1
|
Opportunities and Challenges of Understanding Community Assembly in Spontaneous Food Fermentation. Foods 2023; 12:foods12030673. [PMID: 36766201 PMCID: PMC9914028 DOI: 10.3390/foods12030673] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Spontaneous fermentations that do not rely on backslopping or industrial starter cultures were especially important to the early development of society and are still practiced around the world today. While current literature on spontaneous fermentations is observational and descriptive, it is important to understand the underlying mechanism of microbial community assembly and how this correlates with changes observed in microbial succession, composition, interaction, and metabolite production. Spontaneous food and beverage fermentations are home to autochthonous bacteria and fungi that are naturally inoculated from raw materials, environment, and equipment. This review discusses the factors that play an important role in microbial community assembly, particularly focusing on commonly reported yeasts and bacteria isolated from spontaneously fermenting food and beverages, and how this affects the fermentation dynamics. A wide range of studies have been conducted in spontaneously fermented foods that highlight some of the mechanisms that are involved in microbial interactions, niche adaptation, and lifestyle of these microorganisms. Moreover, we will also highlight how controlled culture experiments provide greater insight into understanding microbial interactions, a modest attempt in decoding the complexity of spontaneous fermentations. Further research using specific in vitro microbial models to understand the role of core microbiota are needed to fill the knowledge gap that currently exists in understanding how the phenotypic and genotypic expression of these microorganisms aid in their successful adaptation and shape fermentation outcomes. Furthermore, there is still a vast opportunity to understand strain level implications on community assembly. Translating these findings will also help in improving other fermentation systems to help gain more control over the fermentation process and maintain consistent and superior product quality.
Collapse
|
2
|
Güley Z, Fallico V, Cabrera-Rubio R, Cotter PD, Beresford T. Identification of Streptococcus infantarius subsp. infantarius as the species primarily responsible for acid production in Izmir Brined Tulum Cheese from the Aegean Region of Türkiye. Food Res Int 2022; 160:111707. [DOI: 10.1016/j.foodres.2022.111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
3
|
In Vitro Gut Modeling as a Tool for Adaptive Evolutionary Engineering of Lactiplantibacillus plantarum. mSystems 2021; 6:6/2/e01085-20. [PMID: 33850040 PMCID: PMC8546992 DOI: 10.1128/msystems.01085-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Research and marketing of probiotics demand holistic strain improvement considering both the biotic and abiotic gut environment. Here, we aim to establish the continuous in vitro colonic fermentation model PolyFermS as a tool for adaptive evolutionary engineering. Immobilized fecal microbiota from adult donors were steadily cultivated up to 72 days in PolyFermS reactors, providing a long-term compositional and functional stable ecosystem akin to the donor’s gut. Inoculation of the gut microbiota with immobilized or planktonic Lactiplantibacillus plantarum NZ3400, a derivative of the probiotic model strain WCFS1, led to successful colonization. Whole-genome sequencing of 45 recovered strains revealed mutations in 16 genes involved in signaling, metabolism, transport, and cell surface. Remarkably, mutations in LP_RS14990, LP_RS15205, and intergenic region LP_RS05100<LP_RS05095 were found in recovered strains from different adaptation experiments. Combined addition of the reference strain NZ3400 and each of those mutants to the gut microbiota resulted in increased abundance of the corresponding mutant in PolyFermS microbiota after 10 days, showing the beneficial nature of these mutations. Our data show that the PolyFermS system is a suitable technology to generate adapted mutants for colonization under colonic conditions. Analysis thereof will provide knowledge about factors involved in gut microbiota colonization and persistence. IMPORTANCE Improvement of bacterial strains in regard to specific abiotic environmental factors is broadly used to enhance strain characteristics for processing and product quality. However, there is currently no multidimensional probiotic strain improvement approach for both abiotic and biotic factors of a colon microbiota. The continuous PolyFermS fermentation model allows stable and reproducible continuous cultivation of colonic microbiota and provides conditions akin to the host gut with high control and easy sampling. This study investigated the suitability of PolyFermS for adaptive evolutionary engineering of a probiotic model organism for lactobacilli, Lactiplantibacillus plantarum, to an adult human colonic microbiota. The application of PolyFermS controlled gut microbiota environment led to adaptive evolution of L. plantarum strains for enhanced gut colonization characteristics. This novel tool for strain improvement can be used to reveal relevant factors involved in gut microbiota colonization and develop adapted probiotic strains with improved functionality in the gut.
Collapse
|
4
|
Traditional milk transformation schemes in Côte d'Ivoire and their impact on the prevalence of Streptococcus bovis complex bacteria in dairy products. PLoS One 2020; 15:e0233132. [PMID: 32413097 PMCID: PMC7228116 DOI: 10.1371/journal.pone.0233132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) and possibly Streptococcus infantarius subsp. infantarius (Sii) are associated with human and animal diseases. Sii predominate in spontaneously fermented milk products with unknown public health effects. Sii/SBSEC prevalence data from West Africa in correlation with milk transformation practices are limited. Northern Côte d'Ivoire served as study area due to its importance in milk production and consumption and to link a wider Sudano-Sahelian pastoral zone of cross-border trade. We aimed to describe the cow milk value chain and determine Sii/SBSEC prevalence with a cross-sectional study. Dairy production practices were described as non-compliant with basic hygiene standards. The system is influenced by secular sociocultural practices and environmental conditions affecting product properties. Phenotypic and molecular analyses identified SBSEC in 27/43 (62.8%) fermented and 26/67 (38.8%) unfermented milk samples. Stratified by collection stage, fermented milk at producer and vendor levels featured highest SBSEC prevalence of 71.4% and 63.6%, respectively. Sii with 62.8% and 38.8% as well as Streptococcus gallolyticus subsp. macedonicus with 7.0% and 7.5% were the predominant SBSEC species identified among fermented and unfermented milk samples, respectively. The population structure of Sii/SBSEC isolates seems to reflect evolving novel dairy-adapted, non-adapted and potentially pathogenic lineages. Northern Côte d'Ivoire was confirmed as area with high Sii presence in dairy products. The observed production practices and the high diversity of Sii/SBSEC supports in-depth investigations on Sii ecology niche, product safety and related technology in the dairy value chain potentially affecting large population groups across sub-Saharan Africa.
Collapse
|
5
|
Domínguez-Ramírez LL, Rodríguez-Sanoja R, Tecante A, García-Garibay M, Sainz T, Wacher C. Tolerance to acid and alkali by Streptococcus infantarius subsp. infantarius strain 25124 isolated from fermented nixtamal dough: Pozol. Studies in APT broth. Food Microbiol 2020; 90:103458. [PMID: 32336375 DOI: 10.1016/j.fm.2020.103458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023]
Abstract
Pozol is a beverage prepared with maize dough made after boiling the kernels in limewater. This pretreatment could act as a selective force that shapes the starter microbiota, with microorganisms able to survive the fermentation. Since Streptococcus infantarius subsp. infantarius (Sii) dominates in pozol, we evaluated the effect of acid and alkali stresses on strain Sii-25124 in commercial APT broth as a first attempt to assess its adaptation capacity. Results suggest that Sii-25124 has adaptative advantages to pH changes that possibly contribute to its persistence even after the acidification of the dough. Its cardinal pH values were 4.0 and 11.0, with an optimum between 6.6 and 8.0. It showed alkali tolerance unlike other pozol Sii strains. Adaptation at pH 4.0, 10.0 and 11.0, compared with non-adapted cells, induced acid tolerance enhancing survival at pH 3.6 (P < 0.05); a 2 min heat shock at 62 °C induced alkali tolerance response enhancing survival at pH 10.5 (P < 0.05). The up-regulation of dnaK, groEL, ptsG and atpB was observed during 5 h of exposition at pH 3.6, 4.0 and 10.0, showing similar expression rates after induction by acid shock or alkaline stress. Changes of atpB were more evident having almost five-fold induction during long-term stress.
Collapse
Affiliation(s)
- Lila Lubianka Domínguez-Ramírez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico.
| | - Romina Rodríguez-Sanoja
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico.
| | - Alberto Tecante
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico
| | - Mariano García-Garibay
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico; Departamento de Biotecnología/Departamento de Ciencias de La Alimentación, Universidad Autónoma Metropolitana-Iztapalapa/Lerma. Av. San Rafael Atlixco 186, Colonia Vicentina, Iztapalapa, C.P., 09340, Mexico City, Mexico.
| | - Teresita Sainz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico; Departamento de Sistemas Biológicos de La División de CBS, Universidad Autónoma Metropolitana-Xochimilco. Calzada Del Hueso 1100, Colonia Villa Quietud, Coyoacán, C.P, 04969, Mexico City, Mexico.
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, C.P., 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Exploring Beneficial/Virulence Properties of Two Dairy-Related Strains of Streptococcus infantarius subsp. infantarius. Probiotics Antimicrob Proteins 2020; 12:1524-1541. [DOI: 10.1007/s12602-020-09637-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Agyei D, Owusu-Kwarteng J, Akabanda F, Akomea-Frempong S. Indigenous African fermented dairy products: Processing technology, microbiology and health benefits. Crit Rev Food Sci Nutr 2019; 60:991-1006. [DOI: 10.1080/10408398.2018.1555133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - James Owusu-Kwarteng
- Department of Food Science and Technology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Fortune Akabanda
- Department of Applied Biology, University for Development Studies, Navrongo, Ghana
| | - Samuel Akomea-Frempong
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
8
|
Kaindi DWM, Kogi-Makau W, Lule GN, Kreikemeyer B, Renault P, Bonfoh B, Otaru N, Schmid T, Meile L, Hattendorf J, Jans C. Colorectal cancer-associated Streptococcus infantarius subsp. infantarius differ from a major dairy lineage providing evidence for pathogenic, pathobiont and food-grade lineages. Sci Rep 2018; 8:9181. [PMID: 29907746 PMCID: PMC6003927 DOI: 10.1038/s41598-018-27383-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus infantarius subsp. infantarius (Sii), a member of the Streptococcus bovis/Streptococcus equinus complex (SBSEC), predominates as dairy-adapted and non-adapted variants in fermented dairy products (FDP) in East and West Africa. Epidemiologic data suggest an association with colorectal cancer for most SBSEC members, including Sii from Kenyan patients. Phylogenetic relationships of East African human (EAH) isolates to those of dairy and pathogenic origin were analysed to better estimate potential health implications via FDP consumption. The MLST-derived population structure was also evaluated to provide host, disease, geography and dairy adaptation associations for 157 SBSEC isolates, including 83 novel Sii/SBSEC isolates of which 40 originated from Kenyan colonoscopy patients. Clonal complex (CC) 90 was delineated as potential pathogenic CC for Sii. Single EAH, West African dairy (WAD), food and animal Sii isolates clustered within CC-90, suggesting a potential link to pathogenic traits for CC-90. The majority of EAH and WAD Sii were clustered in a shared clade distinct from CC-90 and East African dairy (EAD) isolates. This indicates shared ancestry for the EAH and WAD clade and limitations to translate disease associations of EAH and CC-90 to EAD Sii, which could support the separation of pathogenic, pathobiont/commensal and food lineages.
Collapse
Affiliation(s)
| | - Wambui Kogi-Makau
- Department of Food Science, Nutrition and Technology, University of Nairobi, Nairobi, Kenya
| | | | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre Rostock, Rostock, Germany
| | - Pierre Renault
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Adiopodoume, Ivory Coast
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nize Otaru
- Laboratory of Food Biotechnology, ETH Zurich, Zurich, Switzerland
| | - Thomas Schmid
- Laboratory of Food Biotechnology, ETH Zurich, Zurich, Switzerland
| | - Leo Meile
- Laboratory of Food Biotechnology, ETH Zurich, Zurich, Switzerland
| | - Jan Hattendorf
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Jans
- Laboratory of Food Biotechnology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Jans C, Boleij A. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members. Front Microbiol 2018; 9:603. [PMID: 29692760 PMCID: PMC5902542 DOI: 10.3389/fmicb.2018.00603] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises several species inhabiting the animal and human gastrointestinal tract (GIT). They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE) and colorectal cancer (CRC). Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG) retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3) govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact system activation and collagen-I-binding on damaged heart valves. Only SGG carrying complete pilus loci seem to have highest IE potential in humans with significant links between SGG bacteremia/IE and underlying diseases including CRC. Other SBSEC host-microbe combinations might rely on currently unknown mechanisms. Comparative genome data of blood, commensal and food isolates are limited but required to elucidate the role of pili and other virulence factors, understand pathogenicity mechanisms, host specificity and estimate health risks for animals, humans and food alike.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
10
|
Kaindi DWM, Kogi-Makau W, Lule GN, Kreikemeyer B, Renault P, Bonfoh B, Schelling E, Zinsstag J, Lacroix C, Meile L, Jans C, Hattendorf J. Investigating the association between African spontaneously fermented dairy products, faecal carriage of Streptococcus infantarius subsp. infantarius and colorectal adenocarcinoma in Kenya. Acta Trop 2018; 178:10-18. [PMID: 29079186 PMCID: PMC5766739 DOI: 10.1016/j.actatropica.2017.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
Abstract
Consumption of traditional fermented dairy products (tFDP) in Africa leads to the ingestion of up to 108Streptococcus infantarius subspecies infantarius (Sii) per millilitre of spontaneously fermented milk. Sii is a member of the Streptococcus bovis/Streptococcus equinus complex (SBSEC) for which some members are associated particularly with colorectal cancer or endocarditis. The extent of health risks to tFDP consumers is largely unknown. A hospital-based unmatched case-control study was conducted at Kenyatta National Hospital, Nairobi (Kenya) on 80 cases and 193 controls that were selected exhaustively from patients attending colonoscopy at the hospital. Logistic regression models adjusted for age, sex and residency were used in the statistical analysis. Consumption of tFDP was not associated with CRC (odds ratio (OR) 1.4; 95% Confidence interval (CI) 0.7-2.7; p=0.34). Risk factors associated with CRC included age above 40 years, and consumption of processed meat and alcohol. Faecal carriage of Sii was significantly higher in persons with colon tumours and polyps compared to controls (8.4% vs 21.6%: OR: 4.6; CI 1.3-15.9). Patients with haemorrhoids represented an unexpected carrier group with significantly higher Sii faecal carriage (30.4%, CI: 17.7-45.8). Consumption of tFDP does not represent risk factors for CRC whereas Sii seems to be associated with CRC. However, there is urgent need to assess this finding also in the general population, investigate the causality of SBSEC, Sii and CRC as well as compare the phylogenetic, functional and genomic relationship between human and dairy Sii with regards to the ongoing application of Sii in FDP production.
Collapse
Affiliation(s)
- Dasel W M Kaindi
- Department of Food Science, Nutrition and Technology, University of Nairobi, P. O. Box 29053 - 00625, Nairobi, Kenya.
| | - Wambui Kogi-Makau
- Department of Food Science, Nutrition and Technology, University of Nairobi, P. O. Box 29053 - 00625, Nairobi, Kenya.
| | - Godfrey N Lule
- School of Medicine, University of Nairobi, P. O. Box 19676, Nairobi, Kenya.
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, Hygiene and Bacteriology, Rostock University Medical Center Rostock, Schillingallee 70, 18055 Rostock, Germany.
| | - Pierre Renault
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Km 17, Adiopodoumé, Rte Dabou, 01 BP 1303 Abidjan 01, Cote d'Ivoire; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| | - Esther Schelling
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| | - Jakob Zinsstag
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, LFV C22, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, LFV C22, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, LFV C22, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Jan Hattendorf
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| |
Collapse
|
11
|
Complete Genome Sequences of Lactobacillus curvatus KG6, L. curvatus MRS6, and Lactobacillus sakei FAM18311, Isolated from Fermented Meat Products. GENOME ANNOUNCEMENTS 2017; 5:5/38/e00915-17. [PMID: 28935727 PMCID: PMC5609406 DOI: 10.1128/genomea.00915-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genomes of Lactobacillus curvatus KG6, L. curvatus MRS6, and Lactobacillus sakei FAM18311 were sequenced and assembled using PacBio single-molecule real-time (SMRT) technology. The strains were isolated from Swiss fermented meat products. Circular chromosomes were of 1.98 Mbp (KG6), 2.11 Mbp (MRS6), and 1.95 Mbp (FAM18311), with a G+C content of 41.3 to 42.0%.
Collapse
|
12
|
Bacterial diversity of the Colombian fermented milk "Suero Costeño" assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. Food Microbiol 2017; 68:129-136. [PMID: 28800820 DOI: 10.1016/j.fm.2017.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/13/2017] [Accepted: 07/16/2017] [Indexed: 11/22/2022]
Abstract
"Suero Costeño" (SC) is a traditional soured cream elaborated from raw milk in the Northern-Caribbean coast of Colombia. The natural microbiota that characterizes this popular Colombian fermented milk is unknown, although several culturing studies have previously been attempted. In this work, the microbiota associated with SC from three manufacturers in two regions, "Planeta Rica" (Córdoba) and "Caucasia" (Antioquia), was analysed by means of culturing methods in combination with high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. The bacterial ecosystem of SC samples was revealed to be composed of lactic acid bacteria belonging to the Streptococcaceae and Lactobacillaceae families; the proportions and genera varying among manufacturers and region of elaboration. Members of the Lactobacillus acidophilus group, Lactocococcus lactis, Streptococcus infantarius and Streptococcus salivarius characterized this artisanal product. In comparison with culturing, the use of molecular in deep culture-independent techniques provides a more realistic picture of the overall bacterial communities residing in SC. Besides the descriptive purpose, these approaches will facilitate a rational strategy to follow (culture media and growing conditions) for the isolation of indigenous strains that allow standardization in the manufacture of SC.
Collapse
|
13
|
Jans C, Meile L, Kaindi DWM, Kogi-Makau W, Lamuka P, Renault P, Kreikemeyer B, Lacroix C, Hattendorf J, Zinsstag J, Schelling E, Fokou G, Bonfoh B. African fermented dairy products - Overview of predominant technologically important microorganisms focusing on African Streptococcus infantarius variants and potential future applications for enhanced food safety and security. Int J Food Microbiol 2017; 250:27-36. [PMID: 28364623 DOI: 10.1016/j.ijfoodmicro.2017.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
Milk is a major source of nutrients, but can also be a vehicle for zoonotic foodborne diseases, especially when raw milk is consumed. In Africa, poor processing and storage conditions contribute to contamination, outgrowth and transmission of pathogens, which lead to spoilage, reduced food safety and security. Fermentation helps mitigate the impact of poor handling and storage conditions by enhancing shelf life and food safety. Traditionally-fermented sour milk products are culturally accepted and widely distributed in Africa, and rely on product-specific microbiota responsible for aroma, flavor and texture. Knowledge of microbiota and predominant, technologically important microorganisms is critical in developing products with enhanced quality and safety, as well as sustainable interventions for these products, including Africa-specific starter culture development. This narrative review summarizes current knowledge of technologically-important microorganisms of African fermented dairy products (FDP) and raw milk, taking into consideration novel findings and taxonomy when re-analyzing data of 29 publications covering 25 products from 17 African countries. Technologically-important lactic acid bacteria such as Lactococcus lactis and Streptococcus infantarius subsp. infantarius (Sii), Lactobacillus spp. and yeasts predominated in raw milk and FDP across Africa. Re-analysis of data also suggests a much wider distribution of Sii and thus a potentially longer history of use than previously expected. Therefore, evaluating the role and safety of African Sii lineages is important when developing interventions and starter cultures for FDP in Africa to enhance food safety and food security. In-depth functional genomics, epidemiologic investigations and latest identification approaches coupled with stakeholder involvement will be required to evaluate the possibility of African Sii lineages as novel food-grade Streptococcus lineage.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, LFV C22, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, LFV C22, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Dasel Wambua Mulwa Kaindi
- Department of Food Science, Nutrition and Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya
| | - Wambui Kogi-Makau
- Department of Food Science, Nutrition and Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya
| | - Peter Lamuka
- Department of Food Science, Nutrition and Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya
| | - Pierre Renault
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, Hygiene and Bacteriology, Rostock University Medical Center Rostock, Schillingallee 70, 18055 Rostock, Germany
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food Nutrition and Health, Department of Health Science and Technology, ETH Zurich, LFV C22, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Jan Hattendorf
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Esther Schelling
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Gilbert Fokou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Km 17, Adiopodoumé, Rte Dabou, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Bassirou Bonfoh
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Km 17, Adiopodoumé, Rte Dabou, 01 BP 1303 Abidjan 01, Côte d'Ivoire.
| |
Collapse
|
14
|
Jans C, de Wouters T, Bonfoh B, Lacroix C, Kaindi DWM, Anderegg J, Böck D, Vitali S, Schmid T, Isenring J, Kurt F, Kogi-Makau W, Meile L. Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme. BMC Microbiol 2016; 16:117. [PMID: 27329036 PMCID: PMC4915170 DOI: 10.1186/s12866-016-0735-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Background The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). Results Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. Conclusion Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and establish the basis to elucidate (zoonotic-) transmission, host specificity, virulence mechanisms and enhanced risk assessment as pathobionts in an overarching One Health approach. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0735-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Tomas de Wouters
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), KM 17 route de Dabou, Adiopodoumé Yopougon, Abidjan - 01B.P. 1303, Abidjan, Côte d'Ivoire
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Dasel Wambua Mulwa Kaindi
- Department of Food Science, Nutrition and Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Janine Anderegg
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Désirée Böck
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Sabrina Vitali
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Thomas Schmid
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Julia Isenring
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Fabienne Kurt
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Wambui Kogi-Makau
- Department of Food Science, Nutrition and Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| |
Collapse
|
15
|
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:14. [PMID: 25688290 PMCID: PMC4329661 DOI: 10.1186/s13068-014-0193-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/22/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools. RESULTS High-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2(T) revealed that dominant methanogens within the dry fermentation process were highly related to the reference. CONCLUSIONS Although process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2(T) dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters.
Collapse
Affiliation(s)
- Yvonne Stolze
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Martha Zakrzewski
- />QIMR Berghofer Medical Research Institute Herston, 300 Herston Road, Brisbane, QLD 4006 Australia
| | - Irena Maus
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Felix Eikmeyer
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Sebastian Jaenicke
- />Bioinformatics Resource Facility, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Nils Rottmann
- />NORTH-TEC Maschinenbau GmbH, Oldenhörn 1, 25821 Bredstedt, Germany
| | - Clemens Siebner
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Schlüter
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
16
|
Almeida M, Hébert A, Abraham AL, Rasmussen S, Monnet C, Pons N, Delbès C, Loux V, Batto JM, Leonard P, Kennedy S, Ehrlich SD, Pop M, Montel MC, Irlinger F, Renault P. Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products. BMC Genomics 2014; 15:1101. [PMID: 25496341 PMCID: PMC4320590 DOI: 10.1186/1471-2164-15-1101] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Microbial communities of traditional cheeses are complex and insufficiently characterized. The origin, safety and functional role in cheese making of these microbial communities are still not well understood. Metagenomic analysis of these communities by high throughput shotgun sequencing is a promising approach to characterize their genomic and functional profiles. Such analyses, however, critically depend on the availability of appropriate reference genome databases against which the sequencing reads can be aligned. Results We built a reference genome catalog suitable for short read metagenomic analysis using a low-cost sequencing strategy. We selected 142 bacteria isolated from dairy products belonging to 137 different species and 67 genera, and succeeded to reconstruct the draft genome of 117 of them at a standard or high quality level, including isolates from the genera Kluyvera, Luteococcus and Marinilactibacillus, still missing from public database. To demonstrate the potential of this catalog, we analysed the microbial composition of the surface of two smear cheeses and one blue-veined cheese, and showed that a significant part of the microbiota of these traditional cheeses was composed of microorganisms newly sequenced in our study. Conclusions Our study provides data, which combined with publicly available genome references, represents the most expansive catalog to date of cheese-associated bacteria. Using this extended dairy catalog, we revealed the presence in traditional cheese of dominant microorganisms not deliberately inoculated, mainly Gram-negative genera such as Pseudoalteromonas haloplanktis or Psychrobacter immobilis, that may contribute to the characteristics of cheese produced through traditional methods. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1101) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pierre Renault
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, 78352 Jouy-en-Josas, France.
| |
Collapse
|
17
|
Jans C, Meile L, Lacroix C, Stevens MJA. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC). INFECTION GENETICS AND EVOLUTION 2014; 33:419-36. [PMID: 25233845 DOI: 10.1016/j.meegid.2014.09.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023]
Abstract
The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are pivotal for strain performance during fermentation. Comparative genomics is a powerful tool to identify acquired pathogenic functions, but there is still an urgent need for more physiological and epidemiological data to understand SBSEC-specific traits.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Marc J A Stevens
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
18
|
Rossi F, Rizzotti L, Felis GE, Torriani S. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiol 2014; 42:232-43. [DOI: 10.1016/j.fm.2014.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
|
19
|
Papadimitriou K, Anastasiou R, Mavrogonatou E, Blom J, Papandreou NC, Hamodrakas SJ, Ferreira S, Renault P, Supply P, Pot B, Tsakalidou E. Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex. BMC Genomics 2014; 15:272. [PMID: 24713045 PMCID: PMC4051162 DOI: 10.1186/1471-2164-15-272] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022] Open
Abstract
Background Within the genus Streptococcus, only Streptococcus
thermophilus is used as a starter culture in food fermentations.
Streptococcus macedonicus though, which belongs to the
Streptococcus bovis/Streptococcus equinus complex
(SBSEC), is also frequently isolated from fermented foods mainly of dairy
origin. Members of the SBSEC have been implicated in human endocarditis and
colon cancer. Here we compare the genome sequence of the dairy isolate
S. macedonicus ACA-DC 198 to the other SBSEC genomes in order
to assess in silico its potential adaptation to milk and its
pathogenicity status. Results Despite the fact that the SBSEC species were found tightly related based on
whole genome phylogeny of streptococci, two distinct patterns of evolution
were identified among them. Streptococcus macedonicus, Streptococcus
infantarius CJ18 and Streptococcus pasteurianus ATCC 43144
seem to have undergone reductive evolution resulting in significantly
diminished genome sizes and increased percentages of potential pseudogenes
when compared to Streptococcus gallolyticus subsp.
gallolyticus. In addition, the three species seem to have lost
genes for catabolizing complex plant carbohydrates and for detoxifying toxic
substances previously linked to the ability of S. gallolyticus to
survive in the rumen. Analysis of the S. macedonicus genome
revealed features that could support adaptation to milk, including an extra
gene cluster for lactose and galactose metabolism, a proteolytic system for
casein hydrolysis, auxotrophy for several vitamins, an increased ability to
resist bacteriophages and horizontal gene transfer events with the dairy
Lactococcus lactis and S. thermophilus as potential
donors. In addition, S. macedonicus lacks several
pathogenicity-related genes found in S. gallolyticus. For example,
S. macedonicus has retained only one (i.e. the pil3)
of the three pilus gene clusters which may mediate the binding of S.
gallolyticus to the extracellular matrix. Unexpectedly, similar
findings were obtained not only for the dairy S. infantarius CJ18,
but also for the blood isolate S. pasteurianus ATCC 43144. Conclusions Our whole genome analyses suggest traits of adaptation of S.
macedonicus to the nutrient-rich dairy environment. During this
process the bacterium gained genes presumably important for this new
ecological niche. Finally, S. macedonicus carries a reduced number
of putative SBSEC virulence factors, which suggests a diminished pathogenic
potential.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jans C, Kaindi DWM, Böck D, Njage PMK, Kouamé-Sina SM, Bonfoh B, Lacroix C, Meile L. Prevalence and comparison of Streptococcus infantarius subsp. infantarius and Streptococcus gallolyticus subsp. macedonicus in raw and fermented dairy products from East and West Africa. Int J Food Microbiol 2013; 167:186-95. [PMID: 24131584 DOI: 10.1016/j.ijfoodmicro.2013.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/12/2013] [Accepted: 09/14/2013] [Indexed: 01/25/2023]
Abstract
Streptococcus infantarius subsp. infantarius (Sii) and Streptococcus gallolyticus subsp. macedonicus are members of the Streptococcus bovis/Streptococcus equinus complex (SBSEC) associated with human infections. SBSEC-related endocarditis was furthermore associated with rural residency in Southern Europe. SBSEC members are increasingly isolated as predominant species from fermented dairy products in Europe, Asia and Africa. African variants of Sii displayed dairy adaptations to lactose metabolism paralleling those of Streptococcus thermophilus including genome decay. In this study, the aim was to assess the prevalence of Sii and possibly other SBSEC members in dairy products of East and West Africa in order to identify their habitat, estimate their importance in dairy fermentation processes and determine geographic areas affected by this potential health risk. Presumptive SBSEC members were isolated on semi-selective M17 and SM agar media. Subsequent genotypic identification of isolates was based on rep-PCR fingerprinting and SBSEC-specific16S rRNA gene PCR assay. Detailed identification was achieved through application of novel primers enhancing the binding stringency in partial groES/groEL gene amplification and subsequent DNA sequencing. The presence of S. thermophilus-like lacS and lacZ genes in the SBSEC isolates was determined to elucidate the prevalence of this dairy adaptation. Isolates (n = 754) were obtained from 72 raw and 95 fermented milk samples from Côte d'Ivoire and Kenya on semi-selective agar media. Colonies of Sii were not detected from raw milk despite high microbial titers of approximately 10(6)CFU/mL on M17 agar medium. However, after spontaneous milk fermentation Sii was genotypically identified in 94.1% of Kenyan samples and 60.8% of Kenyan isolates. Sii prevalence in Côte d'Ivoire displayed seasonal variations in samples from 32.3% (June) to 40.0% (Dec/Jan) and isolates from 20.5% (June) to 27.7% (Dec/Jan) present at titers of 10(6)-10(8)CFU/mL. lacS and lacZ genes were detected in all Kenyan and 25.8% (June) to 65.4% (Dec/Jan) of Ivorian Sii isolates. Regional differences in prevalence of Sii and dairy adaptations were observed, but no clear effect of dairy animal, fermentation procedure and climate was revealed. Conclusively, the high prevalence of Sii in Kenya, Côte d'Ivoire in addition to Somalia, Sudan and Mali strongly indicates a pivotal role of Sii in traditional African dairy fermentations potentially paralleling that of typical western dairy species S. thermophilus. Putative health risks associated with the consumption of high amounts of live Sii and potential different degrees of evolutionary adaptation or ecological colonization require further epidemiologic and genomic investigations, particularly in Africa.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Complete Genome Sequence of the Probiotic Bifidobacterium thermophilum Strain RBL67. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00191-13. [PMID: 23640377 PMCID: PMC3642284 DOI: 10.1128/genomea.00191-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bifidobacterium thermophilum RBL67, an isolate from infant feces, exhibits bacteriocin-like antimicrobial activity against Listeria spp. and Salmonella spp. and protects HT29-MTX cells against Salmonella infection. Here, the complete genome sequence of the probiotic B. thermophilum strain RBL67 is presented.
Collapse
|
22
|
Competence for natural genetic transformation in the Streptococcus bovis group streptococci S. infantarius and S. macedonicus. J Bacteriol 2013; 195:2612-20. [PMID: 23543718 DOI: 10.1128/jb.00230-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural genetic transformation is common among many species of the genus Streptococcus, but it has never, or rarely, been reported for the Streptococcus pyogenes and S. bovis groups of species, even though many streptococcal competence genes and the competence regulators SigX, ComR, and ComS are well conserved in both groups. To explore the incidence of competence in the S. bovis group, 25 isolates of S. infantarius and S. macedonicus were surveyed by employing culture in chemically defined media devoid of peptide nutrients and treatment with synthetic candidate pheromone peptides predicted from the sequence of the gene comS. Approximately half of strains examined were transformable, many transforming at high rates comparable to those for the well-characterized streptococcal natural transformation systems. In S. infantarius, nanomolar amounts of the synthetic pheromone LTAWWGL induced robust but transient competence in high-density cultures, but mutation of the ComRS locus abolished transformation. We conclude that at least these two species of the S. bovis group retain a robust system of natural transformation regulated by a ComRS pheromone circuit and the alternative sigma factor SigX and infer that transformation is even more common among the streptococci than has been recognized. The tools presented here will facilitate targeted genetic manipulation in this group of streptococci.
Collapse
|
23
|
Jans C, Follador R, Hochstrasser M, Lacroix C, Meile L, Stevens MJA. Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment. BMC Genomics 2013; 14:200. [PMID: 23521820 PMCID: PMC3640971 DOI: 10.1186/1471-2164-14-200] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/13/2013] [Indexed: 12/14/2022] Open
Abstract
Background Streptococcus infantarius subsp. infantarius (Sii) belongs to the Streptococcus bovis/Streptococcus equinus complex associated with several human and animal infections. Sii is a predominant bacterium in spontaneously fermented milk products in Africa. The genome sequence of Sii strain CJ18 was compared with that of other Streptococcus species to identify dairy adaptations including genome decay such as in Streptococcus thermophilus, traits for its competitiveness in spontaneous milk fermentation and to assess potential health risks for consumers. Results The genome of Sii CJ18 harbors several unique regions in comparison to Sii ATCC BAA-102T, among others an enlarged exo- and capsular polysaccharide operon; Streptococcus thermophilus-associated genes; a region containing metabolic and hypothetical genes mostly unique to CJ18 and the dairy isolate Streptococcus gallolyticus subsp. macedonicus; and a second oligopeptide transport operon. Dairy adaptations in CJ18 are reflected by a high percentage of pseudogenes (4.9%) representing genome decay which includes the inactivation of the lactose phosphotransferase system (lacIIABC) by multiple transposases integration. The presence of lacS and lacZ genes is the major dairy adaptation affecting lactose metabolism pathways also due to the disruption of lacIIABC. We constructed mutant strains of lacS, lacZ and lacIIABC and analyzed the resulting strains of CJ18 to confirm the redirection of lactose metabolism via LacS and LacZ. Natural competence genes are conserved in both Sii strains, but CJ18 contains a lower number of CRISPR spacers which indicates a reduced defense capability against alien DNA. No classical streptococcal virulence factors were detected in both Sii strains apart from those involved in adhesion which should be considered niche factors. Sii-specific virulence factors are not described. Several Sii-specific regions encoding uncharacterized proteins provide new leads for virulence analyses and investigation of the unclear association of dairy and clinical Sii with human diseases. Conclusions The genome of the African dairy isolate Sii CJ18 clearly differs from the human isolate ATCC BAA-102T. CJ18 possesses a high natural competence predisposition likely explaining the enlarged genome. Metabolic adaptations to the dairy environment are evident and especially lactose uptake corresponds to S. thermophilus. Genome decay is not as advanced as in S. thermophilus (10-19%) possibly due to a shorter history in dairy fermentations.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, ETH Zurich, Zurich, CH 8092, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Wullschleger S, Lacroix C, Bonfoh B, Sissoko-Thiam A, Hugenschmidt S, Romanens E, Baumgartner S, Traoré I, Yaffee M, Jans C, Meile L. Analysis of lactic acid bacteria communities and their seasonal variations in a spontaneously fermented dairy product (Malian fènè) by applying a cultivation/genotype-based binary model. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2012.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Complete genome sequence of the African dairy isolate Streptococcus infantarius subsp. infantarius strain CJ18. J Bacteriol 2012; 194:2105-6. [PMID: 22461547 DOI: 10.1128/jb.00160-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus infantarius subsp. infantarius, a member of the Streptococcus bovis/Streptococcus equinus complex, is highly prevalent in artisanal dairy fermentations in Africa. Here the complete genome sequence of the dairy-adapted S. infantarius subsp. infantarius CJ18 strain--a strain predominant in traditionally fermented camel milk (suusac) from Kenya--is presented.
Collapse
|