1
|
Wu Y, Pang X, Wu Y, Liu X, Zhang X. Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072258. [PMID: 35408657 PMCID: PMC9000605 DOI: 10.3390/molecules27072258] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023]
Abstract
Enterococci, a type of lactic acid bacteria, are widely distributed in various environments and are part of the normal flora in the intestinal tract of humans and animals. Although enterococci have gradually evolved pathogenic strains causing nosocomial infections in recent years, the non-pathogenic strains have still been widely used as probiotics and feed additives. Enterococcus can produce enterocin, which are bacteriocins considered as ribosomal peptides that kill or inhibit the growth of other microorganisms. This paper reviews the classification, synthesis, antibacterial mechanisms and applications of enterocins, and discusses the prospects for future research.
Collapse
Affiliation(s)
- Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (Y.W.); (X.P.); (Y.W.); (X.L.)
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
2
|
Zhao D, Wang Q, Lu F, Bie X, Zhao H, Lu Z, Lu Y. A novel plantaricin 827 effectively inhibits Staphylococcus aureus and extends shelf life of skim milk. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Comparison of biopreservatives obtained from a starter culture of Pediococcus acidilactici by different techniques. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
kumar N, Singh N, Jaryal R, Bhandari C, Singh J, Thakur P, Duhan A. Purification, characterization and antibacterial spectrum of a compound produced by Bacillus cereus MTCC 10072. Arch Microbiol 2019; 201:1195-1205. [DOI: 10.1007/s00203-019-01685-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/14/2019] [Accepted: 05/21/2019] [Indexed: 11/30/2022]
|
6
|
Martinez RCR, Alvarenga VO, Thomazini M, Fávaro-Trindade CS, Sant'Ana ADS. Assessment of the inhibitory effect of free and encapsulated commercial nisin (Nisaplin ® ), tested alone and in combination, on Listeria monocytogenes and Bacillus cereus in refrigerated milk. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Chen PY, Chu XN, Liu L, Hu JY. Effects of salinity and temperature on inactivation and repair potential of Enterococcus faecalis
following medium- and low-pressure ultraviolet irradiation. J Appl Microbiol 2016; 120:816-25. [DOI: 10.1111/jam.13026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 10/30/2015] [Indexed: 11/29/2022]
Affiliation(s)
- P.-Y. Chen
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - X.-N. Chu
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - L. Liu
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - J.-Y. Hu
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| |
Collapse
|
8
|
Potential Applications of the Cyclic Peptide Enterocin AS-48 in the Preservation of Vegetable Foods and Beverages. Probiotics Antimicrob Proteins 2016; 2:77-89. [PMID: 26781116 DOI: 10.1007/s12602-009-9030-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria. Among them, the enterococcal bacteriocin (enterocin) AS-48 stands for its peculiar characteristics and broad-spectrum antimicrobial activity. AS-48 belongs to the class of circular bacteriocins and has been studied in depth in several aspects: peptide structure, genetic determinants, and mode of action. Recently, a wealth of knowledge has accumulated on the antibacterial activity of this bacteriocin against foodborne pathogenic and spoilage bacteria in food systems, especially in vegetable foods and drinks. This work provides a general overview on the results from tests carried out with AS-48 in different vegetable food categories (such as fruit juices, ciders, sport and energy drinks, fresh fruits and vegetables, pre-cooked ready to eat foods, canned vegetables, and bakery products). Depending on the food substrate, the bacteriocin has been tested alone or as part of hurdle technology, in combination with physico-chemical treatments (such as mild heat treatments or high-intensity pulsed electric fields) and other antimicrobial substances (such as essential oils, phenolic compounds, and chemical preservatives). Since the work carried out on bacteriocins in preservation of vegetable foods and drinks is much more limited compared to meat and dairy products, the results reported for AS-48 may open new possibilities in the field of bacteriocin applications.
Collapse
|
9
|
Grande Burgos MJ, Pulido RP, Del Carmen López Aguayo M, Gálvez A, Lucas R. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications. Int J Mol Sci 2014; 15:22706-22727. [PMID: 25493478 PMCID: PMC4284732 DOI: 10.3390/ijms151222706] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure.
Collapse
Affiliation(s)
- María José Grande Burgos
- Department of Health Sciences, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain.
| | - Rubén Pérez Pulido
- Department of Health Sciences, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain.
| | | | - Antonio Gálvez
- Department of Health Sciences, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain.
| | - Rosario Lucas
- Department of Health Sciences, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain.
| |
Collapse
|
10
|
Characterization of Microencapsulated Rosemary Essential Oil and Its Antimicrobial Effect on Fresh Dough. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1302-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Gálvez A, López RL, Pulido RP, Burgos MJG. Application of Lactic Acid Bacteria and Their Bacteriocins for Food Biopreservation. FOOD BIOPRESERVATION 2014. [DOI: 10.1007/978-1-4939-2029-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Caballero Gómez N, Grande MJ, Pérez Pulido R, Abriouel H, Gálvez A. Effect of enterocin AS-48 singly or in combination with biocides on planktonic and sessile B. cereus. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Caballero Gómez N, Abriouel H, Grande MJ, Pérez Pulido R, Gálvez A. Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells. Int J Food Microbiol 2013; 163:96-100. [PMID: 23558192 DOI: 10.1016/j.ijfoodmicro.2013.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 01/01/2023]
Abstract
Control of staphylococci during cleaning and disinfection is important to the food industry. Broad-spectrum bacteriocins with proved anti-staphylococcal activity, such as enterocin AS-48, could open new possibilities for disinfection in combination with biocides. In the present study, enterocin AS-48 was tested singly or in combination with biocides against a cocktail of six Staphylococcus aureus strains (including three methicillin-resistant strains) in planktonic state as well as in biofilms formed on polystyrene microtiter plates. Cells were challenged with enterocin, biocides or enterocin/biocide combinations. Inactivation of planktonic cells increased significantly (p<0.05) when enterocin AS-48 (25mg/l) was tested in combination with benzalkonium chloride (BC), cetrimide (CT) and hexadecylpyridinium chloride (HDP), and non-significantly in combination with didecyldimethylammonium bromide (AB), triclosan (TC), hexachlorophene (CF), polyhexamethylen guanidinium chloride (PHMG), chlorhexidine (CH) or P3-oxonia (OX). In the sessile state (24h biofilms), staphylococci required higher biocide concentrations in most cases, except for OX. Inactivation of sessile staphylococci increased remarkably when biocides were applied in combination with enterocin AS-48, especially when the bacteriocin was added at 50mg/l. During storage, the concentrations of sessile as well as planktonic cells in the treated samples decreased remarkably for BC, TC and PHMG, but OX failed to inhibit proliferation of the treated biofilms as well as growth of planktonic cells. The observed inhibitory effects during storage were potentiated when the biocides were combined with 50 mg/l enterocin AS-48. Results from this study suggest that selected combinations of enterocin AS-48 and biocides offer potential use against planktonic and sessile, methicillin-sensitive and methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | | | | | | | | |
Collapse
|
14
|
NAKAMURA K, ARAKAWA K, KAWAI Y, YASUTA N, CHUJO T, WATANABE M, IIOKA H, TANIOKA M, NISHIMURA J, KITAZAWA H, TSURUMI K, SAITO T. Food preservative potential of gassericin A-containing concentrate prepared from cheese whey culture supernatant ofLactobacillus gasseriLA39. Anim Sci J 2012; 84:144-9. [DOI: 10.1111/j.1740-0929.2012.01048.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
BOULARES MOUNA, AOUADHI CHEDIA, MANKAI MELIKA, MOUSSA OLFABEN, ESSID INES, HASSOUNA MNASSER. CHARACTERISATION, IDENTIFICATION AND TECHNOLOGICAL PROPERTIES OF PSYCHOTROPHIC LACTIC ACID BACTERIA ORIGINATING FROM TUNISIAN FRESH FISH. J Food Saf 2012. [DOI: 10.1111/j.1745-4565.2012.00385.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
DU LIHUI, SOMKUTI GEORGEA, RENYE JR JOHNA, HUO GUICHENG. PROPERTIES OF DURANCIN GL, A NEW ANTILISTERIAL BACTERIOCIN PRODUCED BY ENTEROCOCCUS DURANS 41D. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2011.00346.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Gálvez A, Abriouel H, Benomar N, Lucas R. Microbial antagonists to food-borne pathogens and biocontrol. Curr Opin Biotechnol 2010; 21:142-8. [PMID: 20149633 DOI: 10.1016/j.copbio.2010.01.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/30/2009] [Accepted: 01/16/2010] [Indexed: 11/19/2022]
Abstract
Application of natural antimicrobial substances (such as bacteriocins) combined with novel technologies provides new opportunities for the control of pathogenic bacteria, improving food safety and quality. Bacteriocin-activated films and/or in combination with food processing technologies (high-hydrostatic pressure, high-pressure homogenization, in-package pasteurization, food irradiation, pulsed electric fields, or pulsed light) may increase microbial inactivation and avoid food cross-contamination. Bacteriocin variants developed by genetic engineering and novel bacteriocins with broader inhibitory spectra offer new biotechnological opportunities. In-farm application of bacteriocins, bacterial protective cultures, or bacteriophages, can decrease the incidence of food-borne pathogens in livestock, animal products and fresh produce items, reducing the risks for transmission through the food chain. Biocontrol of fungi, parasitic protozoa and viruses is still a pending issue.
Collapse
Affiliation(s)
- Antonio Gálvez
- Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain.
| | | | | | | |
Collapse
|