|
34
|
Fahmy HM, Salah Eldin RE, Abu Serea ES, Gomaa NM, AboElmagd GM, Salem SA, Elsayed ZA, Edrees A, Shams-Eldin E, Shalan AE. Advances in nanotechnology and antibacterial properties of biodegradable food packaging materials. RSC Adv 2020; 10:20467-20484. [PMID: 35517734 PMCID: PMC9054293 DOI: 10.1039/d0ra02922j] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
A large number of non-biodegradable and non-renewable materials are produced daily for application as food packaging materials. These waste materials have a greatly negative effect on our health and the ecosystem. The idea of a bio-based economy is steadily gaining attention from the scientific, societal, and financial communities, so there are several areas in which the intended approaches can be improved for this reason. Therefore, creating biopolymer-based materials from natural sources, including polysaccharides and proteins, is a good alternative to non-renewable fossil resources. In the current review paper, we plan to summarize the major recent findings in food biodegradable packaging materials that include nanotechnology either directly or indirectly. Several natural nano-materials applied in food packaging applications such as polymers, polysaccharides, and protein-based nano-materials have been included in order to make special biopolymer hosts for nanocomposites. Finally, this review will highlight the antibacterial properties of commonly used nanoparticles or nanomaterials.
Collapse
Affiliation(s)
| | | | - Esraa Samy Abu Serea
- Chemistry & Biochemistry Department, Faculty of Science, Cairo University 12613 Egypt
| | | | - Gehad M AboElmagd
- Physics Department, Faculty of Science, El-Menoufia University Menoufia Egypt
| | - Suzan A Salem
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University Egypt
| | - Ziad A Elsayed
- Chemistry & Physics Department, Faculty of Science, Cairo University 12613 Egypt
| | - Aisha Edrees
- Biophysics Department, Faculty of Science, Cairo University 12613 Egypt
| | - Engy Shams-Eldin
- Special Food and Nutrition Department, Food Technology Research Institute, Agriculture Research Center Giza Egypt
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P.O. Box 87, Helwan Cairo 11421 Egypt
- BCMaterials-Basque Center for Materials, Applications and Nanostructures Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n Leioa 48940 Spain
| |
Collapse
|
35
|
Lin D, Liu Z, Shen R, Chen S, Yang X. Bacterial cellulose in food industry: Current research and future prospects. Int J Biol Macromol 2020; 158:1007-1019. [PMID: 32387361 DOI: 10.1016/j.ijbiomac.2020.04.230] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose, a pure exocellular polysaccharide produced by microorganisms, has many excellent properties as compared with plant-derived cellulose, including high water holding capability, high surface area, rheological properties, biocompatibility. Due to its suspending, thickening, water holding, stabilizing, bulking and fluid properties, BC has been demonstrated as a promising low calorie bulking ingredient for the development of novel rich functional foods of different forms such as powder gelatinous or shred foams, which facilitate its application in food industry. In this review, the recent reports on the biosynthesis, structure and general application of bacterial cellulose in food industry have been summarized and discussed. The main application of bacterial cellulose in current food industry includes raw food materials, additive ingredients, packing materials, delivery system, enzyme and cell immobilizers. In addition, we also propose the potential challenges and explore the solution of expanding the application of BC in various fields.
Collapse
Affiliation(s)
- Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhe Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Siqian Chen
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
36
|
Buruaga-Ramiro C, Valenzuela SV, Valls C, Roncero MB, Pastor FIJ, Díaz P, Martinez J. Development of an antimicrobial bioactive paper made from bacterial cellulose. Int J Biol Macromol 2020; 158:S0141-8130(20)33100-7. [PMID: 32360968 DOI: 10.1016/j.ijbiomac.2020.04.234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Bacterial cellulose (BC) has emerged as an attractive adsorptive material for antimicrobial agents due to its fine network structure, its large surface area, and its high porosity. In the present study, BC paper was first produced and then lysozyme was immobilized onto it by physical adsorption, obtaining a composite of lysozyme-BC paper. The morphology and the crystalline structure of the composite were similar to that of BC paper as examined by scanning electron microscopy and X-ray diffraction, respectively. Regarding operational properties, specific activities of immobilized and free lysozyme were similar. Moreover, immobilized enzyme showed a broader working temperature and higher thermal stability. The composites maintained its activity for at least 80 days without any special storage. Lysozyme-BC paper displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, inhibiting their growth by 82% and 68%, respectively. Additionally, the presence of lysozyme increased the antioxidant activity of BC paper by 30%. The results indicated that BC is a suitable material to produce bioactive paper as it provides a biocompatible environment without compromising the activity of the immobilized protein. BC paper with antimicrobial and antioxidant properties may have application in the field of active packaging.
Collapse
Affiliation(s)
- Carolina Buruaga-Ramiro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Susana V Valenzuela
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Cristina Valls
- CELBIOTECH_Paper Engineering Research Group, EGE Department, Universitat Politècnica de Catalunya, Barcelona Tech, 08222 Terrassa, Spain.
| | - M Blanca Roncero
- CELBIOTECH_Paper Engineering Research Group, EGE Department, Universitat Politècnica de Catalunya, Barcelona Tech, 08222 Terrassa, Spain.
| | - F I Javier Pastor
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Pilar Díaz
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Josefina Martinez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
37
|
Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. Int J Food Microbiol 2020; 321:108561. [PMID: 32078868 DOI: 10.1016/j.ijfoodmicro.2020.108561] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 01/19/2023]
Abstract
Lyophilized postbiotics of Lactobacillus plantarum was prepared and impregnated in bacterial nanocellulose (BNC) by ex-situ method to develop an antimicrobial ground meat wrapping nanopaper. The postbiotics incorporated BNC (P-BNC) films were optimized by response surface methodology and their antimicrobial activity against Listeria monocytogenes were examined. The BNC with postbiotics at 21.21% concentration and 28 min impregnation time was chosen as an optimized P-BNC film. The FTIR results confirmed the immobilization of postbiotics in BNC. The P-BNC film represented a significant reduction (~5 log cycles) in L.monocytogenes counts in ground meat at the end of the storage period (9 days at 4 °C). Meat wrapped by P-BNC film displayed a significant decrease in total mesophilic and psychrophiles count and TBA values than the controls. BNC can be considered as a proper carrier for development of antimicrobial film using postbiotics of LAB for food application.
Collapse
|
38
|
Gorgieva S, Trček J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1352. [PMID: 31547134 PMCID: PMC6835293 DOI: 10.3390/nano9101352] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
Abstract
Bacterial cellulose (BC) is ultrafine, nanofibrillar material with an exclusive combination of properties such as high crystallinity (84%-89%) and polymerization degree, high surface area (high aspect ratio of fibers with diameter 20-100 nm), high flexibility and tensile strength (Young modulus of 15-18 GPa), high water-holding capacity (over 100 times of its own weight), etc. Due to high purity, i.e., absence of lignin and hemicellulose, BC is considered as a non-cytotoxic, non-genotoxic and highly biocompatible material, attracting interest in diverse areas with hallmarks in medicine. The presented review summarizes the microbial aspects of BC production (bacterial strains, carbon sources and media) and versatile in situ and ex situ methods applied in BC modification, especially towards bionic design for applications in regenerative medicine, from wound healing and artificial skin, blood vessels, coverings in nerve surgery, dura mater prosthesis, arterial stent coating, cartilage and bone repair implants, etc. The paper concludes with challenges and perspectives in light of further translation in highly valuable medical products.
Collapse
Affiliation(s)
- Selestina Gorgieva
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, 2000 Maribor, Slovenia.
- Faculty of Electrical Engineering and Computer Science, Institute of Automation, University of Maribor, 2000 Maribor, Slovenia.
| | - Janja Trček
- Faculty of Natural Sciences and Mathematics, Department of Biology, University of Maribor, 2000 Maribor, Slovenia.
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia.
| |
Collapse
|
39
|
Chantereau G, Brown N, Dourges MA, Freire CS, Silvestre AJ, Sebe G, Coma V. Silylation of bacterial cellulose to design membranes with intrinsic anti-bacterial properties. Carbohydr Polym 2019; 220:71-78. [DOI: 10.1016/j.carbpol.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/15/2023]
|
40
|
Yang W, Xie Y, Jin J, Liu H, Zhang H. Development and Application of an Active Plastic Multilayer Film by Coating a Plantaricin BM-1 for Chilled Meat Preservation. J Food Sci 2019; 84:1864-1870. [PMID: 31237974 PMCID: PMC6771937 DOI: 10.1111/1750-3841.14608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
Abstract
Abstract In this study, an active antibacterial packaging film was developed by coating a polyethylene terephthalate/polyvinylidene chloride/retort casting polypropylene (PPR) plastic multilayer film with plantaricin BM‐1 and chitosan. The characteristics of the active packaging film and its antibacterial effect for chilled meat preservation were evaluated. Our results indicated that the barrier properties against oxygen were improved significantly and the tensile strength and the elongation at break were changed slightly. The active plantaricin film significantly (P < 0.05) decreased the viable counts of Listeria monocytogenes by 3.6 log10CFU/mL in liquid medium and approximately 1.4 log10CFU/g in meat stored at 4 °C for 8 days compared with the control. Moreover, the viable counts of aerobes and anaerobes in the meat packaged with the active plantaricin film were significantly (P < 0.05) decreased by approximately 0.6 log10CFU/g and 1.1 log10CFU/g when compared with that packaged with PPR film stored at 4 °C for 12 days. The total volatile base (TVB‐N) in the meat packaged with the active plantaricin film was significantly (P < 0.05) lower than that in the control during the entire storage period. Our results indicated that the active film could extend the meat shelf life by inhibiting the L. monocytogenes and the background spoilage bacteria in chilled meat stored at 4 °C. This outcome suggests that plastic multilayer film incorporating plantaricin BM‐1 can be potentially used for fresh meat packaging. Practical Application Fresh meat is highly perishable product. This study developed a plantaricin BM‐1 active plastic multilayer film that can inhibit the growth of microorganisms in chilled meat during storage at 4 °C.
Collapse
Affiliation(s)
- Wenge Yang
- Authors are with Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing Univ. of Agriculture, Beijing, 102206, China
| | - Yuanhong Xie
- Authors are with Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing Univ. of Agriculture, Beijing, 102206, China
| | - Junhua Jin
- Authors are with Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing Univ. of Agriculture, Beijing, 102206, China
| | - Hui Liu
- Authors are with Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing Univ. of Agriculture, Beijing, 102206, China
| | - Hongxing Zhang
- Authors are with Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing Univ. of Agriculture, Beijing, 102206, China
| |
Collapse
|
41
|
Koltan M, Corbalan NS, Molina VM, Elisei A, de Titto GA, Eisenberg P, Vincent PA, Pomares MF, Blanco Massani M. Anti-E. coli cellulose-based materials. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Gabriel Franco RA, Padalhin AR, Patrick Cuenca J, Ventura R, Montecillo A, Fernando L, Lee BT. Characterization of bacterial nanocellulose produced by isolates from Philippinenatastarter and its biocompatibility. J Biomater Appl 2019; 34:339-350. [DOI: 10.1177/0885328219852728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | - Reiza Ventura
- Soonchunhyang University, Cheonan, Republic of Korea
| | - Andrew Montecillo
- University of the Philippines Los Banos, Los Baños, Laguna, Philippines
| | - Lilia Fernando
- University of the Philippines Los Banos, Los Baños, Laguna, Philippines
| | - Byong-Taek Lee
- Soonchunhyang University, Ssangyoung-Dong, Chungnam, Cheonan City, Republic of Korea
| |
Collapse
|
43
|
Huang T, Qian Y, Wei J, Zhou C. Polymeric Antimicrobial Food Packaging and Its Applications. Polymers (Basel) 2019; 11:E560. [PMID: 30960544 PMCID: PMC6473891 DOI: 10.3390/polym11030560] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/16/2019] [Accepted: 03/21/2019] [Indexed: 01/02/2023] Open
Abstract
Food corruption and spoilage caused by food-borne pathogens and microorganisms is a serious problem. As a result, the demand for antibacterial drugs in food packaging is growing. In this review, biodegradable and non-biodegradable materials for food packaging are discussed based on their properties. Most importantly, antibacterial agents are essential to inhibit the growth of bacteria in food. To keep food fresh and prolong the shelf life, different kinds of antibacterial agents were used. The composition and application of natural antibacterial agents and synthetic antibacterial agents are discussed. Compared with natural antibacterial agents, synthetic antibacterial agents have the advantages of low cost and high activity, but their toxicity is usually higher than that of natural antibacterial agents. Finally, future development of antimicrobial food packaging is proposed. It is an urgent problem for researchers to design and synthesize antibacterial drugs with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Tianqi Huang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Yusheng Qian
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Jia Wei
- Department of Materials Science, Fudan University, Shanghai 200433, China.
| | - Chuncai Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|
44
|
Morais ES, Silva NHCS, Sintra TE, Santos SAO, Neves BM, Almeida IF, Costa PC, Correia-Sá I, Ventura SPM, Silvestre AJD, Freire MG, Freire CSR. Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application. Carbohydr Polym 2019; 206:187-197. [PMID: 30553312 PMCID: PMC6441335 DOI: 10.1016/j.carbpol.2018.10.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022]
Abstract
The utilization of natural compounds, such as phenolic acids and biopolymers, in the healthcare domain is gaining increasing attention. In this study, bacterial nanocellulose (BC) membranes were loaded with ionic liquids (ILs) based on phenolic acids. These ionic compounds, with improved solubility and bioavailability, were prepared by combining the cholinium cation with anions derived from caffeic, ellagic and gallic acids. The obtained BC-ILs membranes were homogeneous, conformable and their swelling ability agreed with the solubility of each IL. These membranes revealed a controlled ILs dissolution rate in the wet state and high antioxidant activity. In vitro assays performed with Raw 264.7 macrophages and HaCaT keratinocytes revealed that these novel BC-ILs membranes are non-cytotoxic and present relevant anti-inflammatory properties. Diffusion studies with Hanson vertical diffusion cells showed a prolonged release profile of the ILs from the BC membranes. Thus, this work, successfully demonstrates the potential of BC-ILs membranes for skin treatment.
Collapse
Affiliation(s)
- Eduarda S Morais
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno H C S Silva
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia E Sintra
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia A O Santos
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel F Almeida
- UCIBIO-REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Paulo C Costa
- UCIBIO-REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Inês Correia-Sá
- Department of Plastic, Aesthetic, Reconstructive and Aesthetic Surgery, Centro Hospitalar de S. João, 4200-319 Porto, Portugal
| | - Sónia P M Ventura
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Mara G Freire
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
45
|
Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years. Biotechnol Lett 2019; 41:453-469. [PMID: 30739282 DOI: 10.1007/s10529-018-02635-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023]
Abstract
The encapsulation of bacteriocins from lactic acid bacteria has involved several methods to protect them from unfavourable environmental conditions and incompatibilities. This review encompasses different methods for the encapsulation of bacteriocins and their applications in both food and pharmaceutical fields. Based on the bibliometric analysis of publications from well-reputed journals including different available patents during the period from 1996 to 2017, 135 articles and 60 patents were collected. Continent-wise contributions to the bacteriocins encapsulation research were carried out by America (52%), Asia (29%) and Europe (19%); with the United States of America, Brazil, Thailand and Italy the countries with major contributions. Till date, different methods proposed for encapsulation have been (i) Film coatings (50%), (ii) Liposomes (23%), (iii) Nanofibers (22%) and (iv) Nanoparticles (4%). Bacteriocins encapsulation methods frequently carried out in food protection (70%); while in the pharmaceutical field, 30% of the research was conducted on multi drug resistant therapy.
Collapse
|
46
|
Morsy MK, Elsabagh R, Trinetta V. Evaluation of novel synergistic antimicrobial activity of nisin, lysozyme, EDTA nanoparticles, and/or ZnO nanoparticles to control foodborne pathogens on minced beef. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Xie Y, Zhang M, Gao X, Shao Y, Liu H, Jin J, Yang W, Zhang H. Development and antimicrobial application of plantaricin BM-1 incorporating a PVDC film on fresh pork meat during cold storage. J Appl Microbiol 2018; 125:1108-1116. [PMID: 29742323 DOI: 10.1111/jam.13912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to develop a plantaricin BM-1, a typical IIa bacteriocin produced by Lactocacillus plantarumBM-1, for active polyvinylidene chloride (PVDC) films and to determine the antimicrobial effect of plantaricin BM-1 incorporated into a PVDC film on fresh pork during 7 days of storage at 4°C. METHODS AND RESULTS Plantaricin BM-1 solutions (20 480 AU ml-1 ) that absorbed into the PVDC film increased gradually and reached maximum volumes during exposure for up to 20 h. When soaked in water, the released amount of plantaricin BM-1 from the active PVDC film reached a maximum at 20 h. The plantaricin BM-1 active PVDC film had an obvious antilisterial effect in culture medium and fresh pork inoculated with Listeria monocytogenes. Furthermore, plantaricin BM-1-incorporated PVDC film was also significantly (P < 0·01) reduced to aerobic counts of approximately 1·5 log10 CFU per g after 7 days of storage at 4°C in pork meat, and the pH and total volatile basic nitrogen of pork meat were significantly (P < 0·01, P < 0·05) lower than those of the control. CONCLUSION Plantaricin BM-1 active film has an excellent effect to prolong the shelf life of pork meat during cold storage. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study suggest a potential application of bacteriocin active film on meat preservation.
Collapse
Affiliation(s)
- Y Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - M Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - X Gao
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Y Shao
- Institute of Agro-food Standards and Testing Technologies, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - H Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - J Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - W Yang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - H Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
48
|
Jalili Tabaii M, Emtiazi G. Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Tosati JV, de Oliveira EF, Oliveira JV, Nitin N, Monteiro AR. Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.07.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Khan A, Wen Y, Huq T, Ni Y. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8-19. [PMID: 29251504 DOI: 10.1021/acs.jafc.7b04204] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.
Collapse
Affiliation(s)
- Avik Khan
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Tanzina Huq
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology , Tianjin 300457, China
| |
Collapse
|