1
|
Zhou J, Hung YC, Xie X. Application of electric field treatment (EFT) for microbial control in water and liquid food. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130561. [PMID: 37055970 DOI: 10.1016/j.jhazmat.2022.130561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 06/19/2023]
Abstract
Water disinfection and food pasteurization are critical to reducing waterborne and foodborne diseases, which have been a pressing public health issue globally. Electrified treatment processes are emerging and have become promising alternatives due to the low cost of electricity, independence of chemicals, and low potential to form by-products. Electric field treatment (EFT) is a physical pathogen inactivation approach, which damages cell membrane by irreversible electroporation. EFT has been studied for both water disinfection and food pasteurization. However, no study has systematically connected the two fields with an up-to-date review. In this article, we first provide a comprehensive background of microbial control in water and food, followed by the introduction of EFT. Subsequently, we summarize the recent EFT studies for pathogen inactivation from three aspects, the processing parameters, its efficacy against different pathogens, and the impact of liquid properties on the inactivation performance. We also review the development of novel configurations and materials for EFT devices to address the current challenges of EFT. This review introduces EFT from an engineering perspective and may serve as a bridge to connect the field of environmental engineering and food science.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yen-Con Hung
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Aşık-Canbaz E, Çömlekçi S, Can Seydim A. Effect of Moderate Intensity Pulsed Electric Field on Shelf-life of Chicken Breast Meat. Br Poult Sci 2022; 63:641-649. [PMID: 35294274 DOI: 10.1080/00071668.2022.2051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Moderate intensity pulsed electric field (MIPEF) is a fairly new research topic for microbial inactivation on muscle foods. In this study, indirect application of MIPEF (2.5 kV/cm, 4.67 kV/cm, 7 kV/cm) was evaluated in terms of the growth of some pathogenic bacteria and the quality characteristics of chicken breast meat during cold storage (4°C). Broth cultures of E. coli and C. jejuni showed a remarkable resistance to MIPEF under 4.67 kV/cm and 7 kV/cm, respectively. The limit for total mesophilic aerobic bacteria (TMAB) count was exceeded in 4.67 and 7 kV/cm applied groups 2 days later than control (C). In the end, almost 2 log differences were determined for total coliform bacteria in 4.67 and 7 kV/cm applied groups as compared to C (p<0.05). Inoculated P. aeruginosa count remained the same whereas L. monocytogenes growth was promoted by 4.67 kV/cm (p<0.05). pH value, CIE L*, b*, C* color values of chicken breast fillets were not affected by MIPEF application while ΔE values showed the maximum change in the C group. This study demonstrated that improved shelf-life of chicken breast fillets was provided by moderate intensity DC-pulses in combination with cold storage.
Collapse
Affiliation(s)
- Emine Aşık-Canbaz
- Department of Food Technology, Sarkikaraagac Vocational School, Isparta University of Applied Sciences, 32200 Isparta-TURKEY
| | - Selçuk Çömlekçi
- Department of Electronics and Communication Engineering, Faculty of Engineering, Süleyman Demirel University, 32200 Isparta-TURKEY
| | - Atıf Can Seydim
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, 32200 Isparta-TURKEY
| |
Collapse
|
3
|
Zhou J, Hung YC, Xie X. Making waves: Pathogen inactivation by electric field treatment: From liquid food to drinking water. WATER RESEARCH 2021; 207:117817. [PMID: 34763276 DOI: 10.1016/j.watres.2021.117817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yen-Con Hung
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Farber JM, Zwietering M, Wiedmann M, Schaffner D, Hedberg CW, Harrison MA, Hartnett E, Chapman B, Donnelly CW, Goodburn KE, Gummalla S. Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Calvo T, Álvarez-Ordóñez A, Prieto M, González-Raurich M, López M. Influence of processing parameters and stress adaptation on the inactivation of Listeria monocytogenes by Non-Thermal Atmospheric Plasma (NTAP). Food Res Int 2016; 89:631-637. [PMID: 28460960 DOI: 10.1016/j.foodres.2016.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022]
Abstract
This study evaluated the effectiveness of Non-Thermal Atmospheric Plasma (NTAP) treatments against Listeria. Firstly, the impact of gas composition and flow rate on L. monocytogenes and L. innocua (used as a surrogate) inactivation by NTAP was monitored. Secondly, the influence of stress adaptation (growth under suboptimal conditions, using a wide range of temperatures and media acidified up to pH5.5 with citric, lactic, malic or hydrochloric acid, or short-term exposure to acid, cold or thermal shocks) on L. monocytogenes NTAP resistance was assessed. Survival curves obtained were concave upward. A mathematical model based on the Weibull distribution accurately described the inactivation kinetics. Both L. monocytogenes and L. innocua showed a higher sensitivity to plasma when the treatment was performed using air than when nitrogen was used. In fact, the use of nitrogen as working gas made the plasma treatment almost ineffective. The effect of gas flow rate on the effectiveness of the NTAP treatment depended on the type of gas used to generate plasma. Increases in flow rate from 5 to 10L/min caused an acceleration of bacterial inactivation when air was used, while an additional increase of gas flow from 10 to 15L/min had a minor impact on microbial inactivation. On the other hand, gas flow rate hardly affected NTAP treatment efficiency when nitrogen was used to generate plasma. L. monocytogenes growth under sub-optimal temperature or pH conditions or short-term exposure to acid, heat or cold stress conditions did not significantly modify its NTAP resistance. This suggests that temperature and pH stress adaptation does not induce a cross-protection response against NTAP treatments in L. monocytogenes, what makes NTAP an attractive technology for food decontamination within minimal processing strategies targeting this pathogenic microorganism.
Collapse
Affiliation(s)
- Tamara Calvo
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain.
| | - Miguel Prieto
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain
| |
Collapse
|
6
|
Cebrián G, Mañas P, Condón S. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation. Front Microbiol 2016; 7:734. [PMID: 27242749 PMCID: PMC4873515 DOI: 10.3389/fmicb.2016.00734] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be exploited in order to design combined processes. Further work would be required in order to fully elucidate the mechanisms of action of these technologies and to exhaustively characterize the influence of all the factors acting before, during, and after treatment. This would be very useful in the areas of process optimization and combined process design.
Collapse
Affiliation(s)
| | | | - Santiago Condón
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Instituto Agroalimentario de Aragón – IA2 – (Universidad de Zaragoza-CITA), ZaragozaSpain
| |
Collapse
|
7
|
Bhat R, Stamminger R. Preserving Strawberry Quality by Employing Novel Food Preservation and Processing Techniques - Recent Updates and Future Scope - An Overview. J FOOD PROCESS ENG 2015. [DOI: 10.1111/jfpe.12184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rajeev Bhat
- Food Technology Division; School of Industrial Technology; Universiti Sains Malaysia; Minden Penang 11800 Malaysia
| | - Rainer Stamminger
- Sektion Haushaltstechnik; Institut fur Landtechnik; Universitat Bonn; Bonn Germany
| |
Collapse
|
8
|
Aganovic K, Grauwet T, Kebede BT, Toepfl S, Heinz V, Hendrickx M, Van Loey A. Impact of different large scale pasteurisation technologies and refrigerated storage on the headspace fingerprint of tomato juice. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Suo B, Wang X, Pan Z, Wang N, Ai Z, Yu S, Salazar JK. Inactivation and sublethal injury kinetics of Staphylococcus aureus in broth at low temperature storage. J Food Prot 2014; 77:1689-95. [PMID: 25285485 DOI: 10.4315/0362-028x.jfp-13-540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Low temperatures are widely used to ensure food quality and safety. However, sublethally injured Staphylococcus aureus is an important microbiological safety concern in low temperature food. The objective of this study was to develop predictive inactivation kinetic models for the inactivation and sublethal injury of S. aureus in broth at different temperatures (4 to -18°C) and time points. S. aureus was diluted in tryptic soy broth plus 0.6% (wt/vol) yeast extract (TSBYE) to obtain approximately 10(8) CFU/ml and was stored separately at 4, -3, -11, and -18°C. After specific time points within 96 days, survival of S. aureus was determined on TSBYE and TSBYE agar plus 10% NaCl for enumeration of the total viable and noninjured cell numbers, respectively. Linear, Weibull, and modified Gompertz models were applied to determine survival curve regression. The combination of low temperature and time resulted in S. aureus inactivation, although the cells were able to survive in this sublethal state. Storage temperature was the critical parameter in survival of S. aureus. The modified Weibull model successfully described a second model of noninjured S. aureus cell survival at different low temperatures, whereas only the linear model was able to fit the total viable cells. The predictive model may be used to estimate the level of S. aureus contamination in food at low storage temperatures and times, and it provides new insight into the sublethally injured survival state of S. aureus in low temperature food.
Collapse
Affiliation(s)
- Biao Suo
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China; Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China
| | - Zhili Pan
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China
| | - Na Wang
- Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China; Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China.
| | - Shuijing Yu
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, No. 86, Hongqi Avenue, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Joelle K Salazar
- U.S. Food and Drug Administration, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| |
Collapse
|
10
|
Liu ZW, Zeng XA, Sun DW, Han Z. Effects of pulsed electric fields on the permeabilization of calcein-filled soybean lecithin vesicles. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2014.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Analysis of irradiated cooked ham by direct introduction into the programmable temperature vaporizer of a multidimensional gas chromatography system. Food Chem 2013; 139:241-5. [DOI: 10.1016/j.foodchem.2013.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 10/01/2012] [Accepted: 01/02/2013] [Indexed: 11/20/2022]
|
12
|
POURZAKI ABBAS, MIRZAEE HOSSEIN, HEMMATI KAKHKI ABBAS. USING PULSED ELECTRIC FIELD FOR IMPROVEMENT OF COMPONENTS EXTRACTION OF SAFFRON (CROCUS SATIVUS
) STIGMA AND ITS POMACE. J FOOD PROCESS PRES 2012. [DOI: 10.1111/j.1745-4549.2012.00749.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Saldaña G, Monfort S, Condón S, Raso J, Álvarez I. Effect of temperature, pH and presence of nisin on inactivation of Salmonella Typhimurium and Escherichia coli O157:H7 by pulsed electric fields. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.03.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Nafchi AM, Bhat R, Karim Alias A. Pulsed Electric Fields for Food Preservation: An Update on Technological Progress. PROGRESS IN FOOD PRESERVATION 2012:277-295. [DOI: 10.1002/9781119962045.ch13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Ngadi MO, Latheef MB, Kassama L. Emerging technologies for microbial control in food processing. FOOD ENGINEERING SERIES 2012. [DOI: 10.1007/978-1-4614-1587-9_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Saldaña G, Puértolas E, Monfort S, Raso J, Álvarez I. Defining treatment conditions for pulsed electric field pasteurization of apple juice. Int J Food Microbiol 2011; 151:29-35. [DOI: 10.1016/j.ijfoodmicro.2011.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/18/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
|
17
|
Bermúdez-Aguirre D, Fernández S, Esquivel H, Dunne PC, Barbosa-Cánovas GV. Milk Processed by Pulsed Electric Fields: Evaluation of Microbial Quality, Physicochemical Characteristics, and Selected Nutrients at Different Storage Conditions. J Food Sci 2011; 76:S289-99. [DOI: 10.1111/j.1750-3841.2011.02171.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Food Preservation by Pulsed Electric Fields: An Engineering Perspective. FOOD ENGINEERING REVIEWS 2011. [DOI: 10.1007/s12393-011-9035-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|